# FRANK PROTECTION

#### UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

WASHINGTON, D.C. 20460

OFFICE OF ENFORCEMENT AND COMPLIANCE ASSURANCE

October 27, 2022

Mr. Bernard Blouin, Eng. Mechanical Engineer Stove Builder International Inc. 250 Rue De Copenhague Saint-Augustin-de-Desmaures Quebec, Canada G3A 2H3

Re: Update of the Certificate of Compliance Number 299-22 for the 2.1 Series – Destination 1.9, Matrix 1900, CW2100, Green Mountain Insert 50, HEI90, and Archway 1500 Cord Wood Heater Models – Adding Blue Ridge 150-I Model.

# Dear Mr. Blouin:

The United States Environmental Protection Agency (EPA) is in receipt of your August 9, 2022, letter requesting a new model designation be added to Certificate of Compliance Number 299-22. This Certificate of Compliance currently includes the 2.1 Series (Destination 1.9, Matrix 1900, CW2100, Green Mountain Insert 50, HEI90, and Archway 1500) models. Specifically, you are requesting the Blue Ridge 150-I model be added to the above-referenced Certificate of Compliance. According to your request, you affirm the newly designated model will be manufactured exactly the same as the currently certified models, and no changes to the tested design have been made to cause the wood heaters within the model line to exceed applicable emission limits.

Based on a March 30, 2021¹ test report prepared by Intertek Testing Services NA, Inc. (Intertek) demonstrating compliance with the February 28, 2018, EPA-approved Alternative Cordwood Test Method (ATM) ALT-125, an April 7, 2021² Certification of Conformity by Intertek, and your August 9, 2022, request letter, EPA is approving the request for the new model designation to be added to the above-referenced Certificate of Compliance. EPA has determined that the model line continues to meet the certification requirements in the 2015 New Source Performance Standards (NSPS) for New Residential Wood Heaters, New Residential Hydronic Heaters, and Forced-Air Furnaces at 40 CFR § 60.533. EPA also will update the EPA Wood Heater Database to include the Blue Ridge 150-I model. Please refer to the above-referenced Certificate of Compliance Number in all future correspondence.

<sup>1</sup> Revised on October 1, 2021, December 20, 2021, July 14, 2022, and September 19, 2022.

<sup>&</sup>lt;sup>2</sup> Revised on October 7, 2021, December 15, 2021, December 20, 2021, July 27, 2022, and September 19, 2022.

Certification under the 2015 Wood Heater Rule is valid through January 25, 2027, and no separate certification is required. This Certificate of Compliance is valid for the above-referenced models and cannot be transferred to another model line without applying for another Certificate of Compliance. This Certificate of Compliance allows you to advertise for sale, offer for sale, and sell the above-referenced models through January 25, 2027, under this Certificate of Compliance without applying for and being issued another Certificate of Compliance.

All wood heaters manufactured or sold under this Certificate of Compliance must comply with EPA labeling requirements found at § 60.536. These provisions require each wood heater to have a permanent label affixed to it, including the month and year of manufacture, model name or number, serial number, certification test emission value, test method, standard met, and compliance certification statement.

In addition, you must comply with all applicable requirements of the regulation, including:

- 1. Conducting a third-party certifier-approved quality assurance program which ensures that all units within a model line are similar to the wood heater submitted for certification testing in all respects that would affect emissions and are in compliance with the applicable emission limit, pursuant to § 60.533(m);
- 2. Applying for recertification whenever any change is made to the above-referenced models that affect or is presumed to affect the particulate matter emission rate for the model line, pursuant to § 60.533(k)(1);
- 3. Providing an owner's manual that includes the information listed in § 60.536(g)(1) with each affected wood heater model offered for sale;
- 4. Placing a copy of the certification test report and summary on the manufacturer's website. The test report and summary shall be available to the public within 30 days after the EPA issues a Certificate of Compliance, pursuant to § 60.533(b)(12);
- 5. Submitting a report to the EPA every two years following issuance of a Certificate of Compliance for each model line. This report must include the sales for each model by state and certify that no changes in the design or manufacture of this model line have been made that require recertification under § 60.533(k);
- 6. Retaining records and submitting reports as required at § 60.537; and
- 7. Submitting wood heaters for audit testing if selected by the EPA under §§ 60.533(n)(1)(i) and (2)(i).

If you apply for renewal of your Certificate of Compliance pursuant to 40 C.F.R. § 60.533(i)(1) which was previously issued based upon a certification test using ALT–125 or ALT–127³, you must conduct a valid certification test in accordance with the 2015 Wood Heater Rule and the test methods and procedures in 40 C.F.R. § 60.534 and follow all other procedures as set forth in 40 C.F.R. § 60.533(i)(2). The EPA will not grant a waiver from certification testing upon receipt of a renewal request.

Failure to comply with these requirements may result in revoking this Certificate of Compliance and enforcement action, including penalties as specified under the Clean Air Act. Pursuant to the EPA-approved ATM ALT-125, you must also include your approval letter in the certification test report for posting on your website. To promote transparency in implementing the Wood Heater Program, we suggest that manufacturers submit a copy of the test report and the Uniform Resource Locator (URL) or web address where the test report is posted to <a href="WoodHeaterReports@epa.gov">WoodHeaterReports@epa.gov</a> within ten (10) days of posting the test report.

If you have any questions concerning this letter, please contact the Wood Heater Program at WoodHeaterReports@epa.gov.

Sincerely,

Elizabeth Vizard Acting Director Monitoring, Assistance, and Media Programs Division Office of Compliance Office of Enforcement and Compliance Assurance

<sup>&</sup>lt;sup>3</sup> On January 24, 2022, the EPA announced the withdrawal of broadly applicable alternative test method approval decisions for Alternatives 125 and 127 (or ALT-125 and ALT-127) that the Agency made in 2018 under the 2015 Wood Heater Rule allowing changes to the American Society for Testing and Materials (ASTM) E3053 test method. The withdrawal of ALT-125 and ALT-127 test methods became effective on February 23, 2022. See <a href="https://www.federalregister.gov/documents/2022/01/24/2022-01298/withdrawal-of-broadly-applicable-alternative-test-methods">https://www.federalregister.gov/documents/2022/01/24/2022-01298/withdrawal-of-broadly-applicable-alternative-test-methods</a>.



# STOVE BUILDER INTERNATIONAL INC. TEST REPORT

#### **SCOPE OF WORK**

EPA EMISSIONS TESTING/2.1 SERIES (DESTINATION 1.9, MATRIX 1900, CW2100, GREEN MOUNTAIN INSERT 50, HEI90, ARCHWAY 1500, BLUE RIDGE 150-I)/ WOOD FUEL ROOM HEATER

# **REPORT NUMBER**

104576994MTL-001R4

#### **TEST DATE(S)**

02/22/21 - 02/25/21

**ISSUE DATE** 

**REVISED DATE** 

03/30/21

09/19/22

# **PAGES**

32

# **DOCUMENT CONTROL NUMBER**

GFT-OP-10c (05/10/17) © 2017 INTERTEK





Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

#### TEST REPORT FOR STOVE BUILDER INTERNATIONAL INC.

Report No.: 104576994MTL-001R4

Date: 12/20/21

#### **REPORT ISSUED TO**

#### STOVE BUILDER INTERNATIONAL, INC.

250 de Copenhague ST-Augustin-de-Desmaures, Qc, G3A 2H3

#### **SECTION 1**

#### **SCOPE**

Intertek Testing Services NA (Intertek) has conducted testing for Stove Builder International Inc., on model Matrix 1900 (2.1 Series) wood burning room heater to evaluate all applicable performance requirements included in "Determination of particulate matter emissions from wood heaters." Matrix 1900 is a representative model of the 2.1 Series. This series includes the following models: Destination 1.9, Matrix 1900, CW2100, Green Mountain Insert 50, HEI90, Archway 1500, and Blue Ridge 150-I. See PEV #104576994MTL-002 and #105095446MID-001 for more details.

The test was conducted to determine if the unit is in accordance with U.S EPA requirements under EPA 40 CFR Part 60 "Standards of Performance for New Residential Wood Heaters, New Residential Hydronic Heaters and Forced-Air Furnaces". This evaluation was conducted on February 22<sup>nd</sup> to February 25<sup>th</sup>, 2021. The following test methods were applicable:

ASTM E2515-11- Standard Test Method for Determination of Particulate Matter Emissions Collected by a Dilution Tunnel

ASTM E3053-17 - Standard Test Method for Determining Particulate Matter Emissions from Wood Heaters using Cordwood Test Fuel. It is based on the ALT-125 send by EPA on February 28th, 2018.

ALT-125 - Broadly Applicable Alternative Test Method, Steffan Johnson, OAQPS, February 28, 2018

CSA B415.1-10 - Performance Testing of Solid-Fuel-Burning Heating Appliances

Testing was performed by the undersigned at client's facility.

This report does not constitute certification of this product nor an opinion or endorsement by this laboratory.

Version: 05/10/17 Page 2 of 32 GFT-OP-10c



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

#### TEST REPORT FOR STOVE BUILDER INTERNATIONAL INC.

Report No.: 104576994MTL-001R4

Date: 12/20/21

#### **SECTION 2**

#### **SUMMARY OF TEST RESULTS**

The appliance tests resulted in the following performance:

Particulate Emissions: 1.5 g/hr

Carbon Monoxide Emissions: 0.6 g/min

Heating Efficiency: 75% (Higher Heating Value Basis)

For INTERTEK B&C:

**COMPLETED BY:** 

Brian Ziegler

Technical Team Leader -

TITLE: Hearth

Bilde

**SIGNATURE:** 

DATE: aaa:bbb 09/19/22

REVIEWED BY:

Ken Slater

TITLE:

Associate Engineer - Hearth

**SIGNATURE:** 

DATE:

09/19/22

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample(s) tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

#### **SECTION 3**

# **TEST METHOD(S)**

The specimen was evaluated in accordance with the following:

**ASTM E2515-11**- Standard Test Method for Determination of Particulate Matter Emissions Collected by a Dilution Tunnel

**ASTM E3053-17** - Standard Test Method for Determining Particulate Matter Emissions from Wood Heaters using Cordwood Test Fuel. It is based on the ALT-125 send by EPA on February 28<sup>th</sup>, 2018.

CSA B415.1-10 - Performance Testing of Solid-Fuel-Burning Heating Appliances

ALT-125 - Broadly Applicable Alternative Test Method, Steffan Johnson, OAQPS, February 28, 2018



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

#### TEST REPORT FOR STOVE BUILDER INTERNATIONAL INC.

Report No.: 104576994MTL-001R4

Date: 12/20/21

#### **SECTION 4**

#### **MATERIAL SOURCE**

A sample was submitted to Intertek directly from the client. The sample was not independently selected for testing. The test unit was handed to the Intertek representative at client's facility in St-Augustin-de-Desmaures, Quebec. The unit was inspected upon receipt and found to be in good condition. The unit was set up following the manufacturer's instructions without difficulty.

Following assembly, the unit was placed on the test stand. Prior to begin the emissions tests, the manufacturer operated the unit for a minimum of 50 hours at medium burn rates to break-in the stove. The unit was found to be operating satisfactory during this break-in. The 50 plus hours of pre-burning were conducted from January 14<sup>th</sup> to February 17<sup>th</sup>, 2021. The fuel used for the break-in process was beech cordwood. Table 1 shows the summary of the burn time in each test ran at medium burn rate; raw data is available on *Appendix F – Unit pre-burn documentation*.

Table 1 - Pre-burn time at medium burn rate summary

| DATE       | BUBN CVC F | DURATION | LOAD TYPE      | FUEL ADDED | MOISTURE |
|------------|------------|----------|----------------|------------|----------|
| DATE       | BURN CYCLE | (MIN)    | (-)            | (LBS)      | (% DB)   |
|            | Preload    | 32       | Kindling & SUF | 6.00       | 15.1     |
| 2021-01-14 | Condition  | 130      | High fire      | 12.04      | 20.3     |
|            | Load       | 330      | Medium fire    | 13.98      | 19.6     |
|            | Preload    | 34       | Kindling & SUF | 6.01       | 15.5     |
| 2021-01-19 | Condition  | 137      | High fire      | 12.04      | 20.1     |
|            | Load       | 340      | Medium fire    | 14.41      | 19.5     |
|            | Preload    | 169      | Kindling & SUF | 5.59       | 16.4     |
| 2021-01-21 | Condition  | 1        | High fire      | 12.04      | 20.7     |
|            | Load       | 350      | Medium fire    | 14.44      | 19.3     |
|            | Preload    | 34       | Kindling & SUF | 5.99       | 16       |
| 2021-01-28 | Condition  | 155      | High fire      | 12.06      | 23.8     |
|            | Load       | 280      | Medium fire    | 14.49      | 21.0     |
|            | Preload    | 35       | Kindling & SUF | 5.90       | 15.8     |
| 2021-02-04 | Condition  | 135      | High fire      | 11.89      | 19.2     |
|            | Load       | 310      | Medium fire    | 13.78      | 22.1     |
|            | Preload    | 42       | Kindling & SUF | 5.85       | 16       |
| 2021-02-10 | Condition  | 128      | High fire      | 11.75      | 20.1     |
|            | Load       | 355      | Medium fire    | 14.3       | 20.4     |
|            | Preload    | 148      | Kindling & SUF | 5.34       | 14.9     |
| 2021-02-17 | Condition  | 7        | High fire      | 10.79      | 22.4     |
|            | Load       | 278      | Medium fire    | 12.96      | 19.3     |
|            | Total      | 3430     | Minutes        |            |          |
|            | Total      | 57.17    | Hours          |            |          |

Version: 05/10/17 Page 4 of 32 GFT-OP-10c



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

# TEST REPORT FOR STOVE BUILDER INTERNATIONAL INC.

Report No.: 104576994MTL-001R4

Date: 12/20/21

Following the pre-burn break-in process the unit was allowed to cool and ash and residue were removed from the firebox. The unit's chimney system and laboratory dilution tunnels were cleaned using standard wire brush chimney cleaning equipment on February 18<sup>th</sup>, 2021. On February 19<sup>th</sup>, 2021, the unit was set-up for testing.

# **SECTION 5**

# **EQUIPMENT**

| Equipment                           | INV<br>Number | Calibration Due    | ми              |  |
|-------------------------------------|---------------|--------------------|-----------------|--|
| Floor scale                         | SBI-014       | March 31, 2021     | ± 0.020 kg      |  |
| DGM system 1                        | SBI-046       | April 01, 2021     | ±2% F.S.        |  |
| DGM System 2                        | SBI-047       | April 06, 2021     | ±2% F.S.        |  |
| Reference DGM                       | SBI-103       | October 13, 2021   | ±2% F.S.        |  |
| 5 kg weight                         | SBI-190       | October 02, 2023   | ±0.2 g          |  |
| Temperature acquisition             | SBI-197       | November 03, 2021  | ±0.5°F          |  |
| Pitot tube type S                   | SBI-104       | December 03, 2021  | ±0.22 mps       |  |
| Analytical scale                    | SBI-206       | March 31, 2021     | ±0.08 mg        |  |
| Table scale                         | SBI-222       | March 31, 2021     | ±0.5 g          |  |
| 100 mg weight                       | SBI-237       | October 09, 2023   | ±0.0025 mg      |  |
| 10 g weight                         | SBI-238       | October 09, 2023   | ±0.012 mg       |  |
| Hot wire anemometer                 | SBI-241       | March 02, 2021     | ±0.15 m/s       |  |
| Magnesense (tunnel)                 | SBI-254       | July 17, 2021      | ±0.00015" H2O   |  |
| Magnesense (draft)                  | SBI-247       | July 17, 2021      | ±0.00015" H2O   |  |
| DGM system 3                        | SBI-290       | April 05, 2021     | ±2% F.S.        |  |
| Pressure transmitter                | SBI-294       | July 17, 2021      | ±9.5e-003 psi   |  |
| Pressure transmitter                | SBI-297       | July 17, 2021      | ±9.5e-003 psi   |  |
| Vacuum transmitter                  | SBI-301       | July 27, 2021      | ±6.1e-003 in.HG |  |
| Vacuum transmitter                  | SBI-305       | July 27, 2021      | ±5.8e-003 in.HG |  |
| Relative humidity temperature meter | SBI-212       | September 10, 2021 | ±3%             |  |
| 200 g weight                        | SBI-312       | October 09, 2023   | ±0.06 mg        |  |
| Barometer                           | SBI-331       | October 01, 2022   | ±0.62mb/hPa     |  |
| Moisture Content Standard           | SBI-153       | October 28, 2021   | ±0.2%           |  |



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

#### TEST REPORT FOR STOVE BUILDER INTERNATIONAL INC.

Report No.: 104576994MTL-001R4

Date: 12/20/21

| Multimeter             | SBI-194 | November 24, 2021 | ±1% Ω  |
|------------------------|---------|-------------------|--------|
| Thermometer Calibrator | SBI-096 | May 25, 2021      | ±0.5°F |

#### **SECTION 6**

#### LIST OF OFFICIAL OBSERVERS

| NAME                       | COMPANY                          |
|----------------------------|----------------------------------|
| Guillaume Thibodeau-Fortin | Stove Builder International inc. |
| Gabrielle Santerre         | Stove Builder International inc. |
| Claude Pelland, P.E.       | Intertek B&C                     |

## **SECTION 7**

#### **TEST PROCEDURE**

From February 22<sup>nd</sup> to February 25<sup>th</sup>, 2021, the unit was tested for EPA emissions. For wood stoves or wood insert, the test was conducted in accordance with ASTM E3053-17 and ASTM E2515-11. The fuel used for the test run was beech cordwood.

The applicable EPA regulatory limits are:

Step 2 – 2020 – 2.0 grams per hour with crib, 2.5 grams per hour with cordwood.

#### MANUFACTURER LOADING PROCEDURE

<u>Kindling and SUF (5.4 lbs)</u> - Split the start-up fuel log into 6 pieces. Crisscross 6 kindling pieces on the brick. Then, crisscross the start-up fuel. Criss cross the rest of the kindling on the start-up fuel. The start-up fuel and the kindling are placed at the rear of the stove. Leave a little space between each piece.

The kindling is made of between 15 finely split piece of wood that are 10% of moisture content. Place crumbled newspaper on top of the kindling (5 full sheets). Light up the paper and let the door completely open for two minutes, then close the door. The fan is always OFF.

<u>Low&Medium Pre-load (high fire) (10.8 lbs)</u> - When there is a coal bed of 1.1 lbs left, break ashes and level coal bed, then add pre-load (four pieces). Place two pieces on the coal bed in an East-West orientation. The piece in front of the combustion chamber should be the largest and the piece at the back of the combustion chamber must be a medium piece. Place the last two pieces on top of the two others in an orientation that points to the left (10-15 degrees from East-West). Leave space between each piece. Let the door open of 5" for 4 minutes. Then, close the door and let burn until the weight is down to target.

Version: 05/10/17 Page 6 of 32 GFT-OP-10c



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

#### TEST REPORT FOR STOVE BUILDER INTERNATIONAL INC.

Report No.: 104576994MTL-001R4

Date: 12/20/21

When the average stove temperature gets to 505°F, slightly level the coal bed. There should be approximately 1.6 lb of coal bed.

Low fire load (13 lbs) - Place the largest piece on the coal bed in the back of the stove in an East-West orientation. Leave 1" between the rear bricks and the piece. Place the second largest piece on top of the first one. The piece should touch the rear bricks. Place a medium piece on the coal bed at the front of the combustion chamber. There should be approximatively 4-5" between the piece in the back and at the front of the combustion chamber. Place a piece on the two bottom logs. The rear left corner of the piece is placed on the piece at the back of the stove and the front right corner on the piece in front of the stove. Place the last piece on the piece at the front of the stove. Let the door ajar for 4 minutes and then close the door with the primary air control fully open. After 5 minutes, close the primary air control of 50%. After 2 more minutes, continue to close slowly the primary air control so that at 16 min (15 min or 15 % as per E3053 clause 8.6.7 plus loading time of 1 min as per clause 8.6.5), the primary air control is completely closed. Start the fan at minimum speed at 30 minutes.

Medium fire load (13 lbs) - Same as for low fire load, but the primary air inlet is open of 5/8 inch from its minimum position at the end of the 16 minutes run time. Also, the largest piece is placed in front of the stove and the medium piece at the back. Start the fan at minimum speed at 30 minutes.

<u>High fire load (10.8 lbs)</u> – When there is a coal bed of 1.1 lbs left, break ashes and level coal bed, then add the load (four pieces). Place two pieces on the coal bed in an East-West orientation. The piece in front of the combustion chamber should be a medium piece and the piece at the back of the combustion chamber must be the largest piece. Place the last two pieces on top of the two others in an orientation that points to the right (10-15 degrees from East-West). Do not leave space between the pieces. Let the door open of 5" for 4 minutes and close the door. Start the fan at maximum speed. Stop the test when 90% of the high fire load has been consumed.

# **TEST SET-UP DESCRIPTON**

A 6" flue is connected to a standard 6" diameter vertical single wall pipe and insulated chimney system was installed to 15' above floor level. The single wall pipe extended to 8 feet above the floor and insulated chimney extended the remaining height.

# **AIR SUPPLY SYSTEM**

Combustion air enters at the bottom of the heater, which is directed to the firebox. All gases exit through the 6" flue located on top of the heater.

Version: 05/10/17 Page 7 of 32 GFT-OP-10c



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

# TEST REPORT FOR STOVE BUILDER INTERNATIONAL INC.

Report No.: 104576994MTL-001R4

Date: 12/20/21

#### **TEST FUEL PROPERTIES**

The species of fuel used was beech. The fuel was split cordwood of nominal length of 16 inches  $\pm$  1 inch. The fuel was dried in air to an average moisture content between 18% and 28% on a dry basis. Cordwood fuel was loaded from side to side into the firebox per manufacturer's instructions.

#### **SAMPLING LOCATIONS**

Particulate samples are collected from the dilution tunnel at point 20 feet from the tunnel entrance. The collection hood is 40 inches in diameter. The mixing section started with a 10-inch diameter elbow, followed by a strait 10-inch diameter section. A 10 to 8-inch diameter reducer is installed upstream of the 8-inch diameter elbow (see Figure 1). The sampling section is a continuous 13-foot section of 8-inch diameter pipe straight over its entire length. Tunnel velocity pressure is determined by a type "S" Pitot tube located 100 inches from the beginning of the sampling section. The dry bulb thermocouple is located on the pitot tube. Tunnel samplers are located 48 inches downstream of the Pitot tube and 36 inches upstream from the end of this section (See Figure 2).

The dilution tunnel is fully compliant with ASTM E2515-11.

Stack gas samples are collected from the steel chimney section 8 feet  $\pm$  6 inches above the scale platform.

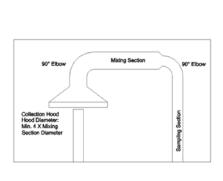



Figure 1 - Mixing Section with different diameter

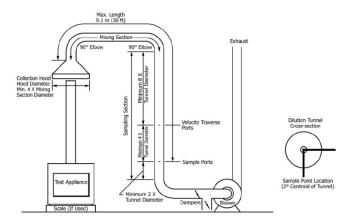



Figure 2 - Dilution tunnel



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

# TEST REPORT FOR STOVE BUILDER INTERNATIONAL INC.

Report No.: 104576994MTL-001R4

Date: 12/20/21

#### **SAMPLING METHODS**

#### PARTICULATE SAMPLING



Figure 3 - Stack gas sample train

Particulates were sampled in strict accordance with ASTM E2515-2011. Schematic is presented on Figure 3. This method uses two identical sampling systems with Gelman A/E 61631 binder free, 47-mm diameter filters. The dryers used in the sample systems are filled with "Drierite" before each test run. In order to measure first-hour emissions rates, a third filter set is prepared at one hour into the test run, the filter sets are changed in one of the two sample trains. The two filter sets used for this train are analysed individually to determine the first hour and total emissions rate.

At the conclusion of each test program the dry gas meters are checked against our standard dry gas meter. Three runs are made on each dry gas meter used during the test program. The average calibration factors obtained are then compared with the six-month calibration factor and, if within 5%, the six-month factor is used to calculate standard volumes. Results of this calibration are contained in Appendix E.

An integral part of the post-test calibration procedure is a leak check of the pressure side by plugging the system exhaust and pressurizing the system to 10" W.C. The system is judged to be leak free if it retains the pressure for at least 10 minutes.

The standard dry gas meter is calibrated every 6 months using a Spirometer designed by the EPA Emissions Measurement Branch. The process involves sampling the train operation for 1 cubic foot of volume. With readings made to  $.001 \, \mathrm{ft^3}$ , the resolution is .1%, giving an accuracy higher than the  $\pm 2\%$  required by the standard.

Version: 05/10/17 Page 9 of 32 GFT-OP-10c



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

#### TEST REPORT FOR STOVE BUILDER INTERNATIONAL INC.

Report No.: 104576994MTL-001R4

Date: 12/20/21

#### STACK SAMPLE ROTAMETER

The stack sample rotameter is checked by running three tests at each flow rate used during the test program. The flow rate is checked by running the rotameter in series with one of the dry gas meters for 10 minutes with the rotameter at a constant setting. The dry gas meter volume measured is then corrected to standard temperature and pressure conditions. The flow rate determined is then used to calculate actual sampled volumes.

#### GAS ANALYZERS

The continuous analyzers are zeroed and spanned before each test with appropriate gases. A mid-scale multi-component calibration gas is then analyzed (values are recorded). At the conclusion of a test, the instruments are checked again with zero, span and calibration gases (values are recorded only). The drift in each meter is then calculated and must not exceed 5% of the scale used for the test.

At the conclusion of each unit test program, a three-point calibration check is made. This calibration check must meet accuracy requirements of the applicable standards. Consistent deviations between analyser readings and calibration gas concentrations are used to correct data before computer processing. Data is also corrected for interferences as prescribed by the instrument manufacturer's instructions.

# **TEST METHOD PROCEDURES**

# **LEAK CHECK PROCEDURES**

Before and after each test, each sample train is tested for leaks. Leakage rates are measured and must not exceed 0.02 CFM or 4% of the sampling rate. Leak checks are performed checking the entire sampling train, not just the dry gas meters. Pre-test and post-test leak checks are conducted with a vacuum of 10 inches of mercury. Vacuum is monitored during each test and the highest vacuum reached is then used for the post-test vacuum value. If leakage limits are not met, the test run is rejected. During, these tests the vacuum was typically less than 2 inches of mercury. Thus, leakage rates reported are expected to be much higher than actual leakage during the tests.

# TUNNEL VELOCITY/FLOW MEASUREMENT

The tunnel velocity is calculated from a center point Pitot tube signal multiplied by an adjustment factor. This factor is determined by a traverse of the tunnel as prescribed in EPA Method 1. Final tunnel velocities and flow rates are calculated from EPA Method 2, Equation 6.9 and 6.10. (Tunnel cross sectional area is the average from both lines of traverse.)

Pitot tubes are cleaned before each test and leak checks are conducted after each test.



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

#### TEST REPORT FOR STOVE BUILDER INTERNATIONAL INC.

Report No.: 104576994MTL-001R4

Date: 12/20/21

#### PM SAMPLING PROPORTIONALITY

Proportionality was calculated in accordance with ASTM E2515-11. The data and results are included in Appendix B.

#### **DEVIATIONS FROM STANDARD METHOD:**

The following deviations were requested by EPA on ALT-125:

# Changes to ASTM E3053-17 are:

1. Coal bed conditions prior to loading test fuel: The coal bed should be a level plane without valleys or ridges for all test runs in the high fire, low and medium burn rate categories.

# Changes to ASTM E2515-11 must be as followed:

- 1. The filter temperature must be maintained between 80 and 90 Degrees F during testing.
- 2. Filters must be weighed in pairs to reduce weighing error propagation.
- 3. Sample filters must be Pall TX-40 or equivalent Teflon coated glass fiber, and of 47 mm,90mm, 100mm of 110mm in diameter.
- 4. Only one point is allowed outside the +/- 10% proportionality range per test run.

#### **SECTION 8**

# **TEST CALCULATIONS**

# Weight of test fuel load, dry basis ASTM E3053

 $M_{Fldb} = \Sigma((M_{FLnwb})(100)/(100+MC_{FLn}))$ 

where:

MFLdb = weight of test fuel load, dry basis, lb (kg);

MFLnwb = weight of each test fuel piece, n, in test fuel load per 8.4.1, wet basis, lb (kg);
 MCFLn = average fuel moisture of test fuel piece, n, in test fuel load, % dry basis; and
 n = individual test fuel pieces that comprise the test fuel load, as applicable.

# Weighted Average Determination ASTM E3053

 $Viwa = 0.4(Vi_{LAve}) + 0.4(Vi_{MAve}) + 0.2(Vi_{HAve})$ 

where:

Viwa = Weighted average for variable i;



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

#### TEST REPORT FOR STOVE BUILDER INTERNATIONAL INC.

Report No.: 104576994MTL-001R4

Date: 12/20/21

Vi = Test result variable (Particulate Matter: g/h, g/kg,

lb/MMBtu; % Overall Efficiency: HHV, LHV;

Carbon Monoxide: g/h, etc.)

VILAve = Arithmetic average for variable Vi for all test runs

(except per 8.6.13 or 8.9) that are included in the

low fire burn rate category

VIMAVE = Arithmetic average for variable Vi for all test runs (except per 8.6.13 or 8.9) that are

included in the medium fire burn rate category;

VihAve = Arithmetic average for variable Vi for all test runs (except per 8.9) that are included in the

high fire burn rate category.

#### **NOMENCLATURE FOR ASTM E2515:**

A = Cross-sectional area of tunnel m2 (ft2).

 $B_{ws}$  = Water vapor in the gas stream, proportion by volume (assumed to be 0.02 (2.0 %)).

C<sub>p</sub> = Pitot tube coefficient, dimensionless (assigned a value of 0.99).

cr = Concentration of particulate matter room air, dry basis, corrected to standard conditions, g/dscm (gr/ dscf) (mg/dscf).

cs = Concentration of particulate matter in tunnel gas, dry basis, corrected to standard conditions, g/dscm (gr/dscf) (mg/dscf).

 $E_T$  = Total particulate emissions, g.

F<sub>p</sub> = Adjustment factor for center of tunnel pitot tube placement.

 $F_p = V_{strav}/V_{scent}$ 

 $K_P$  = Pitot Tube Constant, 34.97  $\frac{m}{\text{sec}} \left[ \frac{\left(\frac{g}{g} \mod e\right)(mm \, Hg)}{(K)(mm \, water)} \right]^{\frac{1}{2}}$ 

or

= Pitot Tube Constant, 85.49  $\frac{ft}{\text{sec}} \left[ \frac{\left(\frac{lb}{lb} - mole\right)(in Hg)}{(R)(in water)} \right]^{\frac{1}{2}}$ 

L<sub>a</sub> = Maximum acceptable leakage rate for either a pretest or post-test leak- check, equal to 0.0003 m3/min (0.010 cfm) or 4 % of the average sampling rate, whichever is less.

L<sub>p</sub> = Leakage rate observed during the post-test leak-check, m3/min (cfm).

 $m_p$  = mass of particulate from probe, mg.

m<sub>f</sub> = mass of particulate from filters, mg.

m<sub>g</sub> = mass of particulate from filter gaskets, mg.

m<sub>r</sub> = mass of particulate from the filter, filter gasket, and probe assembly from the room air blank filter holder assembly, mg.

m<sub>n</sub> = Total amount of particulate matter collected, mg.

M<sub>s</sub> = the dilution tunnel dry gas molecular weight (may be assumed to be 29 g/g mole (lb/lb mole).

P<sub>bar</sub> = Barometric pressure at the sampling site, mm Hg (in. Hg).

P<sub>g</sub> = Static Pressure in the tunnel (in. water).

P<sub>R</sub> = Percent of proportional sampling rate.



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

#### TEST REPORT FOR STOVE BUILDER INTERNATIONAL INC.

Report No.: 104576994MTL-001R4

Date: 12/20/21

P<sub>s</sub> = Absolute average gas static pressure in dilution tunnel, mm Hg (in. Hg).

P<sub>std</sub> = Standard absolute pressure, 760 mm Hg (29.92 in. Hg).

Q<sub>std</sub> = Average gas flow rate in dilution tunnel.

 $Q_{std} = 60 (1 - B_{ws}) V_s A [T_{std} P_s/T_s P_{std}]$ 

dscm/min (dscf/min).

T<sub>m</sub> = Absolute average dry gas meter temperature, K (R).

T<sub>mi</sub> = Absolute average dry gas meter temperature during each 10-min interval, *i*, of the test

$$T_{mi} = (T_{mi(b)} + T_{mi(e)})/2$$

#### where:

 $T_{mi(b)}$  = Absolute dry gas meter temperature at the beginning of each 10-min test interval, i, of the test run, K (R), and

T<sub>mi(e)</sub> = Absolute dry gas meter temperature at the end of each 10-min test interval, i, of the test run, K (R).

Ts = Absolute average gas temperature in the dilution tunnel, K (R).

Tsi = Absolute average gas temperature in the dilution tunnel during each 10-min interval, i, of the test run, K (R).

$$T_{si} = (T_{si(b)} + T_{m=si(e)})/2$$

#### where:

T<sub>si(b)</sub> = Absolute gas temperature in the dilution tunnel at the beginning of each 10-min test interval, i, of the test run, K (R), and

T<sub>si(e)</sub> = Absolute gas temperature in the dilution tunnel at the end of each 10-min test interval, i, of the test run, K (R).

V<sub>m</sub> = Volume of gas sample as measured by dry gas meter, dcm (dcf).

 $V_{mc}$  = Volume of gas sampled corrected for the post test leak rate, dcm (dcf).

V<sub>mi</sub> = Volume of gas sample as measured by dry gas meter during each 10-min interval, i, of the test run, dcm.

 $V_{m(std)}$  = Volume of gas sample measured by the dry gas meter, corrected to standard conditions.

$$V_{m(std)} = K_1 V_m Y [(P_{bar} + (\Delta H/13.6))/T_m]$$

#### where:

 $K_1 = 0.3855 \text{ K/mm Hg for SI units and} = 17.64 \text{ R/in. Hg for inch-pound units.}$ 

$$V_{m(std)} = K_1 V_{mc} Y [(P_{bar} + (\Delta H/13.6))/T_m]$$

# where:

 $V_{mc} = Vm - (Lp - La)u$ 

V<sub>mr</sub> = Volume of room air sample as measured by dry gas meter, dcm (dcf), and

V<sub>mr(std)</sub> = Volume of room air sample measured by the dry gas meter, corrected to standard conditions.

 $V_{m(std)} = K_1 V_{mr} Y [(P_{bar} + (\Delta H/13.6))/T_m]$ 

# Where:

 $K_1 = 0.3855 \text{ K/mm Hg for SI units and} = 17.64 \text{ R/in. Hg for inch-pound units, and}$ 

V<sub>s</sub> = Average gas velocity in the dilution tunnel.



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

#### TEST REPORT FOR STOVE BUILDER INTERNATIONAL INC.

Report No.: 104576994MTL-001R4

Date: 12/20/21

 $V_s = F_p K_p C_p (V\Delta P_{avg})(V(T_s/P_s M_s))$ 

 $V_{si}$  = Average gas velocity in dilution tunnel during each 10-min interval, i, of the test run.

 $V_{si} = F_p K_p C_p (V\Delta P_i)(V(T_{si}/P_s M_s))$ 

V<sub>scent</sub> = Average gas velocity at the center of the dilution tunnel calculated after the Pitot tube

traverse.

V<sub>strav</sub> = Average gas velocity calculated after the multipoint Pitot traverse.

Y = Dry gas meter calibration factor.

 $\Delta H$  = Average pressure at the outlet of the dry gas meter or the average differential

pressure across the orifice meter, if used, mm water (in. water).

 $\Delta P_{avg}$  = Average velocity pressure in the dilution tunnel, mm water (in. water).

 $\Delta P_i$  = Velocity pressure in the dilution tunnel as measured with the Pitot tube during each

10-min interval, i, of the test run.

 $\Delta P_i = (\Delta P_{i(b)} + \Delta P_{i(e)})/2$ 

where:

 $\Delta P_{i(b)}$  = Velocity pressure in the dilution tunnel as measured with the Pitot tube at the

beginning of each 10-min interval, i, of the test run, mm water (in. water), and

 $\Delta P_{i(e)}$  = Velocity pressure in the dilution tunnel as measured with the Pitot tube at the end of

each 10-min interval, i, of the test run, mm water (in. water).

 $\theta$  = Total sampling time, min.

= ten min, length of first sampling period.

13.6 = Specific gravity of mercury.

100 = Conversion to percent.

#### **TOTAL PARTICULATE WEIGHT – ASTM E2515**

 $M_n = m_p + m_f + m_g$ 

#### **PARTICULATE CONCENTRATION – ASTM E2515**

 $C_s = K_2(m_n/V_{m(std)})$  g/dscm (g/dscf)

where:

 $K_2 = 0.001 \text{ g/mg}$ 

# **TOTAL PARTICULATE EMISSIONS (g) – ASTM E2515**

 $E_T = (C_s - C_r)Q_{std}\theta$ 

#### PROPORTIONAL RATE VARIATION (%) – ASTM E2515

 $PR = [\theta(V_{mi} V_s T_m T_{si})/(10(V_m V_{si} T_s T_{mi}))] \times 100$ 

# **MEASUREMENT OF UNCERTAINTY - ASTM E2515**

 $MU_{weighing} = \sqrt{0.1^2} \cdot X$ 



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

#### TEST REPORT FOR STOVE BUILDER INTERNATIONAL INC.

Report No.: 104576994MTL-001R4

Date: 12/20/21

#### **GENERAL FORMULA – ASTM E2515**

$$uY = V((\delta Y/\delta x_1) \times u_1)^2 + ... + ((\delta Y/\delta x_n) \times u_n)^2$$

Where:

 $\delta Y/\delta x_i$  = Partial derivative of the combining formula with respect to individual measurement xi,

u<sub>i</sub> = is the uncertainty associated with that measurement.

#### **TOTAL PARTICULATE EMISSIONS – ASTM E2515**

$$E_T = (c_s - c_r) Q_{std} \theta$$

where:

c<sub>s</sub> = sample filter catch/(sample flow rate x test duration), g/dscf,

c<sub>r</sub> = room background filter catch/(sample flow x sampling time), g/dscf,

Q<sub>std</sub> = average dilution tunnel flow rate, dscf/min, and

 $\theta$  = sampling time, minutes.

#### MU OF cs

$$\begin{split} c_s &= F_c/(Q_{sample} \times \theta) = 0.025/(0.25 \times 180) = 0.0005555 \\ \delta c_s/\delta F_c &= 1/Q_{sample} \bullet \Theta = 1/0.25 \bullet 180 = 0.0222 \\ \delta c_s/\delta Q_{sample} &= -F_c/Q_{sample}^2 \bullet \Theta = -0.025/0.25^2 \bullet 180 = -0.00222 \\ \delta c_s/\delta \Theta &= -F_c/Q_{sample} \bullet \Theta^2 = -0.025/0.25 \bullet 180^2 = -0.000003 \\ MUc_s &= V(0.00027 \bullet 0.0222)^2 + (0.0025 \bullet -0.00222)^2 \\ &\qquad V + (0.1 \bullet -0.000003)^2 = 0.0000091g \end{split}$$

Thus,  $c_s$  would be 0.555 mg/dscf  $\pm$  0.0081 mg/dscf at 95% confidence level.

# MU OF cr

$$\begin{split} c_r &= BG_c/(QBG \times \theta) = 0.002/(0.15 \times 180) = 0.000074 \\ \delta c_r/\delta BG_c &= 1/Q_{BG} \bullet \Theta = 1/0.15 \bullet 180 = 0.03704 \\ \delta c_r/\delta Q_{BG} &= -BG_c/Q^2_{BG} \bullet \Theta = -0.002/0.15^2 \bullet 180 = -0.0004938 \\ \delta c_r/\delta \Theta &= -BG_c/Q_{BG} \bullet \Theta^2 = -0.002/0.15 \bullet 180^2 = -0.0000004 \\ MUc_r &= V(0.00027 \bullet 0.03704)^2 + (0.0015 \bullet - 0.0004938)^2 \\ &\qquad V + (0.1 \bullet - 0.0000004)^2 = 0.00001g \end{split}$$

Thus,  $c_r$  would be 0.074 mg/dscf  $\pm$  0.01 mg/dscf at 95% confidence level.

#### E<sub>T</sub> AND MU<sub>ET</sub>

$$\begin{split} E_T &= (c_s - c_r) \; Q_{sd} \; \theta = (0.000555 - 0.000074) \; x \; 150 \; x \; 180 = 13.00g \\ \delta E_T / \delta c_s &= Q_{std} \bullet \Theta = 150 \bullet 180 = 27,000 \\ \delta E_T / \delta c_r &= Q_{std} \bullet \Theta = 150 \bullet 180 = 27,000 \\ \delta E_T / \delta Q_{std} &= c_s \bullet \Theta - c_r \bullet \Theta = 0.000555 \bullet 180 - 0.000074 \bullet 180 = 0.08667 \\ \delta E_T / \delta \Theta &= c_s \bullet Q_{std} - c_r \bullet Q_{std} = 0.000555 \bullet 180 - 0.000074 \bullet 180 = 0.07222 \\ MU_{ET} &= \sqrt{(27,000 \bullet 0.0000081)^2 + (27,000 \bullet 0.00001)^2 (0.08667 \bullet 3)^2} \end{split}$$



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

#### TEST REPORT FOR STOVE BUILDER INTERNATIONAL INC.

Report No.: 104576994MTL-001R4

Date: 12/20/21

 $\sqrt{(0.07222 \cdot 0.1)^2} = 0.436$ 

Thus the result in this example would be:

ET =  $13.00g \pm 0.44 g$  at a 95% confidence level.

#### **EFFICIENCY - CSA B415.1**

The change in enthalpy of the circulating air shall be calculated using the moisture content and temperature rise of the circulating air, as follows:

 $\Delta h = \Delta t (1.006 + 1.84x)$ 

Where:

 $\Delta h$  = change in enthalpy, kJ/kg  $\Delta t$  = temperature rise, °C

1.006 = specific heat of air, kJ/kg °C

1.84 = specific heat of water vapor, kJ/kg °C

x = humidity ratio, kg/kg

The equivalent duct diameter shall be calculated as follows:

ED = 2HW/H+W

Where:

ED = equivalent duct diameter

H = duct height, m W = duct width, m

The air flow velocity shall be calculated as follows:

 $V = F_p \times C_p \times 34.97 \times \sqrt{T/28.56}(P_{baro} + P_s)$ 

where

V = velocity, m/s

F<sub>P</sub> = Pitot tube calibration factor determined from vane anemometer measurements

 $C_P$  = Pitot factor

= 0.99 for a standard Pitot tube or as determined by calibration for a Type S Pitot tube

34.97 = Pitot tube constant

**Note:** The Pitot tube constant is determined on the basis of the following units:

m/s [g/g mole (mm Hg)/(K)(mm  $H_2O$ )]<sup>0.5</sup>

 $\Delta P$  = velocity pressure, mm H2O

T = temperature, K

28.56 = molecular weight of air

P<sub>Baro</sub> = barometric pressure, mm Hg P<sub>s</sub> = duct static pressure, mm Hg



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

# TEST REPORT FOR STOVE BUILDER INTERNATIONAL INC.

Report No.: 104576994MTL-001R4

Date: 12/20/21

The mass flow rate shall be calculated as follows:

m = 3600VAp

where:

m = mass flow rate, kg/h V = air flow velocity, m/s

3600 = number of seconds per hour A = duct cross-sectional area, m2

p = density of air at standard temperature and pressure (use 1.204 kg/m3)

The rate of heat release into the circulating air shall be calculated using the air flow and change in enthalpy, as follows:

 $\Delta e = \Delta h \times m$ 

Where:

 $\Delta e$  = rate of heat release into the circulating air, kJ/h  $\Delta h$  = change in enthalpy of the circulating air, kJ/kg

m = mass air flow rate, kg/h

The heat output over any time interval shall be calculated as the sum of the heat released over each measurement time interval, as follows:

 $E_t = \sum (\Delta e \times i)$  for  $i = t_1$  to  $t_2$ 

Where:

Et = delivered heat output over any time interval  $t_2$ - $t_1$ , kJ

i = time interval for each measurement, h

The average heat output rate over any time interval shall be calculated as follows:

 $e_t = E_t/t$ 

where

et = average heat output, kJ/h

t = time interval over which the average output is desired, h

The total heat output during the burn shall be calculated as the sum of all the heat outputs over each time interval, as follows:

 $E_d = \sum (E_t)$  for  $t = t_0$  to  $t_{final}$ 

Where:

 $E_d$  = heat output over a burn, kJ/h (Btu/h)

E<sub>t</sub> = heat output during each time interval, kJ/h (Btu/h)

Version: 05/10/17 Page 17 of 32 GFT-OP-10c



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

# TEST REPORT FOR STOVE BUILDER INTERNATIONAL INC.

Report No.: 104576994MTL-001R4

Date: 12/20/21

The efficiency shall be calculated as the total heat output divided by the total energy input, expressed as a percentage as follows:

Efficiency,  $\% = 100 \times E_d/I$ 

Where:

E<sub>d</sub> = total heat output of the appliance over the test period, kJ/kg

= input energy (fuel calorific value as-fired times weight of fuel charge), kJ/kg (Btu/lb)

#### **SECTION 9**

#### **TEST SPECIMEN DESCRIPTION**

The models from the 2.1 Series (Destination 1.9, Matrix 1900, CW2100, Green Mountain Insert 50, HEI90, Archway 1500) wood fuel room heater are constructed of sheet steel. The outer dimensions are 15 1/8-inches deep from the face plate to the rear, 18 5/8-inches high, and 24 15/16-inches wide in the front. The units have a door located on the front with a viewing glass.

# FIREBOX VOLUME CALCULATION

The models from the 2.1 Series have a usable firebox volume (UFV) of 1.03 cubic foot. Schematic of the firebox dimensions is presented on Figure 4. Please note that the fuel cannot be stacked any higher due to the secondary air tubes being at the top of the combustion chamber.

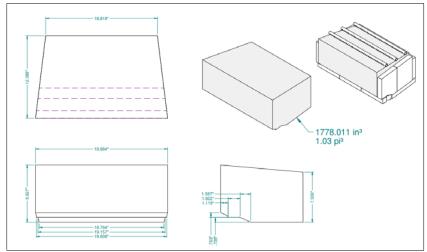



Figure 4 - Schematic of firebox volume



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

# TEST REPORT FOR STOVE BUILDER INTERNATIONAL INC.

Report No.: 104576994MTL-001R4

Date: 12/20/21

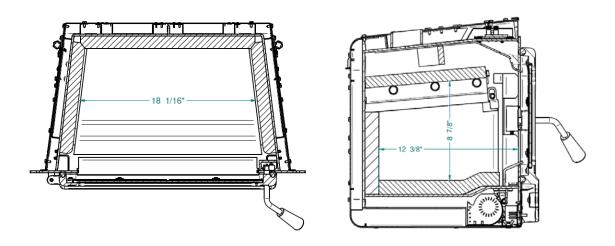
Total Quality. Assured.

Firebox volume calculation is presented below:

$$UFV = UFV_{OA} - V1_{rem} - V2_{rem} - V3_{rem}$$

$$UFV_{OA} = \frac{(8.627 + 7.539)}{2} \times \frac{(19.884 + 16.819)}{2} \times 12.389 = 1817.3 \ in^{3}$$

$$V1_{rem} = \frac{(18.764 + 19.157)}{2} \times \frac{(1.587 \times 0.738)}{2} = 11.1 \ in^{3}$$


$$V2_{rem} = \frac{(19.608 + 19.157)}{2} \times 1.822 \times 0.738 = 26.1 \ in^{3}$$

$$V3_{rem} = \frac{(19.608 + 19.884)}{2} \times \frac{(1.119 \times 0.703)}{2} = 7.77 \ in^{3} \ approx.$$

$$UFV = 1817.3 - 11.1 - 26.1 - 7.77 = 1772.3 \ in^{3}$$

$$UFV = \frac{1772.3}{12^{3}} = 1.03 \ ft^{3}$$

In their user's manual, SBI presents another volume called the "Overall Firebox Volume". This volume is for marketing purposes only. The overall firebox calculation is not intended to be used for testing, as it includes areas of the firebox that the test fuel load is not permitted to be placed into. This area is a buffer zone to allow an easier fuel insertion, to prevent ash spillage and to allow the air wash to work properly. The calculation presents an approximation of the volume a consumer could easily confirm using a measuring tape.





Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

#### TEST REPORT FOR STOVE BUILDER INTERNATIONAL INC.

Report No.: 104576994MTL-001R4

Date: 12/20/21

The calculation for the overall firebox volume would be the following: middle width x middle height x full depth. This is because it has a tapered firebox.

$$18.063 \times 8.875 \times 12.375 = 1983.83 in^2$$

$$\frac{1983.83}{12^3} = 1.1 \, ft^3$$

#### **SECTION 10**

#### TEST RESULTS

# **GENERAL DISCUSSION:**

Except for run 2, all other runs have been found appropriate and they have been validated and found compliant. Run 2 ignited warmer than expected and burned much faster. By the manufacturer's experience, the air control adjustment period was always at the maximum of 15 minutes as per ASTM E3053-17 clause 8.6.7: 8.6.7 Low and Medium Fire Test Run Air Control Adjustment Period—The wood heater combustion air control(s) may be adjusted for up to 15 min after the maximum allowable load time has lapsed or until up to 15 % of the test fuel load weight (wet basis) has been consumed, whichever is less, to ensure that ignition of the test fuel load has occurred. Since the combustion was very high, the air control adjustment period was calculated, and the maximum time was exceeded of 2 about minutes. 15% of the test fuel was consumed at 11:25 AM and the air control was completely closed at 11:27 AM. Also, one of the fuel pieces was found to be out of range on the preload of this same test. For these reasons, the run 2 was invalidated. Results from this run were calculated and can be found in the Tables below. A second low burn rate test was performed on Run 3 and burned as expected. All burn rate categories were achieved, and all data were used in the calculation of the weighted average.

All test fuel pieces have been positioned in an East-West orientation as per the manufacturer's written instructions. All test fuel pieces were split to meet individual and total load weight range for the firebox. Test fuel pieces were split in order to preserve the bark. In the area without bark, splitting was done to represent the random shape of the wood as it can be found in a standard cord of wood. No test fuel pieces were voluntary squared.

Filters were not altered by the gasket in all runs. No negative weight was found on probes or filters. No attempt was made to collect ambient background particulate matter during the testing. The contribution of room air particulate matter could not be subtracted from dilution tunnel particulate matter; thus, considered zero. This results in a sample that is potentially biased high when the compliance determination is made.



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

#### TEST REPORT FOR STOVE BUILDER INTERNATIONAL INC.

Report No.: 104576994MTL-001R4

Date: 12/20/21

#### **DESCRIPTION OF TEST RUNS:**

RUN #1 (February 22<sup>nd</sup>, 2021) - Air control set at the medium burn rate (5/8 inch from fully closed position), burn time was 330 minutes with a category "Medium burn rate" of 0.863 kg/hr. Load time was 1 min. The door was left open for 4 min after the loading time, then closed. The air control was opened for 15 minutes after loading time and then set at the targeted burn rate 5/8 inch from fully closed position). The fan was turned on at medium speed at 20 minutes. At the 330 min reading, the fuel consumed for the last 30 min period was less than 1.0% of the test fuel load so the test was ended with a residual of 0.18 lb on the scale. The dry residual fuel was removed from the fuel consumed to calculate the burn rate.

<u>RUN #2 (February 23<sup>rd</sup>, 2021)</u>- Air control set to reach the minimum achievable burn rate (fully closed), burn time was 406 minutes with a category low burn rate of 0.707 kg/hr. Load time was 1 min. The door was left open for 5 min after the loading time, then closed. The air control was opened for 13 minutes after loading time and then set to fully closed position. The time allowed for the air control adjustment period was calculated and found to be not compliant. The air control adjustment period exceeded of 3 minutes. Run #2 was considered not valid and needed to be ran again. The fan was turned on at low speed at 32 minutes.

RUN #3 (February 24<sup>th</sup>, 2021) - Air control set to reach the minimum achievable burn rate (fully closed), burn time was 464 minutes with a category low burn rate of 0.632 kg/hr. Load time was 1 min. The door was left open for 5 min after the loading time, then closed. The air control was opened for 13 minutes after loading time and then set to fully closed position. The fan was turned on at low speed at 30 minutes.

RUN #4 (February 25<sup>th</sup>, 2021) - Air control was set fully opened, total burn time was 129 minutes 50 seconds with a category High burn rate 2.44 kg/hr. Burn time without the cold start was 88 minutes. Kindling and start-up fuel were ignited together in a cold chamber (average surface temperature was 72.0°F and ambient temperature was 70.5°F). Kindling was adjusted after 15 minutes from ignition. High fire load time was 1 min. The door was left open for 3 min after the loading time, then closed. The air control was always fully opened. The fan was started at full speed at 10 minutes after loading. The test run ended when 90 % ± 1% of the test full load was consumed.



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

# TEST REPORT FOR STOVE BUILDER INTERNATIONAL INC.

Report No.: 104576994MTL-001R4

Date: 12/20/21

#### **RESULT TABLES:**

Table 2 to Table 9 present the results of the evaluation. On section 14, Table 10 to Table 13 present the results as per the adjunct summary sheet of ASTM E3053-17.

Table 2 - EMISSION RESULTS

| # | TEST DATE  | BURN<br>RATES<br>(kg/hr)<br>(Dry) | PM<br>EMISSION<br>RATE<br>(g/hr) | 1 <sup>ST</sup> HOUR<br>EMISSIONS | CO<br>EMISSION<br>RATE<br>(g/hr) | CO<br>EMISSION<br>RATE<br>(g/min) | HEATING<br>EFF.<br>(% HHV) |  |
|---|------------|-----------------------------------|----------------------------------|-----------------------------------|----------------------------------|-----------------------------------|----------------------------|--|
| 1 | 2021-02-22 | 0.86                              | 1.31                             | 5.31                              | 28                               | 0.5                               | 76%                        |  |
| 2 | 2021-02-23 | 0.71                              | 0.96                             | 4.19                              | 46                               | 0.8                               | 75%                        |  |
| 3 | 2021-02-24 | 0.63                              | 0.97                             | 4.58                              | 41                               | 0.7                               | 75%                        |  |
| 4 | 2021-02-25 | 2.44                              | 2.93                             | 5.34                              | 33                               | 0.5                               | 73%                        |  |

Table 3 - FUEL DATA SUMMARY

| # | KINDLING | KINDLING | SU FUEL | SU FUEL | HIGH   | HIGH  | LOW/MED | LOW/MED  |
|---|----------|----------|---------|---------|--------|-------|---------|----------|
|   | WEIGHT   | MC       | WEIGHT  | MC      | WEIGHT | MC    | WEIGHT  | MC (%DB) |
|   | (LBS)    | (%DB)    | (LBS)   | (%DB)   | (LBS)  | (%DB) | (LBS)   |          |
| 1 | 2.15     | 10       | 3.21    | 19.5    | 10.76  | 21.6  | 12.80   | 20.1     |
| 2 | 2.14     | 10       | 3.20    | 19.8    | 11.18  | 21.3  | 12.75   | 20.7     |
| 3 | 2.15     | 10       | 3.20    | 20.7    | 10.76  | 21.2  | 12.92   | 20.0     |
| 4 | 2.13     | 10       | 3.23    | 19.6    | 10.78  | 20.1  | NA      | NA       |

Table 4 - TEST LAB CONDITIONS

| # | AMB.<br>TEMP.<br>(°F)<br>before | AMB.<br>TEMP.<br>(°F)<br>after | PRESSURE<br>(In. Hg)<br>before | PRESSURE<br>(In. Hg)<br>after | R.H.%<br>%<br>before | R.H.%<br>%%<br>after | AIR VEL.<br>(Ft/min)<br>before | AIR VEL.<br>(Ft/min)<br>after |
|---|---------------------------------|--------------------------------|--------------------------------|-------------------------------|----------------------|----------------------|--------------------------------|-------------------------------|
| 1 | 76.1                            | 76.9                           | 29.70                          | 29.40                         | 8.6                  | 9.5                  | 0                              | 0                             |
| 2 | 83.1                            | 77.0                           | 29.20                          | 29.35                         | 11.8                 | 12.7                 | 0                              | 0                             |
| 3 | 74.4                            | 76.7                           | 29.50                          | 29.40                         | 14.5                 | 16.1                 | 0                              | 0                             |
| 4 | 70.1                            | 82.8                           | 29.55                          | 29.60                         | 22.3                 | 13.4                 | 0                              | 0                             |



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

# TEST REPORT FOR STOVE BUILDER INTERNATIONAL INC.

Report No.: 104576994MTL-001R4

Date: 12/20/21

Table 5 - DILUTION TUNNEL

| # | BURN<br>TIME<br>(min) | TUNNEL<br>VELOCITY<br>(ft/sec) | VOLUMETRIC<br>FLOW RATE<br>(dscf/min) | TUNNEL AVE.<br>TEMP.<br>(°R) | SAMPLE VOLUME<br>(DSCF) |        | PARTIC<br>CATCH |     |
|---|-----------------------|--------------------------------|---------------------------------------|------------------------------|-------------------------|--------|-----------------|-----|
|   |                       |                                |                                       |                              | 1                       | 2      | 1               | 2   |
| 1 | 330                   | 15.40                          | 304.40                                | 541                          | 41.205                  | 43.574 | 2.8             | 3.3 |
| 2 | 406                   | 15.35                          | 300.35                                | 541                          | 50.618                  | 50.560 | 2.8             | 2.6 |
| 3 | 464                   | 15.33                          | 301.05                                | 543                          | 59.717                  | 59.457 | 3.3             | 3.1 |
| 4 | 129.83                | 15.15                          | 293.32                                | 553                          | 15.833                  | 15.978 | 2.6             | 2.7 |

Table 6 - DILUTION TUNNEL PRECISION

| #  | SAMPLE RATI | OS (-)  | TOTAL EMISS | IONS (g) | DEVIATION | DEVIATION |  |
|----|-------------|---------|-------------|----------|-----------|-----------|--|
| ** | Train 1     | Train 2 | Train 1     | Train 2  | %         | g/kg      |  |
| 1  | 2438        | 2305    | 6.826       | 7.607    | 5.4%      | 1.35%     |  |
| 2  | 2409        | 2412    | 6.745       | 6.271    | 3.7%      | 0.91%     |  |
| 3  | 2339        | 2349    | 7.719       | 7.283    | 2.9%      | 0.73%     |  |
| 4  | 2405        | 2383    | 6.254       | 6.435    | 1.4%      | 0.36%     |  |

Table 7 - GENERAL SUMMARY

| # | BURN RATE<br>(kg/hr)(Dry) | CHANGE IN<br>SURFACE TEMP.<br>(°F) | INITIAL<br>DRAFT<br>(in. wc) | RUN TIME<br>(min) | AVERAGE<br>DRAFT<br>(in. wc) |
|---|---------------------------|------------------------------------|------------------------------|-------------------|------------------------------|
| 1 | 0.86                      | 143                                | 0.053                        | 330               | 0.047                        |
| 2 | 0.71                      | 263                                | 0.054                        | 406               | 0.039                        |
| 3 | 0.63                      | 272                                | 0.052                        | 464               | 0.037                        |
| 4 | 2.44                      | 392                                | 0.001                        | 129.83            | 0.069                        |

Table 8 - CSA B415.1-10 SUMMARY

| # | CO<br>EMISSIONS<br>(g/min) | HEATING<br>EFFICIENCY<br>(% HHV) | HEATING<br>EFFICIENCY<br>(% LHV) | HEAT OUTPUT (Btu/hr) |  |
|---|----------------------------|----------------------------------|----------------------------------|----------------------|--|
| 1 | 0.5                        | 76                               | 82                               | 11,800               |  |
| 2 | 0.8                        | 75                               | 80                               | 9,400                |  |
| 3 | 0.7                        | 75                               | 81                               | 8,500                |  |
| 4 | 0.5                        | 73                               | 78                               | 31,700               |  |



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

# TEST REPORT FOR STOVE BUILDER INTERNATIONAL INC.

Report No.: 104576994MTL-001R4

Date: 12/20/21

Table 9 - WEIGHTED AVERAGE CALCULATION

| # | CAT | (E) PM<br>EMISSION<br>RATE<br>(g/hr) | (CO)<br>EMISSION<br>RATE<br>(g/hr) | HEAT<br>OUTPUT<br>Btu/hr | EFF.<br>(%<br>HHV) | EFF.<br>(%<br>LHV) | (K)<br>Weight<br>ing<br>Factor | (KxE)<br>g/hr | (KxCO)<br>g/hr | (KxCO)<br>g/min | (K x<br>HHV) | (K x<br>LHV) |
|---|-----|--------------------------------------|------------------------------------|--------------------------|--------------------|--------------------|--------------------------------|---------------|----------------|-----------------|--------------|--------------|
| 1 | М   | 1.31                                 | 28                                 | 11,800                   | 76                 | 82                 | 40%                            | 0.52          | 11.1           | 0.18            | 30.5         | 32.7         |
| 3 | L   | 0.97                                 | 41                                 | 8,500                    | 75                 | 81                 | 40%                            | 0.39          | 16.3           | 0.27            | 30.0         | 32.2         |
| 4 | Н   | 2.93                                 | 30                                 | 31,700                   | 73                 | 78                 | 20%                            | 0.59          | 6.0            | 0.10            | 14.6         | 15.6         |
|   |     |                                      |                                    |                          |                    | Totals:            | 100%                           | 1.5           | 33             | 0.6             | 75           | 80           |

# **SECTION 11**

# **CONCLUSION**

This test demonstrates that the Matrix 1900 (2.1 Series) wood heater is an affected facility under the definition given in the regulation. The emission rate of 1.5 g/hr meets the EPA requirements for the Step 2 limits.

Matrix 1900 is a representative model of the 2.1 Series. This series includes the following models: Destination 1.9, Matrix 1900, CW2100, Green Mountain Insert 50, HEI90, Archway 1500, and Blue Ridge 150-I.

Version: 05/10/17 Page 24 of 32 GFT-OP-10c



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

# TEST REPORT FOR STOVE BUILDER INTERNATIONAL INC.

Report No.: 104576994MTL-001R4

Date: 12/20/21

#### **SECTION 12**

#### **PHOTOGRAPHS**



Figure 5 - Isometric view of unit

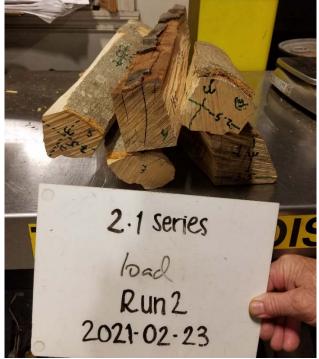



Figure 6 - Typical load



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

# TEST REPORT FOR STOVE BUILDER INTERNATIONAL INC.

Report No.: 104576994MTL-001R4

Date: 12/20/21

#### **SECTION 13**

# **REVISION LOG**

| REVISION # | DATE     | PAGES             | REVISION                                   |
|------------|----------|-------------------|--------------------------------------------|
| 0          | 03/30/21 | N/A               | Original Report Issue                      |
|            |          | 8                 | Add detail on the dilution tunnel          |
|            |          |                   | description. Add an ASTM E2515-11          |
|            |          |                   | compliance statement.                      |
|            |          | 20                | Corrected the exceeded time from 2         |
|            |          |                   | minutes to 3 minutes on description of     |
| _1         | 10/01/21 |                   | Run#2.                                     |
| _          |          | 22                | Heat output of run 1 and 4 were rounded    |
| 2          | 12/20/21 |                   | to 3 significant figures in Table 9.       |
|            |          | 1, 2, 24          | Added model Blue Ridge 150-l               |
|            |          | 20                | Added statement about the non-use of       |
|            |          |                   | ambient room filter                        |
|            |          | 20, 22, 24, 27-32 | Corrected high fire burn rate from 2.45    |
|            |          |                   | kg/hr. to 2.44 kg/hr.                      |
|            |          | 21-23, 27-32      | Corrected high fire efficiency and CO      |
|            |          |                   | emissions numbers. Starting dry fuel       |
|            |          |                   | weight changed from 9.71 lbs. to 9.49 lbs. |
|            |          | Appendix B        | Added corrected datasheets for high fire.  |
|            |          | Appendix G        | Added corrected efficiency datasheets for  |
|            |          |                   | high fire.                                 |
|            |          | 3                 | Report originally created by Hussein       |
|            |          |                   | Mortada, who is no longer with Intertek.   |
|            |          |                   | Report revised by Brian Ziegler and        |
| 3          | 7/14/22  |                   | reviewed by Ken Slater.                    |
| 4          | 9/19/22  | 19, 20            | Added "overall firebox volume" to report.  |



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

# TEST REPORT FOR STOVE BUILDER INTERNATIONAL INC.

Report No.: 104576994MTL-001R4

Date: 12/20/21

#### **SECTION 14**

#### **APPENDIX - REPORT TABLES AS PER ASTM E3053-17**

Table 10 - Section 1 - Model Identification

# SECTION 1 - Model Identification

Model Name(s)/Number(s)

Manufacturer

Address 1

Address 2

Appliance Category(s) (Free-standing, Insert, etc.)

Usable Firebox Volume - ft<sup>3</sup>

Catalytic/Non-Cat

Convection Air Fan (No, Standard, Optional)

SECTION 1B – Laboratory Information

**Testing Laboratory** 

Address 1 Address 2

ISO/Accreditation Info

**Dates Tested** 

Test Methods/Standards

Dilution Tunnel Inside Diameter - in.

Fliter Diameter - mm

Filter Material

2.1 Series

Stove builder international inc.

250 Rue Copenhague

Saint-Augustin-de-Desmaures

Insert

1.03

Non-Cat

Optional

Intertek testing services

1829 32nd Avenue

Lachine, QC H8T 3J1

ISO 17025

02/22/2021 -

02/25/2021

CAS B415.1-10, ASTM E2515, ASTM E3053

8.00

47

Pall TX40

Table 11 - Section 2 - Test Conditions Summary

# SECTION 2 – Test Conditions Summary

Model Name(s)/Number(s)

Usable Firebox Volume - ft3

Convection Air Fan (No, Standard, Optional)

Test Run#

**Date Tested** 

Test Run Category (L, M, H)

Average Barometric Pressure - in Hg

Max. Observed Ambient Temp - °F

Min. Observed Ambient Temp - °F

| 2.1 Series |          |          |            |
|------------|----------|----------|------------|
| 1.03       |          |          |            |
| Optional   |          |          |            |
| 1          | 2        | 3        | 4          |
| 2021-02-   | 2021-02- | 2021-02- |            |
| 22         | 23       | 24       | 2021-02-25 |
| М          | L        | L        | Н          |
| 29.55      | 29.28    | 29.45    | 29.58      |
| 84         | 83       | 83       | 78         |
| 68         | 67       | 73       | 71         |



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

# TEST REPORT FOR STOVE BUILDER INTERNATIONAL INC.

Report No.: 104576994MTL-001R4

Date: 12/20/21

| Max. Observed Filter Temp - °F                  | 87 & 86  | 87         | 87         | 88 & 87   |
|-------------------------------------------------|----------|------------|------------|-----------|
| Test Run Air Settings                           |          |            |            |           |
|                                                 |          |            |            | Max       |
| Primary (measured up from minimum)              | 0.625    | Min        | Min        | (2.4375") |
| Secondary (measured up from minimum)            | na       | na         | na         | na        |
| Constitution At a Fig. Coulting                 | Off then | Official   | Official   | Off then  |
| Convection Air Fan Setting                      | M        | Off then L | Off then L | Max       |
| Test Fuel Load                                  | Dank     | Decel      | Dank       | Decel     |
| Cordwood Fuel Species                           | Beech    | Beech      | Beech      | Beech     |
| Specific Gravity (from Table 1)                 | 0.67     | 0.67       | 0.67       | 0.67      |
| Higher Heating Value - Btu/lb (from Annex A1)   | 8088     | 8088       | 8088       | 8088      |
| Nom. Test Fuel Load Piece Length - in.          | 16       | 16         | 16         | 16        |
| Number of Test Fuel Pieces                      | 5        | 5          | 5          | 4         |
| Test Fuel Weight                                |          |            |            | 0.10      |
| Kindling - As Fired lb                          | na       | na         | na         | 2.13      |
| Kindling Wt As % of Test Fuel Load              | na       | na         | na         | 20%       |
| Kindling Moisture - % DB                        | na       | na         | na         | 10%       |
| Kindling - kg DB                                | na       | na         | na         | 0.88      |
| SU Fuel - As Fired lb                           | na       | na         | na         | 3.23      |
| SU Fuel Wt As % of Test Fuel Load               | na       | na         | na         | 30%       |
| SU Fuel Moisture - % DB                         | na       | na         | na         | 20%       |
| SU Fuel - kg DB                                 | na       | na         | na         | 1.22      |
| Test Fuel Load - As Fired lb                    | 12.8     | 12.75      | 12.92      | 10.78     |
| Ave. Test Fuel Load MC % DB                     | 20.1%    | 20.7%      | 20.0%      | 20.1%     |
| Test Fuel Load - kg DB                          | 4.83     | 4.79       | 4.88       | 4.07      |
| Test Fuel Loading Density - lb/ft <sup>3</sup>  | 12.43    | 12.38      | 12.54      | 10.47     |
| Residual SU Fuel Wt As Fired lb                 | na       | na         | na         | 1.18      |
| Residual SU Fuel Wt As % of Test Fuel Load      | na       | na         | na         | 11%       |
| Test Run Duration - minutes                     | 330      | 406        | 464        | 129.83    |
| Test Run Duration - h                           | 5.50     | 6.77       | 7.73       | 2.16      |
| Test Fuel Load Wt. at End of Test - As Fired lb | 0.2      | 0.0        | 0.0        | 1.07      |
| Total Total Fuel Burned - kg DB                 | 4.74     | 4.79       | 4.88       | 6.17      |
| % Test Fuel Load Wt. at End of Test             | 1.6%     | 0.0%       | 0.0%       | 9.9%      |



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

# TEST REPORT FOR STOVE BUILDER INTERNATIONAL INC.

Report No.: 104576994MTL-001R4

Date: 12/20/21

Table 12 - Section 3 - Test Run Results Summary

|                                                     |            |         |         | 1       |
|-----------------------------------------------------|------------|---------|---------|---------|
| SECTION 3 – Test Run Results Summary                |            |         |         |         |
| Model Name(s)/Number(s)                             | 2.1 Series |         |         |         |
| Usable Firebox Volume - ft <sup>3</sup>             | 1.03       |         |         |         |
| Convection Air Fan (No, Standard, Optional)         | Optional   |         |         |         |
| Test Run #                                          | 1          | 2       | 3       | 4       |
| Date Tested                                         | 2-22-21    | 2-23-21 | 2-24-21 | 2-25-21 |
| Test Run Category                                   | М          | L       | L       | Н       |
| Burn Rate - kg/h DB                                 | 0.86       | 0.71    | 0.63    | 2.44    |
| Burn Rate - As % of Low to High Midpoint            | 56%        | na      | na      | na      |
| Burn Duration - h                                   | 5.50       | 6.77    | 7.73    | 2.16    |
| Heat Output - Btu/h                                 | 11792      | 9446    | 8471    | 31742   |
| Dilution Tunnel Flow Rate - dscfm                   |            |         |         |         |
| Average                                             | 304.40     | 300.35  | 301.05  | 293.32  |
| Maximum Observed                                    | 311.39     | 305.65  | 347.99  | 304.39  |
| Minimum Observed                                    | 205.22     | 205.75  | 200 27  | 286.04  |
|                                                     | 295.33     | 285.75  | 288.27  | 280.04  |
| Dilution Tunnel Temperature - °F                    | 01         | 01      | 02      | 02      |
| Average                                             | 81         | 81      | 83      | 93      |
| Maximum Observed                                    | 94         | 98      | 96      | 104     |
| Minimum Observed                                    | 73         | 74      | 75      | 69      |
| Sample Dryer Exit Max. Temp (or Max. DGM Temp) - °F |            |         |         |         |
| Train 1                                             | 65         | 67      | 69      | 69      |
| Train 2                                             | 65         | 67      | 69      | 70      |
| Average Sample Flow Rates - dscfm                   |            |         |         |         |
| Train 1                                             | 0.125      | 0.125   | 0.129   | 0.122   |
| Train 2                                             | 0.132      | 0.124   | 0.128   | 0.123   |
| Sample Vacuum - in. Hg                              |            |         |         |         |
| Train 1                                             |            |         |         |         |
| Start                                               | 0.1        | 0.1     | 0.1     | 0.1     |
| End                                                 | 0.1        | 0.2     | 0.1     | 0.3     |
| Maximum Observed                                    | 0.1        | 0.2     | 0.1     | 0.3     |
| Train 2                                             |            |         |         |         |
| Start                                               | 0.2        | 0.1     | 0.0     | 0.1     |



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

# TEST REPORT FOR STOVE BUILDER INTERNATIONAL INC.

Report No.: 104576994MTL-001R4

Date: 12/20/21

| End                                           | 0.1    |     |
|-----------------------------------------------|--------|-----|
| Maximum Observed                              | 0.2    |     |
| Proportional Rate Variation (10-minute basis) |        |     |
| # of Occurences > 5%, Total Both Trains       | 0      |     |
| # of Occurences > 10%, Total Both Trains      | 0      |     |
| Highest PR Variation - %, Either Train        | 102.4% | 103 |
| Total Sample Volume - dscm (m³)               |        |     |
| Train 1                                       | 1.166  | 1   |
| Train 2                                       | 1.234  | 1   |
| Average Dilution Ratio                        |        |     |
| Train 1                                       | 2439.1 | 24  |
| Train 2                                       | 2306.0 | 24  |
| Total PM Catch - mg                           |        |     |
| Train 1                                       | 2.8    |     |
| Train 2                                       | 3.3    |     |
| Total Catch PM Weight Excluding Probe - mg    |        |     |
| Train 1 - Immediately Post-Test               | 1.9    |     |
| Train 1 - Final Dry Weight                    | 1.9    |     |
| Train 2 - Immediately Post-Test               | 2.3    |     |
| Train 2 - Final Dry Weight                    | 2.3    |     |
| Final Dry Probe PM Catch - mg                 |        |     |
| Train 1                                       | 0.9    |     |
| Train 2                                       | 1.0    |     |
| Probe PM Catch as % of Total PM Catch         |        |     |
| Train 1                                       | 32.1%  |     |
| Train 2                                       | 30.3%  | -   |
| Total PM Emissions - g                        |        |     |
| Train 1                                       | 6.829  | 6   |
| Train 2                                       | 7.610  | 6   |
| Average                                       | 7.220  | 6   |
| PM Emission Train Precision - %               | 5.4%   | ;   |
| PM Emission Train Precision - g/kg            | 0.16   |     |
| PM Concentration - mg/m <sup>3</sup>          |        |     |
| Train 1                                       | 2.40   |     |
| Train 2                                       | 2.68   |     |
| PM Emission Rate - g/h                        | 1.31   |     |

| 0.1    | 0.1    | 0.1    | 0.2    |
|--------|--------|--------|--------|
| 0.2    | 0.1    | 0.1    | 0.2    |
|        |        |        |        |
| 0      | 0      | 0      | 0      |
| 0      | 0      | 0      | 0      |
| 102.4% | 103.5% | 102.2% | 102.2% |
|        |        |        |        |
| 1.166  | 1.437  | 1.690  | 0.447  |
| 1.234  | 1.426  | 1.682  | 0.452  |
|        |        |        |        |
| 2439.1 | 2402.8 | 2341.0 | 2410.2 |
| 2306.0 | 2422.2 | 2352.0 | 2388.6 |
|        |        |        |        |
| 2.8    | 2.8    | 3.3    | 2.6    |
| 3.3    | 2.6    | 3.1    | 2.7    |
|        |        |        |        |
| 1.9    | 2.6    | 2.9    | 2.6    |
| 1.9    | 2.6    | 2.9    | 2.5    |
| 2.3    | 2.5    | 2.8    | 2.6    |
| 2.3    | 2.4    | 2.8    | 2.5    |
|        |        |        |        |
| 0.9    | 0.2    | 0.4    | 0.1    |
| 1.0    | 0.2    | 0.3    | 0.2    |
|        |        |        |        |
| 32.1%  | 7.1%   | 12.1%  | 3.8%   |
| 30.3%  | 7.7%   | 9.7%   | 7.4%   |
|        |        |        |        |
| 6.829  | 6.728  | 7.725  | 6.266  |
| 7.610  | 6.298  | 7.291  | 6.449  |
| 7.220  | 6.513  | 7.508  | 6.358  |
| 5.4%   | 3.3%   | 2.9%   | 1.4%   |
| 0.16   | 0.09   | 0.09   | 0.04   |
|        |        |        |        |
| 2.40   | 1.95   | 1.95   | 5.81   |
| 2.68   | 1.82   | 1.84   | 5.98   |
| 1.31   | 0.96   | 0.97   | 2.94   |
|        |        |        |        |



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

# TEST REPORT FOR STOVE BUILDER INTERNATIONAL INC.

Report No.: 104576994MTL-001R4

Date: 12/20/21

| PM Emission Rate - g/Mj (from CSA B415.1-10/15)     | 0.11   | 0.10   | 0.11   | 0.13   |
|-----------------------------------------------------|--------|--------|--------|--------|
| PM Emission Rate - lb/MMBtu (from CSA B415.1-10/15) | 0.25   | 0.22   | 0.25   | 0.30   |
| First Hour Emissions                                |        |        |        |        |
| Sampling Duration (minutes)                         | 60.00  | 60.00  | 60.00  | 60.00  |
| Average Sample Flow Rate - dscfm                    | 0.1235 | 0.1256 | 0.1249 | 0.1221 |
| Total Sample Volume - dscm (m³)                     | 0.210  | 0.213  | 0.212  | 0.207  |
| Average Dilution Tunnel Flow Rate - dscfm           | 298.18 | 292.10 | 301.37 | 296.51 |
| Average Dilution Ratio                              | 2414.4 | 2325.6 | 2412.9 | 2428.4 |
| Total PM Catch - mg                                 | 2.2    | 1.8    | 1.9    | 2.2    |
| PM Concentration - mg/m <sup>3</sup>                | 10.48  | 8.43   | 8.95   | 10.60  |
| Total PM Emissions - g                              | 5.31   | 4.19   | 4.58   | 5.34   |
| PM Emission Rate - g/h                              | 5.31   | 4.19   | 4.58   | 5.34   |
| Total CO Emissions - g (CSA B415.1-10/15)           | 152.0  | 313.0  | 316.0  | 44.0   |
| CO Emissions Rate - g/h (CSA B415.1-10/15)          | 27.7   | 46.3   | 40.9   | 29.7   |
| Test Duration w/o Cold Start (High Fire Only) - h   | na     | na     | na     | 1.47   |
| Overall Efficiency - CSA B415.1-10/15               |        |        |        |        |
| % HHV Basis                                         | 76.3   | 74.7   | 75.1   | 72.9   |
| % LHV Basis                                         | 81.7   | 80.1   | 80.5   | 78.1   |

Table 13 - Section 4 - Weighted Average Summary

SECTION 4 - Weighted Average Summary

| Model Name(s)/Number(s)                     |
|---------------------------------------------|
| Usable Firebox Volume - ft <sup>3</sup>     |
| Convection Air Fan (No, Standard, Optional) |
| Average for Each Test Run Category          |
| Burn Rate - kg/h DB                         |
| PM Emission Rate - g/h                      |
| CO Emissions Rate - g/h                     |
| Overall Efficiency - CSA B415.1-10          |
| % HHV Basis                                 |
| % LHV Basis                                 |

Heat Output - Btu/h
Category Weighting

| 2.1 Series |       |       |
|------------|-------|-------|
| 1.03       |       |       |
| Optional   |       |       |
| L          | М     | Н     |
| 0.63       | 0.86  | 2.44  |
| 0.97       | 1.31  | 2.93  |
| 40.9       | 27.7  | 29.7  |
|            |       |       |
| 75         | 76    | 73    |
| 81         | 82    | 78    |
| 8500       | 11800 | 31700 |
| 40%        | 40%   | 20%   |



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

# TEST REPORT FOR STOVE BUILDER INTERNATIONAL INC.

Report No.: 104576994MTL-001R4

Date: 12/20/21

| ASTM E3053 Weighted Averages       |
|------------------------------------|
| PM Emission Rate - g/h             |
| CO Emissions Rate - g/h            |
| CO Emissions Rate - g/min          |
| Overall Efficiency - CSA B415.1-10 |
| % HHV Basis                        |
| % LHV Basis                        |
| Heat Output Range - Btu/h          |
|                                    |

| 1.5  |    |       |  |
|------|----|-------|--|
| 34   |    |       |  |
| 0.6  |    |       |  |
|      |    |       |  |
| 75   |    |       |  |
| 80   |    |       |  |
| 8500 | to | 31700 |  |
|      |    |       |  |



# STOVE BUILDER INTERNATIONAL PRODUCT EVALUATION

#### PRODUCT EVALUATED

DESTINATION 1.9, MATRIX 1900, CW2100, GREEN MOUNTAIN INSERT 50, HEI90, ARCHWAY 1500

# **EVALUATION PROPERTY**

U.S. ENVIRONMENTAL PROTECTION AGENCY 40 CFR PART 60

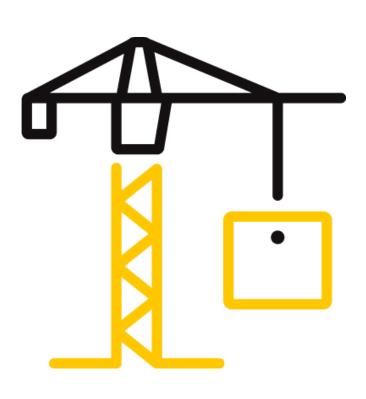
# **REPORT NUMBER**

104576994MTL-002

# **ORIGINAL ISSUE DATE**

03/30/21

# **LAST REVISED DATE**


**ORIGINAL** 

#### **PAGES**

13

# **DOCUMENT CONTROL NUMBER**

SFT-BC-OP-19H © 2017 INTERTEK





Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

# PRODUCT EVALUATION FOR STOVE BUILDER INTERNATIONAL

Report No.: 104576994MTL-002

Date: 03/30/21

| PRODUCT EVALUATION RENDERED TO: |                                        |  |
|---------------------------------|----------------------------------------|--|
| Company Name:                   | Stove Builder International            |  |
| Address:                        | 250 rue de Copenhague                  |  |
|                                 | St-Augustin-de-Desmaures, QC           |  |
|                                 | G3A 2H3, Canada                        |  |
| Contact Person:                 | Guillaume Thibodeau-Fortin             |  |
| Tel:                            | 1-418-878-3040 x5224                   |  |
| Email:                          | gthibodeaufortin@sbi-international.com |  |
|                                 |                                        |  |

# **Table of Contents**

| 1 | Int | roduction                      | ತ  |
|---|-----|--------------------------------|----|
|   |     | oduct and Assembly Description |    |
|   |     | Product Description:           |    |
|   |     | Product Traceability:          |    |
|   |     | Product Certification:         |    |
| 3 | Ref | ference Documents              | 4  |
| 4 | Eva | aluation Method                | 4  |
| 5 | Co  | nclusion                       | 4  |
| 6 | AP  | PENDIX                         | 6  |
| 7 | LAS | ST PAGE & REVISION SUMMARY     | 13 |

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample(s) tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

#### PRODUCT EVALUATION FOR STOVE BUILDER INTERNATIONAL

Report No.: 104576994MTL-002

Date: 03/30/21

#### 1 Introduction

Intertek Testing Services NA Ltd./Inc. (Intertek) is conducting a product evaluation for Stove Builder International, on Destination 1.9, CW2100, Green Mountain Insert 50, HEI90, Archway 1500 to evaluate if the differences with the tested Matrix 1900 will increase particulate matter emission rate limit. The evaluation is being conducted to determine if items listed in *U.S. Environmental Protection Agency 40 CFR Part 60 Standards of Performance for New Residential Wood Heaters; Final Rule, SECTION 60.533(k)* will show equivalency with the previously tested Matrix 1900 insert.

# 2 Product and Assembly Description

#### 2.1. Product Description:

The model 2.1 Series wood insert is constructed of sheet steel. The outer dimensions are 15 1/8-inches deep from the face plate to the rear, 18 5/8-inches high, and 24 15/16-inches wide in the front. The unit has a door located on the front with a viewing glass.

Construction drawings are in appendix and named OB01900-V01.

This PEV refers to a product described in Intertek Test Report 104576994MTL-001. Consult that document for additional information and specific test conditions.

## 2.2. Product Traceability:

The test specimen identification is as provided by the client and Intertek accepts no responsibility for any inaccuracies therein.

#### 2.3. Product Certification:

Stove Builder International is an Intertek testing client and an Intertek Listing and Follow-up Service client. Insert models Destination 1.9, Matrix 1900, CW2100, Green Mountain Insert 50, HEI90, Archway 1500 are in the process of listing within Intertek. Currently, Intertek does not have any Listings for these models contained in Intertek's Directory of Listed Building Products.

Authorities Having Jurisdiction (AHJ) should be consulted in all cases as to the particular requirements covering the installation and use of Intertek certified products, equipment, systems, devices and materials. The AHJ should be consulted before construction. Fire resistance assemblies and products are developed by the design submitter and have been investigated by Intertek for compliance with specific requirements. The published information (product and design listings) cannot always address every construction nuance encountered in the field. When field issues arise, it is recommended the first contact for assistance be the technical service staff provided by the product manufacturer noted for the design. Users of fire resistance assemblies are advised to consult the test standard referenced for each Intertek certified product. The test standard includes specifics concerning alternate materials and alternate methods of construction. Only products which bear Intertek's Mark are considered as certified. The appearance of a company's name or product in Intertek Directory of Listed Building Products does not in itself assure that products so identified have been manufactured under Intertek's Follow-Up Service. Only those products bearing the Intertek Mark should be considered to be Listed and covered under Intertek's Follow-Up Service. Always verify the Mark on the product before using it.



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

#### PRODUCT EVALUATION FOR STOVE BUILDER INTERNATIONAL

Report No.: 104576994MTL-002

Date: 03/30/21

## 3 Reference Documents

As part of this evaluation, Intertek has directly or indirectly used the following referenced documents:

- U.S. Environmental Protection Agency 40 CFR Part 60 Standards of Performance for New Residential Wood Heaters; Final Rule, SECTION 60.533(k)
- SBI drawings number: CB00027-V01, EB00066-V01, OB01900-V01, SF00609-V01, SF00330-V01, VB00024-V01
- Intertek Testing Report No.: 104576994MTL-001

## 4 Evaluation Method

This PEV represents the results of an evaluation on wood insert models listed in object when compared to the tested Matrix 1900 Insert. This investigation was authorized by SBI on March 26<sup>th</sup>, 2021. Drawings number CB00027-V01, EB00066-V01, OB01900-V01, SF00609-V01, SF00330-V01, VB00024-V01 were received on March 26<sup>th</sup>, 2021 at the Intertek Lachine facility. Drawings can be found in appendix.

The models listed in subject are wood inserts manufactured based on the construction of the tested Matrix 1900. The combustion room and air intake of all the mentioned units are identical.

Some variations were noted during the investigation. The variations are esthetical only and they are as follows:

- The loading door differs by shape;
- The façade differs by shape;
- The blower box can be under the combustion chamber or recessed.

Design drawings were evaluated to determine similarities between the above-mentioned models. Drawings show internal fire box size to be the same at 12 3/8" deep, 7 11/16" high (from brick to lower tube) and 16 13/16" wide at the back of the firebox  $\pm$  ¼". All appliances share a 6" flue collar and have the same primary air entrance area. Differences noted during this evaluation were on the door shape and decorative side panels as well as the typical look of the façade of all unit' inspired by their typical branding look.

## 5 Conclusion

Intertek has conducted this product evaluation for Stove Builder International, on Destination 1.9, CW2100, Green Mountain Insert 50, HEI90, Archway 1500, to evaluate if the differences with the tested Matrix 1900 will increase particulate matter emission rate limit. The evaluation was conducted to determine if items listed in *U.S. Environmental Protection Agency 40 CFR Part 60 Standards of Performance for New Residential Wood Heaters; Final Rule, SECTION 60.533(k)* will show equivalency with the tested Matrix 1900 Insert.

Based on the information contained and referenced herein, it is Intertek's professional judgment based on sound engineering principles that the following is true:

Changes made are only aesthetical and do not increase particulate matter emission rate.



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

# PRODUCT EVALUATION FOR STOVE BUILDER INTERNATIONAL

Report No.: 104576994MTL-002

Date: 03/30/21

INTERTEK TESTING SERVICES NA LTD.

Reported by:

Claude Pelland P.Eng. Staff Engineer Intertek Lachine

Reviewed by:

Brian Ziegler

Project Team Leader Building Products Division



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

# PRODUCT EVALUATION FOR STOVE BUILDER INTERNATIONAL

Report No.: 104576994MTL-002

Date: 03/30/21

# **6 APPENDIX**

Drawings CB00027-V01, Drawings EB00066-V01, Drawings OB01900-V01, Drawings SF00609-V01, Drawings SF00330-V01, Drawings VB00024-V01



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

# PRODUCT EVALUATION FOR STOVE BUILDER INTERNATIONAL

Report No.: 104576994MTL-002

Date: 03/30/21

# 7 LAST PAGE & REVISION SUMMARY

| DATE     | SUMMARY  | REPORTER       | REVIEWER      |
|----------|----------|----------------|---------------|
| 03/29/21 | Original | Claude Pelland | Brian Ziegler |
|          |          |                |               |
|          |          |                |               |

Version: 12/15/17 Page 13 of 13 SFT-BC-OP-19h



# STOVE BUILDER INTERNATIONAL PRODUCT EVALUATION

#### PRODUCT EVALUATED

2.1 SERIES, INCLUDING, BLUE RIDGE 150-I, ARCHWAY 1500, GREEN MOUNTAIN INSERT 50, HEI90 SOLID FUEL FIREPLACE INSERTS

# **EVALUATION PROPERTY**

ULC S628-1993 (R2016), UL 1482-2011, UL 737-2011 (R2020), ASTM E2515-2017, ASTM E3053-2017, CSA B415.1-2010 (R2020)

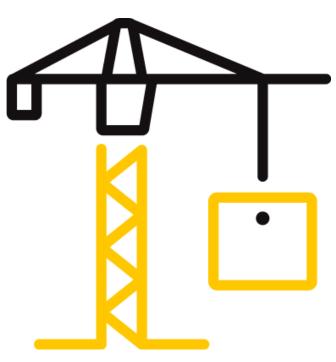
# **REPORT NUMBER**

105095446MID-001

# **ORIGINAL ISSUE DATE**

07/29/22

## **LAST REVISED DATE**


**ORIGINAL** 

#### **PAGES**

10

## **DOCUMENT CONTROL NUMBER**

SFT-BC-OP-19H © 2017 INTERTEK





Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

# PRODUCT EVALUATION FOR STOVE BUILDER INTERNATIONAL

Report No.: 105095446MID-001

Date: 07/29/22

| PRODUCT EVALUATION RENDERED TO: |                                      |  |
|---------------------------------|--------------------------------------|--|
| Company Name:                   | Stove Builder International          |  |
| Address:                        | 250 de Copenhague                    |  |
|                                 | St Augustin de Desmaures, QC G3A 2H3 |  |
|                                 | Canada                               |  |
| Contact Person:                 | Louis-Pierre Cote                    |  |
| Tel:                            | 418-878-3040 ext. 5212               |  |
| Email:                          | lpcote@sbi-international.com         |  |

# **Table of Contents**

| STOVE BUILDER INTERNATIONAL          | 1  |
|--------------------------------------|----|
| PRODUCT EVALUATION PRODUCT EVALUATED | 1  |
| Table of Contents                    | 2  |
| 1 Introduction                       | 3  |
| 2 Product and Assembly Description   | 3  |
| 2.1. Product Description:            |    |
| 3 Reference Documents                | 3  |
| 4 Evaluation Method                  | 4  |
| 5 Conclusion                         | 4  |
| 6 APPENDIX                           | 5  |
| 7 LAST PAGE & REVISION SUMMARY       | 10 |

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample(s) tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

## PRODUCT EVALUATION FOR STOVE BUILDER INTERNATIONAL

Report No.: 105095446MID-001

Date: 07/29/22

#### 1 Introduction

Intertek Testing Services NA Inc. (Intertek) is conducting a product evaluation for Stove Builder International (SBI), on models Blue Ridge 150-I, Archway 1500, Green Mountain Insert 50, and HEI90 solid fuel fireplace inserts, to evaluate the addition of similar models to the 2.1 Series. The evaluation is being conducted to determine if the additional models will maintain compliance with ULC S628-1993 (R2016) Standard for Fireplace Inserts, UL 1482-2011 Solid-Fuel Type Room Heaters, UL 737-2011 (R2020) Fireplace Stoves, ASTM E2515-2017 Standard Test Method for Determination of Particulate Matter Emissions Collected by a Dilution Tunnel, ASTM E3053-2017 Standard Test Method for Determining Particulate Matter Emissions from Wood Heaters using Cordwood Test Fuel, and CSA B415.1-2010 (R2020) Performance Testing of Solid-Fuel-Burning Heating Appliances.

# 2 Product and Assembly Description

#### 2.1. Product Description:

| Product          | Solid fuel room heater                                                                                                                                                                                                                                                                        |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Brand Name       | Englander, Empire Stove, Century Heating, Enerzone, HearthStone, Ventis, Osburn                                                                                                                                                                                                               |
| Description      | The models from the 2.1 Series wood fuel room heater are constructed of sheet steel. The outer dimensions are 15 1/8-inches deep from the face plate to the rear, 18 5/8-inches high, and 24 15/16-inches wide in the front. The units have a door located on the front with a viewing glass. |
| Models           | Blue Ridge 150-I, Archway 1500, CW2100, Destination 1.9, Green Mountain Insert 50, HEI90, Matrix 1900                                                                                                                                                                                         |
| Model Similarity | All models use the same internal components and construction.  The only difference between the models are cosmetic changes to the fueling door and the surrounds.                                                                                                                             |
| Ratings          | 115 V, 60 Hz, 0.8 A - Fan                                                                                                                                                                                                                                                                     |

# **3** Reference Documents

As part of this evaluation, Intertek has directly or indirectly used the following referenced documents:

- ULC S628-1993 (R2016)
- UL 1482-2011
- UL 737-2011 (R2020)
- ASTM E2515-2017
- ASTM E3053-2017
- CSA B415.1-2010 (R2020)
- Spec ID No. 64620 for the Safety Listing
- Spec ID No. 65618 for the Emissions Listing



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

#### PRODUCT EVALUATION FOR STOVE BUILDER INTERNATIONAL

Report No.: 105095446MID-001

Date: 07/29/22

#### 4 Evaluation Method

SBI has requested the addition of model Blue Ridge 150-I as a similar model to the existing 2.1 Series solid fuel fireplace inserts.

The internal components and overall construction of the model Blue Ridge 150-I is the same as the models noted in the 2.1 Series, with the exception of the external cosmetic components. The model Matrix 1900 was the representative model originally tested, which includes an arch top door. The Blue Ridge 150-I uses a straight-top rectangular door but is otherwise the same.

Models Archway 1500, Green Mountain Insert 50, and HEI90 were included in the emissions report #104576994MTL-001 as similar models but were not included in the safety listing. These models are also similar to the model Matrix 1900, with only external cosmetic differences.

#### 5 Conclusion

Intertek has conducted this product evaluation for Stove Builder International (SBI), on models Blue Ridge 150-I, Archway 1500, Green Mountain Insert 50, and HEI90 solid fuel fireplace inserts, to evaluate the addition of similar models to the 2.1 Series. The evaluation was conducted to determine if the additional models will maintain compliance with ULC S628-1993 (R2016) Standard for Fireplace Inserts, UL 1482-2011 Solid-Fuel Type Room Heaters, UL 737-2011 (R2020) Fireplace Stoves, ASTM E2515-2017 Standard Test Method for Determination of Particulate Matter Emissions Collected by a Dilution Tunnel, ASTM E3053-2017 Standard Test Method for Determining Particulate Matter Emissions from Wood Heaters using Cordwood Test Fuel, and CSA B415.1-2010 (R2020) Performance Testing of Solid-Fuel-Burning Heating Appliances.

Based on the information contained and referenced herein, it is Intertek's professional judgment based on sound engineering principles that the following is true:

 The models Blue Ridge 150-I, Archway 1500, Green Mountain Insert 50, and HEI90 have been deemed to be similar models and will operate in the exact same manner as the other models included in the listing. All clearances, emissions ratings, and certifications will be extended to these models.

#### INTERTEK TESTING SERVICES NA LTD.

Reported by:

Brian Ziegler

Technical Team Leader - Hearth

Reviewed by:

Ken Slater

Associate Engineer - Hearth



Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

# PRODUCT EVALUATION FOR STOVE BUILDER INTERNATIONAL

Report No.: 105095446MID-001

Date: 07/29/22

# 7 LAST PAGE & REVISION SUMMARY

| DATE          | SUMMARY  | REPORTER      | REVIEWER   |
|---------------|----------|---------------|------------|
| July 29, 2022 | Original | Brian Ziegler | Ken Slater |
|               |          |               |            |
|               |          |               |            |



# Test load procedure for certification of 2.1 Series wood stove using ASTM E3053-17 according to EPA Alt-125

<u>Kindling and SUF (5.4 lbs)</u> - Split the start-up fuel log into 6 pieces. Crisscross 6 kindling pieces on the brick. Then, crisscross the start-up fuel. Criss cross the rest of the kindling on the start-up fuel. The start-up fuel and the kindling are placed at the rear of the stove. Leave a little space between each piece.

The kindling is made of between 15 finely split piece of wood that are 10% of moisture content. Place crumbled newspaper on top of the kindling (5 full sheets). Light up the paper and let the door completely open for two minutes, then close the door. The fan is always OFF.

<u>Low&Medium Pre-load (high fire) (10.8 lbs)</u> - When there is a coal bed of 1.1 lbs left, break ashes and level coal bed, then add pre-load (four pieces). Place two pieces on the coal bed in an East-West orientation. The piece in front of the combustion chamber should be the largest and the piece at the back of the combustion chamber must be a medium piece. Place the last two pieces on top of the two others in an orientation that points to the left (10-15 degrees from East-West). Leave space between each piece. Let the door open of 5" for 4 minutes. Then, close the door and let burn until the weight is down to target.

When the average stove temperature gets to 505°F, slightly level the coal bed. There should be approximately 1.6 lb of coal bed.

Low fire load (13 lbs) - Place the largest piece on the coal bed in the back of the stove in an East-West orientation. Leave 1" between the rear bricks and the piece. Place the second largest piece on top of the first one. The piece should touch the rear bricks. Place a medium piece on the coal bed at the front of the combustion chamber. There should be approximatively 4-5" between the piece in the back and at the front of the combustion chamber. Place a piece on the two bottom logs. The rear left corner of the piece is placed on the piece at the back of the stove and the front right corner on the piece in front of the stove. Place the last piece on the piece at the front of the stove. Let the door ajar for 4 minutes and then close the door with the primary air control fully open. After 5 minutes, close the primary air control of 50%. After 2 more minutes, continue to close slowly the primary air control so that at 16 min (15 min or 15 % as per E3053 clause 8.6.7 plus loading time of 1 min as per clause 8.6.5), the primary air control is completely closed. Start the fan at minimum speed at 30 minutes.

Medium fire load (13 lbs) - Same as for low fire load, but the primary air inlet is open of 5/8 inch from its minimum position at the end of the 16 minutes run time. Also, the largest piece is placed in front of the stove and the medium piece at the back. Start the fan at minimum speed at 30 minutes.

<u>High fire load (10.8 lbs)</u> – When there is a coal bed of 1.1 lbs left, break ashes and level coal bed, then add the load (four pieces). Place two pieces on the coal bed in an East-West orientation. The piece in front of the combustion chamber should be a medium piece and the piece at the back of the combustion chamber must be the largest piece. Place the last two pieces on top of the two others in an orientation that points to the right (10-15 degrees from East-West). Do not leave space between the pieces. Let the door open of 5" for 4 minutes and close the door. Start the fan at maximum speed. Stop the test when 90% of the high fire load has been consumed.

# Intertek ETL SEMKO

| Date: 22 feb 2021                                          | Page of                          |
|------------------------------------------------------------|----------------------------------|
| Manufacturer: SBI                                          | Model: Series 2-1                |
| Project #: <u>G10457699</u> 4 Run:                         | Tech: Reviewer:                  |
| COMMENTS                                                   |                                  |
| Stort up 8:41 h.<br>Loading 9:10 ham<br>Door Closed 9:12 a |                                  |
| 11:30 h weight 1.3 St. 11:31 h Loading 11:36 h. Don cland  | (Mle 5 tight to loading)         |
|                                                            |                                  |
| 11:44 (Strat) Ain intake Adjust                            | Le do 5/8" Love (unin into Tost) |
| 11246 (Stendy Dis into                                     | ka to 5/8" Love Clarin into Tost |
| 17:00 Fan open to max                                      | power.                           |
|                                                            |                                  |
|                                                            |                                  |
|                                                            |                                  |
|                                                            | TEST LOAD CONFIGURATION          |
|                                                            |                                  |
|                                                            |                                  |
|                                                            |                                  |
|                                                            |                                  |
|                                                            |                                  |

|                                                                                                                                                                                                                                                     | Fuel lo           | Fuel load data - PRELOAD                                                                                                                                                                                                                                                                                                                                                                          |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Date: 22 C. 6 23                                                                                                                                                                                                                                    | 7                 | Rev date: 05-07-2017                                                                                                                                                                                                                                                                                                                                                                              |    |
| Run #: /                                                                                                                                                                                                                                            |                   | Doc rev: Rev 2                                                                                                                                                                                                                                                                                                                                                                                    |    |
| November 20 Adjunct to ASTM E XXXX Wood Heater Cordwood Test Method Cordwood Fuel Load Calculators - 10 lb/ft <sup>2</sup> Nominal Load Density Core 45-65% of Total Load Weight, Remainder 35-55% of Total Load Weight Values to be input manually |                   | THIS DOCUMENT IS NOT AN ASTM STANDARD. IT IS UNDER CONSIDERATION WITHIN AN ASTM TECHNICAL COMMITTEE BUT HAS, NOT RECEIVED ALL ARROWALS REQUIRED TO RECOMEAN ARMS STANDARD IT SHALL NOT BE REPRODUCED OR CIRCULATED OR QUOTED. IN WHOLE OR IN PART, OUTSIDE OF ASTM COMMITTEE ACTIVITIES EXCEPT WITH THE APPROVAL OF THE CHARMAN OF THE COMMITTEE HAVING LONSOHOCKEN, PA 1949, ALL KGHTS MESKEYED. |    |
| for All Usable Firebox Volumes - High Fire Test Only                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Nominal Required Load Density (wet basis)                                                                                                                                                                                                           |                   | Cal. Block #: SBI-153 12%;   A. O                                                                                                                                                                                                                                                                                                                                                                 |    |
| Usable Firebox Volume                                                                                                                                                                                                                               |                   | Wind misture                                                                                                                                                                                                                                                                                                                                                                                      |    |
| Total Nom. Load Wt. Target                                                                                                                                                                                                                          |                   | woodingstale                                                                                                                                                                                                                                                                                                                                                                                      |    |
| Total Load Wt. Allowable Range 5.80 to 10.80                                                                                                                                                                                                        | SO Ib             | Room temp. (*F): (3-0 - F                                                                                                                                                                                                                                                                                                                                                                         |    |
| Core Target Wt. Allowable Range 4.6 to 6.70 Remainder Load Wt. Allowable Range 3.60 to 5.70                                                                                                                                                         | 9 Q               | Room RH (%): 19                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Core Load Pc, Wt. Allowable Range 1.50 to 2.60 Remainder Load Pc Wt. Allowable Range 1.00 to 5.70                                                                                                                                                   | <u>a</u> <u>a</u> | Mid-Point hygrometer #: 5.55 ~ 6.12 3.45 9.35 File Diece Moisture Reading (%-dry basis)                                                                                                                                                                                                                                                                                                           |    |
| Pc. #                                                                                                                                                                                                                                               |                   |                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Core Load Piece Wt. Actual                                                                                                                                                                                                                          |                   | 20.0 15.0 20.4                                                                                                                                                                                                                                                                                                                                                                                    | 0  |
| 2 3 5 5 M                                                                                                                                                                                                                                           |                   | 25.8 20.4 26.5                                                                                                                                                                                                                                                                                                                                                                                    | 0  |
| 1.99                                                                                                                                                                                                                                                |                   | 25.4 22.4 12.0                                                                                                                                                                                                                                                                                                                                                                                    |    |
| Core Load Total. Wt. Actual Pc. #                                                                                                                                                                                                                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Remainder Load Piece Wt.                                                                                                                                                                                                                            |                   | 24.9 20.0 42.7                                                                                                                                                                                                                                                                                                                                                                                    | 0  |
| (1 to 3 Pcs.) 2                                                                                                                                                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                   | 0  |
| 9                                                                                                                                                                                                                                                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                   | 0  |
| hemainuer Load Prece Weignit Aduo - Smail/Large Remainder Load Tot, Wt, Act 0,00 lb                                                                                                                                                                 | 35                | ≤ 67%<br>Kindling Moisture (%-dry basis)                                                                                                                                                                                                                                                                                                                                                          |    |
| Total Load Wt. Actual 0.00 lb Core % of Total Wt. #DIV/0!                                                                                                                                                                                           | 45-65%            | /c /e /o /o Start-up Fuel Moisture Readings (%-dry basis)                                                                                                                                                                                                                                                                                                                                         | 39 |
| Remainder % of Total Wt.                                                                                                                                                                                                                            | 35-55%            | 35-55% 20.5 16.4 21.5                                                                                                                                                                                                                                                                                                                                                                             | 39 |
| Actual Load % or nominal larger Actual Fuel Load Density  0.0 lb/ft³                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                   | 3  |
| Kindling and Start-up Fuel Maximim Kindling Wt. (20% of Tot. Load Wt.)                                                                                                                                                                              |                   | Total Wt. All Fuel Burned (dry basis)                                                                                                                                                                                                                                                                                                                                                             | kg |
| Actual Kindling Wt.  Maximum Start-up Fuel Wt. (30% of Tot. Load Wt.)                                                                                                                                                                               | 10/NIQ#           | #DIV/0!                                                                                                                                                                                                                                                                                                                                                                                           | c  |
| Actual Start-up Fuel Wt. 3.206                                                                                                                                                                                                                      | In Range #DI      | #DIN/01                                                                                                                                                                                                                                                                                                                                                                                           |    |
|                                                                                                                                                                                                                                                     |                   | la de                                                                                                                                                                                                                                                                                                                                                                                             |    |
|                                                                                                                                                                                                                                                     |                   | Signature:                                                                                                                                                                                                                                                                                                                                                                                        |    |

Fuel load data - MEDIUM

Signature:



Date: 1011-M-11

Page\_\_1\_\_ of \_\_1\_\_

Manufacturer: SBI Model: 2.1 Series

Project #: <u>G1045769914</u>

Category #: \_\_\_\_\_\_

Run:\_\_\_\_1\_\_\_

Engineer: C. Pelland

# **RAW DRY GAS METER READINGS**

|                      | Start    | End       | Difference |
|----------------------|----------|-----------|------------|
| System 1 (ft³)       | 2011 -11 | HOT EID   |            |
| Equipment #: SBI-C47 | 394,516  | 435,543   | 41,027     |
| System 2 (ft³)       |          | 1 - 61 00 | 110000     |
| Equipment #: SBI-046 | 10+,713  | 1501,085  | 43,372     |
| System 3 (ft³)       | 187175   | 94,512    | 7 201      |
| Equipment #:         | 007,123  | 11,010    | 71007      |

# **AMBIENT CONDITIONS**

|                        | Start                    | End                     |
|------------------------|--------------------------|-------------------------|
|                        | Date: <u>1071-01-1</u> 1 | Date: <u>2021-07-21</u> |
|                        | Time : 11h30             | Time: 17401             |
| Barometer. (inches Hg) | 00 70                    |                         |
| Equipment #: SB1-331   | 29, +0                   | 29,40                   |
| Indoor Dry Bulb (°F)   | 71907                    | 709                     |
| Equipment #: 581-212   | 76.1 10.7                | 1011                    |
| Indoor Humidity (%)    | 0 8                      | 95                      |
| Equipment #: SBI-112   | 8106                     | 1,0                     |

Signature: \_\_\_\_\_

| SBÎ Period le polite international inc. Sovi duratir secretaria inc.  Date: | Page of                    |
|-----------------------------------------------------------------------------|----------------------------|
| Manufacturer: SB                                                            | Model: 2.1 Sents           |
| Project #: G104576994 Run: 1                                                | Tech: Reviewer: C. Pelland |

# SAMPLING EQUIPMENT CHECK OUT

# **Leakage Checks Tunnel Samplers**

|                                              | SYSTEM 1 (#SBI- <u>04</u> 1) |                        | SYSTEM 2 (#SBI- <u>046</u> ) |           | SYSTEM 3 (#SBI- <u>290</u> ) |           |
|----------------------------------------------|------------------------------|------------------------|------------------------------|-----------|------------------------------|-----------|
| Plug and set vacuum at 5 in<br>Hg. (17.3 mA) | Pre-Test                     | Post-Test              | Pre-Test                     | Post-Test | Pre-Test                     | Post-Test |
| Plug and note initial reading on DGM (ft³)   | 394,431                      | 437,691                | 107,564                      | 151,092   | 87082                        | 94,517    |
| Wait 1 min and note final reading DGM (ft³)  | 394, 431                     | 437,691                | 107,564                      | 151,092   | 87,082                       | 94,518    |
| Difference between initial and final (ft³)   | Ø                            | $\overset{\cdot}{\wp}$ | Ø                            | b         | Ø                            | X0,001    |
| Allowable leakage 4% x<br>Sample rate        | 0,004                        | 0,004                  | 01004                        | 0,004     | 0,004                        | 0,004     |
| heck OK                                      | <b>V</b>                     | /                      | V                            | V         |                              | V         |

Leakage Checks Flue Gas Sampler (Testo 350 #SBI-332) 246

| Plugged Probe | Pre Test | Post Test |
|---------------|----------|-----------|
| Check OK      | V        | <b>√</b>  |

SBI-192-N-0602

Signature : \_\_

# Intertek ETL SEMKO

| Date: 1011-01-11       |      | Pageof            |          |   |
|------------------------|------|-------------------|----------|---|
| Manufacturer: SBI      |      | Model: 2.1 Series |          |   |
| Project #: 6-104576994 | Run: | Tech:             | Reviewer | 1 |

# PRETEST DILUTION TUNNEL TRAVERSE RUN

| Barometric pressure $(P_{bar})$ (inches Hg.)       | Static pressure (Pq)(inches w.c | . ` |
|----------------------------------------------------|---------------------------------|-----|
| Inside diameter: Port A 8in. Port B 8in.           | (menes w.e                      | ٠,  |
| Tunnel cross sectional area: 0.349 ft <sup>2</sup> |                                 |     |
| Pitot tube #:                                      | Pitot tube factor: 0.844        |     |

| Traverse<br>Point | Position (inches) | Velocity Head $\Delta_p$ (inches $H_2O$ ) | Tunnel Temperature (°F) | $\sqrt{\Delta_{ m p}}$ |
|-------------------|-------------------|-------------------------------------------|-------------------------|------------------------|
| A- Centroid       | 4.00              | 0,070                                     | 93.2                    |                        |
| B - Centroid      | 4.00              | 0,077                                     | 88.5                    |                        |
| A-1               | 0.54              | 0,073                                     | 93,0                    |                        |
| A-2               | 2.00              | 0,080                                     | 93,1                    |                        |
| A-3               | 6.00              | 0,067                                     | 92,7                    |                        |
| A-4               | 7.46              | 0,046                                     | 74.2                    |                        |
| B-1               | 0.54              | 0,070                                     | 91.5                    |                        |
| B-2               | 2.00              | 0,079                                     | 91.8                    |                        |
| B-3               | 6.00              | 0,070                                     | 91.7                    |                        |
| B-4               | 7.46              | 0,055                                     | 82.0                    |                        |
|                   |                   | AVERAGE                                   |                         |                        |



# **Continuous Analyzer**

| Project:          | 2.1 series (610457694) |  |
|-------------------|------------------------|--|
| Project Engineer: | Claude fellow          |  |
| Equipment :       | Testo 350 (SBI-246)    |  |

Pre-test (after adjustment)

Run:

Date: 1021-02-22

Time: 10 150

|          | Ze     | ero                | Sp       | an                 | Mid point ( | record only)       | Full Scale |
|----------|--------|--------------------|----------|--------------------|-------------|--------------------|------------|
| CO [ppm] | 0.0    | 0.0                | 301020pm | 29900 ppm          | 5569        | 5569               | 6000       |
| CO2 [%]  | 0.0    | 0.0                | 16.037   | 16.1571            | 15,97       | 16.00              | 50%        |
| O2 [%]   | 0.0    | 0.0                | 17.95%   | 17.9%              | 18.3        | 18,00              | 21%        |
|          | Actual | Calibration<br>gaz | Actual   | Calibration<br>gaz | Actual      | Calibration<br>gaz |            |

Post-test

Date: 2021-02-23

Time: 8412

|          | Zero | Span     | Cal.     | Zero drift | Span drift | Cal. Drift | Max drift |
|----------|------|----------|----------|------------|------------|------------|-----------|
| CO [ppm] | 0,0  | 30618ppm | 5650 pan | Ð10        | 2.4%       | 1.5%/8/pa  | ) 282     |
| CO2 [%]  | 0,0  | 16,197,  | 16.06.7  | 0,0        | 0,56%      | 0,47,      | 0.80%     |
| O2 [%]   | 0,0  | 18.49%   | 18.09%   | 0,0        | 3,3%       | 0,5%       | 0.90%     |

Max drift is 5 % of full scale according to Intertek 192-Q-0602

Max drift is 1 % of full scale according to CSA B415.1-10, 6.3.1 (est-ce que c'est pour un 24h sans test ?)

Federal Register p.13709

The manufacturer must have the approved test laboratory measure the efficiency, heat output and carbon

CSA B415.1-10 p.11

6.3 Flue gas composition

6.3.1

The percentage of carbon monoxide (CO) and carbon dioxide (CO2) in the flue gas shall be measured by a continuous infrared analyzer or equivalent. Continuous analyzers (or equivalent) shall have maximum

zero and span drift, over a 24 h period, of 1% of full scale.

6.3.2

Gas samples shall be taken by a probe inserted at the centreline of the chimney 50 mm (2 in) above the thermocouple measuring flue gas temperature.

6.3.3

Continuous analyzers (or equivalent) shall be arranged so that they are synchronized to reach 90% of their final reading within 30 s when beginning at ambient levels and responding to a calibration gas that contains at least 80% of full-scale value of the constituent being measured. The calibration gas for this test shall be introduced through the sampling probe.

Signature:

# Intertek ETL SEMKO

| Date: 101-02-13       |             | Page of _        |        |
|-----------------------|-------------|------------------|--------|
| Manufacturer: SBI     | <del></del> | Model: 21 Series | S1 520 |
| Project #: 6104576994 | Run:        | Tech: Reviewer:_ |        |

# **COMMENTS**

| COMMENTS                                                                                         |
|--------------------------------------------------------------------------------------------------|
| 08:32 kindling Ignition                                                                          |
| 08.34 Dan close                                                                                  |
| 08.54 Repositioning of a small Piace. 08:58 Even The Anhard. / incention of Pri-laced a Picture. |
| 08:58 Even The Anhard. / Incention of Virlacd & Picture.                                         |
| $1  0  1  0  1  \infty$                                                                          |
| 11:11 Raking (Hetter Ambers) Stond Denogen Inin                                                  |
| 11 111                                                                                           |
| 11:13 Dra open - Loading (test=00:00:00)                                                         |
| 11:19 Dan drsed                                                                                  |
| 11:26 Start To close Air Intake                                                                  |
| 11:27 Du Intoke compltely closed                                                                 |
| 11:45 Fan open min power                                                                         |
|                                                                                                  |
| fenal air control adjustment is of the 15 minutes                                                |
| Jelhen 15% frent Jull load has been continued,                                                   |
| Experience thous that 15% in never exceeded in                                                   |
| doubt to day calculation was verified and . I wan                                                |
| Jaund that it was exceeded by appear wately 3 ninutes                                            |
| TEST LOAD CONFIGURATION                                                                          |
| 17:59 Stop test                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |

| FI F                                                                                                                                                                               | uel load                  | Fuel load data - PRELOAD                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Date: 23 filli & 2021                                                                                                                                                                                                  |                           | Rev date: 05-07-2017                                                                                                    |
| Run #: 2                                                                                                                                                                                                               |                           | Doc rev: Rev 2                                                                                                          |
| November 20 Adjunct to ASTM E XXXX Wood Heater Cordwood Test Method Cordwood Fuel Load Calculators - 10 lb/ft³ Nominal Load Density Core 45-65% of Total Load Weight, Remainder 35-55% of Total Load Weight, Nominally |                           | ATION WITHIN AN ASTM<br>OME AN ASTM STANDARD<br>PART, OUTSIDE OF ASTM<br>THE COMMITTEE HAVING<br>AR HARBOR DRITE, IFEST |
| For All Usable Firebox Volumes - High Fire Test Only                                                                                                                                                                   |                           |                                                                                                                         |
| Nominal Required Load Density (wet basis) 10 lb/ft <sup>3</sup>                                                                                                                                                        |                           | Cal. Block #: SBI-153 12%: / 3. ©                                                                                       |
| Usable Firebox Volume 1.03 ft³                                                                                                                                                                                         |                           |                                                                                                                         |
| Total Nom. Load Wt. Target                                                                                                                                                                                             |                           | meter#: 531.224                                                                                                         |
| Total Load Wt. Allowable Range 10.80 to 10.80 lb                                                                                                                                                                       |                           | V                                                                                                                       |
| Core Target Wt. Allowable Range 4.6 to 6.70 lb Remainder Load Wt. Allowable Range 3.60 to 5.70 lb                                                                                                                      |                           | Room RH (%): 14-7 % Ambiant                                                                                             |
| Core Load Pc. Wt. Allowable Range 1.50 to 2.60 lb Remainder Load Pc. Wt. Allowable Range 1.00 to 5.70 lb                                                                                                               | Mid-Point<br>2.05<br>3.35 | Piece Moistu                                                                                                            |
| Core Load Piece Wt. Actual                                                                                                                                                                                             |                           | 18 15.9 20.                                                                                                             |
| 3 2.32 0 lb                                                                                                                                                                                                            |                           | 24.8 12.6 17.9<br>24.8 22.1 20.4                                                                                        |
| Core Load Total, Wt. Actual                                                                                                                                                                                            |                           |                                                                                                                         |
| Remainder Load Piece Wt.                                                                                                                                                                                               |                           | 18.1 25.2 20.3                                                                                                          |
| (1 to 3 Pcs.) 2                                                                                                                                                                                                        |                           |                                                                                                                         |
| Remainder Load Piece Weight Ratio - Small/Large Remainder Load Tot. Wt. Act                                                                                                                                            | %£95<br>₹                 | Kindling Moisture (%-drv basis)                                                                                         |
| i0/AIQ#                                                                                                                                                                                                                | 45-65%                    | / c / O / O kg                                                                                                          |
|                                                                                                                                                                                                                        | 35-55%                    | 20.4 22.7 16.4                                                                                                          |
| Actual Load % of Nominal Target Actual Fuel Load Density                                                                                                                                                               | 95-105%                   | Total Wt. All Fuel Added (dry basis)                                                                                    |
| Kindling and Start-up Fuel Maximim Kindling Wt. (20% of Tot. Load Wt.)                                                                                                                                                 |                           | Total Wt. All Fuel Burned (dry basis)                                                                                   |
| Actual Kindling Wt.  Maximum Start-up Fuel Wt. (30% of Tot. Load Wt.)  A. 138  ib #DIV/0!                                                                                                                              | #DIV/0!                   |                                                                                                                         |
| Actual Start-up Fuel Wt. In Range                                                                                                                                                                                      | #DIV/0!                   |                                                                                                                         |
|                                                                                                                                                                                                                        |                           | Signature:                                                                                                              |
|                                                                                                                                                                                                                        |                           | Jeliature.                                                                                                              |

Fuel Ioad Jata - LOW

Signature: M



Date: 701-02-23

Page <u>1</u> of <u>1</u>

Manufacturer: SBI Model: 2,1 Series

Project #: <u>C10457699</u> 4

Category #: \_\_\_\_\_\_\_\_

Run: 2 Engineer: C. Peland

# **RAW DRY GAS METER READINGS**

|                               | Start    | End           | Difference |
|-------------------------------|----------|---------------|------------|
| System 1 (ft³)                | 427.755  | 488 846       | 51091      |
| Equipment #: <u>SB1-047</u>   | 131) 193 | 100,010       |            |
| System 2 (ft³)                | 1        | 0 4 0 0 0 0 0 |            |
| Equipment #: SBI-046          | 151,214  | 407,722       | 5,019      |
| System 3 (ft³)                | 94.549   | 102,166       | 7.617      |
| Equipment #: <u>SBI - 790</u> | 11)311   | 12,100        | 1 (4)      |

# **AMBIENT CONDITIONS**

|                              | Start                  | End                    |
|------------------------------|------------------------|------------------------|
|                              | Date: <u>701-07-13</u> | Date: <u>701-01-13</u> |
|                              | Time: 1113             | Time: 17459            |
| Barometer. (inches Hg)       | 20.25                  | NID C8                 |
| Equipment #: <u>\$81-331</u> | 29.20                  | 29,3                   |
| Indoor Dry Bulb (°F)         | 83.1°F                 | 77.0                   |
| Equipment #: SB1-212         | 83.11                  | 7110                   |
| Indoor Humidity (%)          | 11.8%                  | N 18                   |
| Equipment #: SBI-717         | 11.86                  | 127                    |

co Signature: \_\_\_\_\_

| S | Patrician de politique interventional inc.  Date: 1011-01-13 |      |                  | Pageof               |
|---|--------------------------------------------------------------|------|------------------|----------------------|
|   | Manufacturer:S&\                                             |      | Model: 2,1 Senes |                      |
|   | Project #: 6-104576994                                       | Run: | Tech:            | Reviewer: C. Polland |

# SAMPLING EQUIPMENT CHECK OUT

# **Leakage Checks Tunnel Samplers**

| ,                                            | SYSTEM 1 (#SBI-OUT_) |           | SYSTEM 2 (#SBI- <u>046</u> ) |           | SYSTEM 3 (#SBI- <u>290</u> |           |
|----------------------------------------------|----------------------|-----------|------------------------------|-----------|----------------------------|-----------|
| Plug and set vacuum at 5 in<br>Hg. (17.3 mA) | Pre-Test             | Post-Test | Pre-Test                     | Post-Test | Pre-Test                   | Post-Test |
| Plug and note initial reading on DGM (ft³)   | 437,700              | 588,852   | 151,897                      | 202,242   | 94,526                     | 102,171   |
| Wait 1 min and note final reading DGM (ft³)  | 437,701              | 588,852   | 151,897                      | 202.243   | 94,527                     | 102,172   |
| Difference between initial and final (ft³)   | 0,001                | 0,000     | 0,000                        | 100,0     | 0,001                      | 0,001     |
| Allowable leakage 4% x<br>Sample rate        | 0.004                | 0.004/    | 0,004                        | 0,004     | 0,004                      | 0,004     |
| heck OK                                      | $\checkmark$         | V         |                              |           | V                          |           |

# Leakage Checks Flue Gas Sampler (Testo 350 #SBI-746)

| Plugged Probe | Pre Test | Post Test |
|---------------|----------|-----------|
| Check OK      | V        | V         |

Signature : \_\_\_\_\_\_

# Intertek ETL SEMKO

| Date: 101-01-13       |      | Page of        |           |    |
|-----------------------|------|----------------|-----------|----|
| Manufacturer: SBI     |      | Model: 2.1 Sex | res_      |    |
| Project #: G104576994 | Run: | Tech:          | Reviewer: | CV |

# PRETEST DILUTION TUNNEL TRAVERSE RUN

| Barometric pressure (P <sub>bar</sub> ) (inches Hg.) | Static pressure (Pg) 0,116 ( | inches w.c.) |
|------------------------------------------------------|------------------------------|--------------|
| Inside diameter: Port A 8in. Port B 8in.             | 1 3030                       |              |
| Tunnel cross sectional area: 0.349 ft <sup>2</sup>   |                              |              |
| Pitot tube #:                                        | Pitot tube factor: 0.844     |              |

| Traverse<br>Point | Position<br>(inches) | Velocity Head $\Delta_p$ (inches $H_2O$ ) | Tunnel<br>Temperature<br>(°F) | $\sqrt{\_\Delta_{ m p}}$ |
|-------------------|----------------------|-------------------------------------------|-------------------------------|--------------------------|
| A- Centroid       | 4.00                 | 0,067                                     | 97.2                          |                          |
| B - Centroid      | 4.00                 | 0,072                                     | 94.6                          |                          |
| A-1               | 0.54                 | 0,070                                     | 95,9                          |                          |
| A-2               | 2.00                 | 0,074                                     | 96,8                          |                          |
| A-3               | 6.00                 | 0,064                                     | 95,6                          |                          |
| A-4               | 7.46                 | 0,054                                     | 73.2                          |                          |
| B-1               | 0.54                 | 0,066                                     | 95,5                          |                          |
| B-2               | 2.00                 | 0,076                                     | 96.6                          |                          |
| B-3               | 6.00                 | 0,067                                     | 96.3                          |                          |
| B-4               | 7.46                 | 0,054                                     | 82.0                          | F                        |
|                   |                      | AVERAGE                                   |                               |                          |



# **Continuous Analyzer**

| Project:          | 2.1 series (6104576994 | +) |
|-------------------|------------------------|----|
| Project Engineer: | C. Pellanot            |    |
| Equipment :       | Testo 350 (SBI-246)    |    |

Pre-test (after adjustment)

Date: 2021-02-23

Time : 8450

|          | Zero   |             | Span     |             |          |             | Full Scale |
|----------|--------|-------------|----------|-------------|----------|-------------|------------|
| CO [ppm] | 0,0    | 0,0         | 30745ppn | 29900ppm    | 5569 pon | 556900m     | 6000       |
| CO2 [%]  | 0,0    | 0.0         | 16.047   | 16.1%       | 16046    | 16%         | 50%        |
| O2 [%]   | 0.0    | O` <b>0</b> | 17.87    | 17.9%       | 18,03%   | 18%         | 21%        |
| 9.1      | Actual | Calibration | Actual   | Calibration | Actual   | Calibration |            |
|          | Actual | gaz         | Actual   | gaz         | Actual   | gaz         | ļ          |

Post-test

Date: 2021-02-24 Time: 7h15

|          | Zero | Span     | Cal.     | Zero drift | Span drift | Cal. Drift | Max drift |
|----------|------|----------|----------|------------|------------|------------|-----------|
| CO [ppm] | 0.0  | 3095300m | 5655 pon | 00         | 3,5%       | 1.5%       | 282       |
| CO2 [%]  | 0,0  | 16.16%   | 16.07%   | 0,0        | 0,37%      | 0,4400     | 0.80%     |
| O2 [%]   | 0.0  | 17.847   | 18,387,  | O10        | 0,34%      | 21106      | 0.90%     |

Max drift is 5 % of full scale according to Intertek 192-Q-0602

Max drift is 1 % of full scale according to CSA B415.1-10, 6.3.1 (est-ce que c'est pour un 24h sans test ?)

Federal Register p.13709

The manufacturer must have the approved test laboratory measure the efficiency, heat output and carbon

CSA B415.1-10 p.11

6.3 Flue gas composition

6.3.1

The percentage of carbon monoxide (CO) and carbon dioxide (CO2) in the flue gas shall be measured by a continuous infrared analyzer or equivalent. Continuous analyzers (or equivalent) shall have maximum

zero and span drift, over a 24 h period, of 1% of full scale.

6.3.2

Gas samples shall be taken by a probe inserted at the centreline of the chimney 50 mm (2 in) above the thermocouple measuring flue gas temperature.

6.3.3

Continuous analyzers (or equivalent) shall be arranged so that they are synchronized to reach 90% of their final reading within 30 s when beginning at ambient levels and responding to a calibration gas that contains at least 80% of full-scale value of the constituent being measured. The calibration gas for this test shall be introduced through the sampling probe.

Signature : \_\_\_\_\_

| Intertek ETL S | <b>EMKO</b> |
|----------------|-------------|
|----------------|-------------|

| Date:      | 011-01-14   |           |               | Pag         | ge of         |
|------------|-------------|-----------|---------------|-------------|---------------|
| Manufact   | urer: \$6   |           | Model: 2      | 1 senes     |               |
| Project #: | 6104576994  | Run:3     | Tech:         |             | Reviewer:     |
|            |             |           |               |             |               |
| COMMEN     |             |           |               |             |               |
| 8:41       | ham kidling | INSenter  | a ignitad     |             |               |
| 8:45       | h Door clos | rd .      |               |             |               |
| 9:201      | Onlock      | Laded     |               |             |               |
| 9:21       | Closs)      | deor ·    |               | 1.61        | 200.77        |
| 11:19      | St. Ning    | · Roking  | for the New   | The Mi      | Nute for a pr |
| 11:20      | bo a den    | STARTE    | 1,            | <u> </u>    | vate don ajor |
| 11:22      | Down Vi     | in for at | ivation       |             |               |
| 11:27      | Door dos    | sed "     | 7 227         |             | T.            |
| 1/131      |             |           | Air INTAK     |             |               |
| 11:34      | Alm INTS    | ke slight | ly clase to b | de close    | d             |
| 11:3       |             |           | Shut          |             |               |
| 11:81      | (OD) ON     | (low 5    | peed)         |             |               |
| 19:00      | Toste       | n ore     | 2             |             |               |
|            |             | Λ         |               |             |               |
|            |             |           |               |             |               |
| <u> </u>   |             |           |               |             |               |
|            |             |           | 1             |             |               |
|            |             |           |               | OAD CONEICH | LID A THON    |
| -          | 4           | ,         | - IEST L      | OAD CONFIG  | URATION       |
|            |             |           | -             |             |               |
|            |             |           | -             |             |               |
|            | <u>*</u>    |           | -             |             |               |
|            |             |           | 1             |             |               |
| -          |             |           | -             |             |               |

| Rev date:  Doc Technology Brown STANDARD: IT IS UNDER CONSIDERATION WITHIN AN ASTM THIS DOCUMENT IS NOT AN ASTM STANDARD: IT IS UNDER CONSIDERATION WITHIN AN ASTM IT SHALL NOT BE REPRODUCED OR CIRCULATED OR QUOTED. IN WHOLE OR IN PART, OUTSIDE OR ASTM COMMITTEE ACTIVITIES EXCEPT WITH THE APPROVAL. OF THE CHAIRMAN OF THE COMMITTEE HAVING UNKINDICITION AND THE PRESIDENT OF THE CHAIRMAN OF THE COMMITTEE HAVING CONVENTION AND THE PRESIDENT OF THE CHAIRMAN OF THE COMMITTEE HAVING CONVENTION AND THE PRESIDENT OF THE CHAIRMAN OF THE COMMITTEE HAVING CONVENTION AND THE PRESIDENT OF THE CHAIRMAN OF THE CHAIR | SB-153 12%: 12.0 % Si、229 69.2 F 26.9 だ 26.9 だ 26.9 だ     | Fuel Piece Moisture Reading (%-dry basis)  3 4, 9  | 0 10 kg (%-dry basis) / 7.9 sis) kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Fuel load Lata - HyGH  Date: 2-2/-2.14  Run #: 3  THIS DOCUMENT IS NOT AN ASTECTMICAL COMMITTEE AND TREET TO Adjunct to ASTM EXXXX wood Heater Cordwood Test Method Cordwood Fuel Load Calculators - 10 lb/ft³ Nominal Load Density Cordwood Fuel Load Weight, Remainder 35-55% of Total Load Weight Cordwood Fuel Load Weight, Remainder 35-55% of Total Load Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.80 to 10.80 lb Mid-Point 1.50 to 2.50 lb Mid-Point 2.05 | 27.5<br>28 lb 27.8<br>27.5<br>27.5<br>19.5<br>17.0 | Date   Date | 2.14<br>3.203 |

Fuel load—ata - LOW



Date: <u>7811-01-74</u>

Page 1 of 1

Manufacturer: SBI Model: 7:1 Series

Project #: 6104576994

Category #: \_\_\_\_\_\_\_

Run:\_\_\_3\_\_\_

Engineer: C. Pelland

# **RAW DRY GAS METER READINGS**

|                               | Start   | End        | Difference |
|-------------------------------|---------|------------|------------|
| System 1 (ft³)                | 488 977 | 549061     | 60.139     |
| Equipment #: SBI-047          | 100)122 | 0 1 1)0 01 | 001.0      |
| System 2 (ft³)                | 102,366 | 262 208    | 59.84)     |
| Equipment #: SBJ-646          | 2021366 | 202)20     | 0 1012     |
| System 3 (ft³)                | 102 214 | ina 777    | 7.550      |
| Equipment #: <u>SBI - 290</u> | 102,211 | 10 1) 192  | 11000      |

# **AMBIENT CONDITIONS**

|                                        | Start                    | End                     |
|----------------------------------------|--------------------------|-------------------------|
|                                        | Date: 7 <u>071-07-74</u> | Date: <u>2021-02-24</u> |
|                                        | Time: 11119              | Time: 19h05             |
| Barometer. (inches Hg)                 | 0000                     | 00110                   |
| Equipment #: <u>\$\mathcal{B}1-331</u> | 29,50                    | 29,40                   |
| Indoor Dry Bulb (°F)                   | 711 . (                  | 7717                    |
| Equipment #: SBI-UL                    | 14,4                     | +Abit                   |
| Indoor Humidity (%)                    | 111 6                    | 11 1                    |
| Equipment #: SB-212                    | 14,0                     | 101                     |

Signature: \_\_\_\_\_

| SBT facecard of political international inc.  Date: 1001-002-24 | Page of                  |
|-----------------------------------------------------------------|--------------------------|
| Manufacturer: SB)                                               | Model: 2.1 Series        |
| Project #: CAMISTEGG + Pun: 3                                   | Tach: Reviewer: / 12/0ml |

# **SAMPLING EQUIPMENT CHECK OUT**

# **Leakage Checks Tunnel Samplers**

|                                              | SYSTEM 1 (#SBI-OH) |           | SYSTEM 2 (#SBI- <u>DU</u> ) |           | SYSTEM 3 (#SBI- <u>796</u> |           |
|----------------------------------------------|--------------------|-----------|-----------------------------|-----------|----------------------------|-----------|
| Plug and set vacuum at 5 in<br>Hg. (17.3 mA) | Pre-Test           | Post-Test | Pre-Test                    | Post-Test | Pre-Test                   | Post-Test |
| Plug and note initial reading on DGM (ft³)   | 48,853             | 549,105   | 202,249                     | 162,236   | 102,176                    | 109,778   |
| Wait 1 min and note final reading DGM (ft³)  | 481,853            | 549,05    | 102,250                     | 16236     | 102,176                    | 109,778   |
| Difference between initial and final (ft³)   | 0:000              | 0,000     | 0,001                       | 0,000     | 0,000                      | 0,000     |
| Allowable leakage 4% x<br>Sample rate        | 0,004              | 01004     | 0,004                       | 0 1001    | 0,004                      | 0,004     |
| heck OK                                      | V                  |           | V                           | V         | V                          |           |

# Leakage Checks Flue Gas Sampler (Testo 350 #SBI-146\_)

| Plugged Probe | Pre Test | Post Test |
|---------------|----------|-----------|
| Check OK      |          |           |

Signature : \_\_\_\_\_\_\_

# Intertek ETL SEMKO

| Date: 1021-02-24      | Page of |               |           |   |
|-----------------------|---------|---------------|-----------|---|
| Manufacturer: SB1     |         | Model: 7.1 56 | entes     | 1 |
| Project #: 6104576994 | Run: 3  | Tech:         | Reviewer: | V |

# PRETEST DILUTION TUNNEL TRAVERSE RUN

| Barometric pressure (P <sub>bar</sub> ) 24.5 (inches Hg.) | Static pressure (Pq) 0116 (inches w.c.) |
|-----------------------------------------------------------|-----------------------------------------|
| Inside diameter: Port A <u>8in.</u> Port B <u>8in.</u>    |                                         |
| Tunnel cross sectional area: 0.349 ft <sup>2</sup>        |                                         |
| Pitot tube #:                                             | Pitot tube factor: 0.844                |

| Traverse<br>Point | Position (inches) | Velocity Head $\Delta_p$ (inches H <sub>2</sub> O) | Tunnel<br>Temperature<br>(°F) | √_∆ <sub>p</sub> |
|-------------------|-------------------|----------------------------------------------------|-------------------------------|------------------|
| A- Centroid       | 4.00              | 0,070                                              | 100,3                         |                  |
| B - Centroid      | 4.00              | 0,072                                              | 96,0                          |                  |
| A-1               | 0.54              | 0,067                                              | 99,5                          |                  |
| A-2               | 2.00              | 0,076                                              | 100,4                         |                  |
| A-3               | 6.00              | 0,063                                              | 99.9                          |                  |
| A-4               | 7.46              | 0,054                                              | 73,0                          |                  |
| B-1               | 0.54              | 0,067                                              | 99,5                          |                  |
| B-2               | 2.00              | 0,075                                              | 99,9                          |                  |
| B-3               | 6.00              | 0,065                                              | (00,0                         |                  |
| B-4               | 7.46              | 0,0351                                             | 25,8                          | -                |
|                   |                   | AVERAGE                                            |                               |                  |



# **Continuous Analyzer**

| Project:          | 2.1 Seves(G104576994) |  |  |
|-------------------|-----------------------|--|--|
| Project Engineer: | C. Pelland            |  |  |
| Equipment :       | Testo 350 (SBI-246)   |  |  |

Pre-test (after adjustment)

Run: 3

Date: 2021-24

Time: 7415

|          | Ze     | ero         | Span      |             | Mid point (record only) |             | Full Scale |
|----------|--------|-------------|-----------|-------------|-------------------------|-------------|------------|
| CO [ppm] | ව.ර    | 0,0         | 30,953 pm | 29,900ppin  | 505500m                 | 556900m     | 6000       |
| CO2 [%]  | 0.0    | 0,0         | 16.16 %   | 16.1%       | 16.02%                  | 16.0%       | 50%        |
| O2 [%]   | 0.0    | 0,0         | 17.847    | 17.9%       | 18.387                  | 18.0%       | 21%        |
| X=       | Actual | Calibration | Actual    | Calibration | Actual                  | Calibration |            |
|          | Actual | gaz         | Actual    | gaz         | Actual                  | gaz         |            |

Post-test

Date: プルンノー25

Time: 8405

|          | Zero | Span       | Cal.     | Zero drift | Span drift | Cal. Drift | Max drift |
|----------|------|------------|----------|------------|------------|------------|-----------|
| CO [ppm] | 0.0  | 30,575ppin | 5614 ppm | 0 %        | 2.3%       | 0.8%       | 282       |
| CO2 [%]  | 0,0  | 16.03%     | 15.887.  | 0.7.       | 0.5%       | 0.8%       | 0.80%     |
| O2 [%]   | 0.0  | 17.917     | 18.097   | 0%         | 0.06%      | 0.5%       | 0.90%     |

Max drift is 5 % of full scale according to Intertek 192-Q-0602

Max drift is 1 % of full scale according to CSA B415.1-10, 6.3.1 (est-ce que c'est pour un 24h sans test ?)

Federal Register p.13709

The manufacturer must have the approved test laboratory measure the efficiency, heat output and carbon

CSA B415.1-10 p.11

6.3 Flue gas composition

6.3.1

The percentage of carbon monoxide (CO) and carbon dioxide (CO2) in the flue gas shall be measured by a continuous infrared analyzer or equivalent. Continuous analyzers (or equivalent) shall have maximum

zero and span drift, over a 24 h period, of 1% of full scale.

6.3.2

Gas samples shall be taken by a probe inserted at the centreline of the chimney 50 mm (2 in) above the thermocouple measuring flue gas temperature.

6.3.3

Continuous analyzers (or equivalent) shall be arranged so that they are synchronized to reach 90% of their final reading within 30 s when beginning at ambient levels and responding to a calibration gas that contains at least 80% of full-scale value of the constituent being measured. The calibration gas for this test shall be introduced through the sampling probe.

Signature :

# Intertek ETL SEMKO

Page\_\_\_\_ of \_\_\_\_

Date: 2021-02-25

| Manufacturer: | SEI      |                                       | Model: 1      | Sencs            | . 1        |
|---------------|----------|---------------------------------------|---------------|------------------|------------|
| Project #: 🚮  | 04576914 | Run: 4                                | Tech:         | Reviewer:        |            |
|               |          |                                       | 7             |                  |            |
| COMMENTS      | Ç.       |                                       |               |                  |            |
| 9:58          | St Kind  | sting Lite,                           |               |                  |            |
| 10100         | Don de   | , 6, 8,                               |               |                  |            |
| 19313         | Killing  | readjust.                             |               |                  |            |
|               |          | , , , , , , , , , , , , , , , , , , , |               |                  |            |
| 10:38         | at 1.14  | lhs; don a                            | sen loadin    | vy!              |            |
| 10:39         | Lading   | amplete -                             | ~ redivation  | J (Picture       | Taken      |
| 10:42         | Decr (   | 1. 20                                 |               | 7                |            |
| 10148         | FAN- C   | w (high)                              |               | _                |            |
| 12:07         | Tost e   | ~93,                                  |               |                  |            |
|               |          | 1:001                                 | weil] : 2.2   | 5 lbs (on-scale  | e)         |
| )             |          | D                                     |               |                  |            |
|               | 2        | esidual hill                          | · line los 10 | = 9.9°L          | 18 : 107/1 |
|               |          | S                                     | U C           | = 9.9°6          | of 1000    |
|               |          |                                       |               |                  | 6          |
|               |          |                                       |               |                  |            |
|               |          |                                       |               |                  |            |
|               |          |                                       |               |                  |            |
|               |          |                                       |               |                  |            |
|               |          |                                       | TEST LO       | AD CONFIGURATION |            |
|               |          |                                       |               |                  |            |
|               |          |                                       |               |                  |            |
|               |          |                                       |               |                  |            |
|               |          |                                       |               |                  |            |
|               |          |                                       |               |                  |            |
|               |          |                                       |               |                  |            |
| 1             |          |                                       |               |                  |            |



Date: 701-01-15

Page 1 of 1

Manufacturer: SBI Model: 7.1 Serves Project #: 6104576994

Category #: High Run: 4 Engineer: C. Pelland

# **RAW DRY GAS METER READINGS**

|                              | Start                                   | End     | Difference |
|------------------------------|-----------------------------------------|---------|------------|
| System 1 (ft³)               | 5119166                                 |         | 15075      |
| Equipment #: SBI-047         | 047,166                                 | 565.041 | 15,845     |
| System 2 (ft³)               | 000 1105                                |         | 11 611     |
| Equipment #: <u>\$81-046</u> | 262,42                                  | 278.436 | 16.011     |
| System 3 (ft <sup>3</sup> )  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |         | J 3        |
| Equipment #: \$61200         | 109,803                                 | 117,160 | 4,35+      |

# **AMBIENT CONDITIONS**

|                               | Start                   | End                      |
|-------------------------------|-------------------------|--------------------------|
|                               | Date: <u>1011-07-75</u> | Date: <u>2021-02-2</u> S |
|                               | Time: 9 h58             | Time: 12425              |
| Barometer. (inches Hg)        | 19 55                   | 1900                     |
| Equipment #: <u>\$\$1-331</u> | 29,55                   | 29,60                    |
| Indoor Dry Bulb (°F)          | 701                     | 87,8                     |
| Equipment #: SBI-112          | 70,1                    | 82,0                     |
| Indoor Humidity (%)           | 772                     | 13.4                     |
| Equipment #: SBI-UL           | 22,3                    | (),7                     |

Signature:

| 9 | Fabricant de poddes informational inc. Story Study's Management Pol.  Date: 1011-01-15 |      | Page of                    |
|---|----------------------------------------------------------------------------------------|------|----------------------------|
|   | Manufacturer: SB)                                                                      |      | Model: 11 series           |
|   | Project #: 6104576994                                                                  | Run: | Tech: Reviewer: C. Relland |

### **SAMPLING EQUIPMENT CHECK OUT**

### **Leakage Checks Tunnel Samplers**

|                                              | SYSTEM 1 (        | #SBI- <u>047</u> ) | SYSTEM 2 (# | (SBI- <u>046</u> ) | SYSTEM 3 (#SBI- <u>140</u> ) |           |  |  |
|----------------------------------------------|-------------------|--------------------|-------------|--------------------|------------------------------|-----------|--|--|
| Plug and set vacuum at 5 in<br>Hg. (17.3 mA) | Pre-Test Post-Tes |                    | Pre-Test    | Post-Test          | Pre-Test                     | Post-Test |  |  |
| Plug and note initial reading on DGM (ft³)   | 549,006 565.049   |                    | 262,268     | 278.486            | 109,780                      | 117,164   |  |  |
| Wait 1 min and note final reading DGM (ft³)  | 549,106           | 565.049            | 2621268     | 278.486            | 109,780                      | 117,164   |  |  |
| Difference between initial and final (ft³)   |                   | \$                 | 0,000       | P                  | 0,000                        | 0,000     |  |  |
| Allowable leakage 4% x<br>Sample rate        | 0,004             | 0,004              | 0.004/      | 0,004              | 0,004                        | 0,004     |  |  |
| heck OK                                      |                   |                    |             | 1                  |                              |           |  |  |

### Leakage Checks Flue Gas Sampler (Testo 350 #SBI- 146)

| Plugged Probe | Pre Test | Post Test |
|---------------|----------|-----------|
| Check OK      |          |           |

Signature : \_\_\_\_\_\_

# Intertek ETL SEMKO

| Date: 1011-01-15      |      | Page of           |   |  |  |  |  |
|-----------------------|------|-------------------|---|--|--|--|--|
| Manufacturer: Si31    |      | Model: 1.1 series |   |  |  |  |  |
| Project #: G104576994 | Run: | Tech:Reviewer:    | V |  |  |  |  |

### PRETEST DILUTION TUNNEL TRAVERSE RUN

| Barometric pressure (P <sub>bar</sub> ) 1955 (inches Hg.) | Static pressure (P <sub>q</sub> )(inches w.c.)             |
|-----------------------------------------------------------|------------------------------------------------------------|
| Inside diameter: Port A 8in. Port B 8in.                  | 115 a 1267 \$ 10 1 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 |
| Tunnel cross sectional area: 0.349 ft <sup>2</sup>        |                                                            |
| Pitot tube #:                                             | Pitot tube factor: 0.844                                   |

| Traverse<br>Point | Position (inches) | Velocity Head $\Delta_p$ (inches $H_2O$ ) | Tunnel<br>Temperature<br>(°F) | $\sqrt{\_\Delta_p}$ |
|-------------------|-------------------|-------------------------------------------|-------------------------------|---------------------|
| A- Centroid       | 4.00              | 0,074                                     | 68,3                          |                     |
| B - Centroid      | 4.00              | 0,077                                     | 68,3                          |                     |
| A-1               | 0.54              | 0,078                                     | 68,3                          |                     |
| A-2               | 2.00              | 0.078                                     | 68,3                          |                     |
| A-3               | 6.00              | 0,066                                     | 6813                          |                     |
| A-4               | 7.46              | 0,064                                     | 67.6                          |                     |
| B-1               | 0.54              | 0,069                                     | 6813                          |                     |
| B-2               | 2.00              | 0,077                                     | 68.3                          |                     |
| B-3               | 6.00              | 0,072                                     | 68.3                          |                     |
| B-4               | 7.46              | 0,051                                     | 68,5                          | 1                   |
| a                 |                   | AVERAGE                                   |                               |                     |



### **Continuous Analyzer**

| Project:          | 2-Iseries (G104576994) |  |  |  |  |  |  |
|-------------------|------------------------|--|--|--|--|--|--|
| Project Engineer: | C. Relland             |  |  |  |  |  |  |
| Equipment :       | Testo 350 (SBI-246)    |  |  |  |  |  |  |

Pre-test (after adjustment)

Run: 4

Date: 2021-02-15

| Zero     |        |             |          | oan         | Mid point ( | Full Scale  |      |
|----------|--------|-------------|----------|-------------|-------------|-------------|------|
| CO [ppm] | 0.0    | 0.0         | 30575pp  | 29900 pm    | 5614 am     | 5569 pm     | 6000 |
| CO2 [%]  | 0.0    | 0.0         | 16.03 7. | 16.10       | 15.8806     | 16.0%       | 50%  |
| O2 [%]   | 0.0    | 0.0         | 17,91%   | 17.9%       | 18,0902     | 18.0%       | 21%  |
|          | Actual | Calibration | Actual   | Calibration | Actual      | Calibration |      |
|          | Actual | gaz         | Actual   | gaz         | Actual      | gaz         |      |

Post-test

Date: 1671-02-25

Time: 13 h05

|          | Zero | Span     | Cal.    | Zero drift | Span drift | Cal. Drift | Max drift |
|----------|------|----------|---------|------------|------------|------------|-----------|
| CO [ppm] | 6.0  | 30591ppm | 5568ppn | 06         | 2.31%      | 0,0200     | 282       |
| CO2 [%]  | 0.0  | 16.10-6  | 16.05%  | 5.0        | 0 °K       | 0,312      | 0.80%     |
| O2 [%]   | 0.0  | 18.7%    | 17,390  | 0%         | 4.47%      | 3.506      | 0.90%     |

Max drift is 5 % of full scale according to Intertek 192-Q-0602

Max drift is 1 % of full scale according to CSA B415.1-10, 6.3.1 (est-ce que c'est pour un 24h sans test ?)

Federal Register p.13709

The manufacturer must have the approved test laboratory measure the efficiency, heat output and carbon

CSA B415.1-10 p.11

6.3 Flue gas composition

6.3.1

The percentage of carbon monoxide (CO) and carbon dioxide (CO2) in the flue gas shall be measured by a continuous infrared analyzer or equivalent. Continuous analyzers (or equivalent) shall have maximum

zero and span drift, over a 24 h period, of 1% of full scale.

6.3.2

Gas samples shall be taken by a probe inserted at the centreline of the chimney 50 mm (2 in) above the thermocouple measuring flue gas temperature.

6.3.3

Continuous analyzers (or equivalent) shall be arranged so that they are synchronized to reach 90% of their final reading within 30 s when beginning at ambient levels and responding to a calibration gas that contains at least 80% of full-scale value of the constituent being measured. The calibration gas for this test shall be introduced through the sampling probe.

ature: M

1 of 1

Signature:

| Project:          | G104576994     |  |  |  |  |
|-------------------|----------------|--|--|--|--|
| Project Engineer: | Claude Pelland |  |  |  |  |
| Scale ID:         | SBI-206        |  |  |  |  |

|                       | Da            | ate        | 2021- | 02-12       | 2021- | 1-02-16 2021-02-17 |                                                  | 2021-       | 02-19 | 2021-02-22  |        | 2021-02-23  |         | 2021-    | 02-24   | 2021-    | 02-25    |        |       |     |       |     |       |     |       |  |       |  |       |  |       |  |    |     |     |     |    |     |    |     |     |     |    |     |     |     |
|-----------------------|---------------|------------|-------|-------------|-------|--------------------|--------------------------------------------------|-------------|-------|-------------|--------|-------------|---------|----------|---------|----------|----------|--------|-------|-----|-------|-----|-------|-----|-------|--|-------|--|-------|--|-------|--|----|-----|-----|-----|----|-----|----|-----|-----|-----|----|-----|-----|-----|
|                       | Pression ba   | rométrique | 10    | 1.1         | 99    | 0.0                | 100.8                                            |             | 100   | 0.8         | 100.5  |             | 98.7    |          | 99.5    |          | 99.7     |        |       |     |       |     |       |     |       |  |       |  |       |  |       |  |    |     |     |     |    |     |    |     |     |     |    |     |     |     |
| Calibration<br>Record | SBI-237       | 0.1000     | 0.0   | 999         | 0.1   | 001                | 0.10                                             | 000         | 0.10  | 000         | 0.1000 |             | 0.1001  |          | 0.0999  |          | 0.1001   |        |       |     |       |     |       |     |       |  |       |  |       |  |       |  |    |     |     |     |    |     |    |     |     |     |    |     |     |     |
| libratio<br>Record    | SBI-238       | 10.0001    | 10.0  | 0000        | 10.0  | 0001               | 10.0                                             | 001         | 10.0  | 0001        | 10.0   | 0000        | 10.0    | 001      | 10.0002 |          | 10.0001  |        |       |     |       |     |       |     |       |  |       |  |       |  |       |  |    |     |     |     |    |     |    |     |     |     |    |     |     |     |
| E ĕ                   | SBI-238       | 200.0000   | 200.  | 0000        | 200.  | 0000               | 199.9                                            | 9999        | 200.  | 0000        | 200.   | 0000        | 200.0   | 0000     | 200.    | 0000     | 200.0000 |        |       |     |       |     |       |     |       |  |       |  |       |  |       |  |    |     |     |     |    |     |    |     |     |     |    |     |     |     |
|                       | Start Time    | Temp. [°F] | 13h18 | 69.4        | 14h30 | 69.6               | 12h58                                            | 69.4        | 14h09 | 69.6        | 8h45   | 69.2        | 8h45    | 70.1     | 8h00    | 70.3     | 7h45     | 69.9   |       |     |       |     |       |     |       |  |       |  |       |  |       |  |    |     |     |     |    |     |    |     |     |     |    |     |     |     |
|                       | End Time      | RH [%]     | 14h00 | 0           | 15h32 | 0.9                | 13h45                                            | 1.4         | 14h38 | 1.2         | 9h45   | 1           | 9h53    | 0        | 9h15    | 0.1      | 9h00     | 0      |       |     |       |     |       |     |       |  |       |  |       |  |       |  |    |     |     |     |    |     |    |     |     |     |    |     |     |     |
|                       |               | Filter ID  | Weigh | t (mg)      | Weigh | t (mg)             | Weigh                                            | t (mg)      | Weigh | t (mg)      | Weigh  | t (mg)      | Weigh   | t (mg)   | Weigh   | t (mg)   | Weigh    | t (mg) |       |     |       |     |       |     |       |  |       |  |       |  |       |  |    |     |     |     |    |     |    |     |     |     |    |     |     |     |
|                       | front         | 1          | 17    | 6.1         | 17    | 6.1                | 176                                              | 5 1         | 17    | 6 1         | 17     | 6.1         |         |          |         |          |          |        |       |     |       |     |       |     |       |  |       |  |       |  |       |  |    |     |     |     |    |     |    |     |     |     |    |     |     |     |
|                       | rear          | 2          |       | ·           |       | 0.1                |                                                  | ·· <b>-</b> |       | 0.1         |        | 0.1         |         |          |         |          |          |        |       |     |       |     |       |     |       |  |       |  |       |  |       |  |    |     |     |     |    |     |    |     |     |     |    |     |     |     |
|                       | front         | 3          | 18    | 4.2         | 18    | 4.2                | 184                                              | 1.2         | 18    | 4.2         | 18     | 4.1         | 184     | 4.2      | 18      | 4.2      | 184      | 4.2    |       |     |       |     |       |     |       |  |       |  |       |  |       |  |    |     |     |     |    |     |    |     |     |     |    |     |     |     |
|                       | rear          | 4          |       |             |       |                    |                                                  |             |       |             |        |             |         |          |         |          | 10 1.2   |        |       |     |       |     |       |     |       |  |       |  |       |  |       |  |    |     |     |     |    |     |    |     |     |     |    |     |     |     |
|                       | front         | 7          | 18    | 3.5         | 183.4 |                    | 183.4                                            |             | 18    | 183.4 183.4 |        | 3.4         | 183.5   |          | 183.5   |          | 183.5    |        |       |     |       |     |       |     |       |  |       |  |       |  |       |  |    |     |     |     |    |     |    |     |     |     |    |     |     |     |
|                       | rear          | 8          |       |             |       |                    |                                                  |             |       |             |        |             |         |          |         |          |          |        |       |     |       |     |       |     |       |  |       |  |       |  |       |  |    |     |     |     |    |     |    |     |     |     |    |     |     |     |
|                       | front         | 9          | 18    | 3.4         | 183.4 |                    | 183.4                                            |             | 18    | 3.4         | 183.4  |             |         |          |         |          |          |        |       |     |       |     |       |     |       |  |       |  |       |  |       |  |    |     |     |     |    |     |    |     |     |     |    |     |     |     |
|                       | rear          | 10         |       |             |       |                    |                                                  |             |       |             |        |             |         |          |         |          |          |        |       |     |       |     |       |     |       |  |       |  |       |  |       |  |    |     |     |     |    |     |    |     |     |     |    |     |     |     |
|                       | front<br>rear | 11<br>12   | 183.8 |             | 183.8 |                    | 183.8                                            |             | 183.8 |             | 183.8  |             | 183.8   |          | 183.8   |          | 183.8    |        | 183.8 |     | 183.8 |     | 183.8 |     | 183.8 |  | 183.8 |  | 183.8 |  | 183.8 |  | 18 | 3.7 | 183 | 3.8 | 18 | 3.8 | 18 | 3.7 | 183 | 3.8 | 18 | 3.8 | 183 | 3.8 |
|                       | front         | 13         |       |             |       |                    | <del>                                     </del> |             |       |             |        |             |         |          |         |          |          |        |       |     |       |     |       |     |       |  |       |  |       |  |       |  |    |     |     |     |    |     |    |     |     |     |    |     |     |     |
|                       | rear          | 14         | 18    | 183.3 183.3 |       | 3.3                | 183.3                                            |             | 183.3 |             | 183.2  |             | 183.3   |          |         |          |          |        |       |     |       |     |       |     |       |  |       |  |       |  |       |  |    |     |     |     |    |     |    |     |     |     |    |     |     |     |
|                       | front         | 23         |       |             |       |                    |                                                  |             |       |             |        |             |         |          |         |          |          |        |       |     |       |     |       |     |       |  |       |  |       |  |       |  |    |     |     |     |    |     |    |     |     |     |    |     |     |     |
|                       | rear          | 24         | 18    | 1.8         | 18    | 1.7                | 181.7                                            |             | 18    | 1.8         | 181.8  |             | 8 181.8 |          | 181.8   |          |          |        |       |     |       |     |       |     |       |  |       |  |       |  |       |  |    |     |     |     |    |     |    |     |     |     |    |     |     |     |
|                       | front         | 27         |       |             |       |                    |                                                  |             |       |             |        |             |         |          |         |          |          |        | 182.6 |     |       |     |       |     |       |  |       |  |       |  |       |  |    |     |     |     |    |     |    |     |     |     |    |     |     |     |
|                       | rear          | 28         | 18    | 2.6         | 182.5 |                    | 182.5                                            |             | 18.   | 182.5       |        | 182.5       |         |          |         |          |          |        |       |     |       |     |       |     |       |  |       |  |       |  |       |  |    |     |     |     |    |     |    |     |     |     |    |     |     |     |
|                       | front         | 35         | 404.0 |             | 104.0 |                    | 404.0                                            |             | 104.0 |             | 1940   |             | 184.0   |          | 1940    |          | 19/10    |        | 10/10 |     | 19/10 |     | 104.0 |     | 104.0 |  | 104.0 |  | 104.0 |  | 104.0 |  | 10 | 4.0 | 184 | 1.0 | 10 | 4.0 | 10 | 2.0 | 10  | 4.0 | 10 | 4.0 |     |     |
|                       | rear          | 36         | 18    | 4.0         | 184.0 |                    | 184                                              | +.U         | 194   | 184.0       |        | 183.9       |         | +.0      | 18      | 4.0      |          |        |       |     |       |     |       |     |       |  |       |  |       |  |       |  |    |     |     |     |    |     |    |     |     |     |    |     |     |     |
|                       | front         | 47         | 174.9 |             | 17/10 |                    | 174.0                                            |             | 17/10 |             | 17/10  |             | 174.0   |          | 17      | ۵ ۸      | 174      | 1 0    | 17    | Λ Q | 17    | 1 Q | 174   | 1 Q |       |  |       |  |       |  |       |  |    |     |     |     |    |     |    |     |     |     |    |     |     |     |
|                       | rear          | 48         | 17    | 7.9         | 174.9 |                    | 1/2                                              | T.J         | 1/    | 174.8 174.9 |        | 1/4         | 7.9     |          |         |          |          |        |       |     |       |     |       |     |       |  |       |  |       |  |       |  |    |     |     |     |    |     |    |     |     |     |    |     |     |     |
|                       | front         | 49         | 17    | 8.2         | 178.2 |                    | 178.1                                            |             | 17    | 178.2 178.1 |        | 178.1 178.2 |         | 178.2    |         |          |          |        |       |     |       |     |       |     |       |  |       |  |       |  |       |  |    |     |     |     |    |     |    |     |     |     |    |     |     |     |
|                       | rear          | 50         |       |             |       | ··-                | . 1/0.1                                          |             |       |             | 1/0.1  |             | -/'     | <u>-</u> | /       | <u>-</u> |          |        |       |     |       |     |       |     |       |  |       |  |       |  |       |  |    |     |     |     |    |     |    |     |     |     |    |     |     |     |
|                       | front         | 81         | 18    | 6.4         | 18    | 6.4                | 186                                              | 5.4         | 18    | 6.4         | 18     | 6.4         | 18      | 6.4      |         |          |          |        |       |     |       |     |       |     |       |  |       |  |       |  |       |  |    |     |     |     |    |     |    |     |     |     |    |     |     |     |
|                       | rear          | 82         |       | - •         |       |                    |                                                  | •           |       |             |        | - •         |         |          |         |          |          |        |       |     |       |     |       |     |       |  |       |  |       |  |       |  |    |     |     |     |    |     |    |     |     |     |    |     |     |     |

| Project:          | G104576994     |
|-------------------|----------------|
| Project Engineer: | Claude Pelland |
| Scale ID:         | SBI-206        |

|                       | Dat           | e          | 2021- | 02-05  | 2021- | 02-08  | 2021  | -02-11  | 2021- | 02-16  | 2021- | 02-17  | 2021- | 02-19  | 2021- | 02-22  | 2021- | 02-23  | 2021- | 02-24        | 2021- | 02-25  |
|-----------------------|---------------|------------|-------|--------|-------|--------|-------|---------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------------|-------|--------|
|                       | Pression bard | ométrique  | 98    | .9     | 100   | ).7    | 10    | 0.6     | 99    | .0     | 100   | 0.8    | 100   | 0.8    | 100   | 0.5    | 98    | .7     | 99    | .5           | 99    | 9.7    |
| ion                   | SBI-237       | 0.1000     | 0.10  | 000    | 0.09  | 999    | 0.0   | 999     | 0.10  | 001    | 0.10  | 000    | 0.10  | 000    | 0.10  | 000    | 0.10  | 001    | 0.0   | 999          | 0.1   | 001    |
| Calibration<br>Record | SBI-238       | 10.0001    | 10.0  | 000    | 10.0  | 000    | 10.0  | 0001    | 10.0  | 001    | 10.0  | 001    | 10.0  | 0001   | 10.0  | 000    | 10.0  | 0001   | 10.0  | 0002         | 10.0  | 0001   |
| Call                  | SBI-238       | 200.0002   | 200.0 | 0000   | 200.0 | 0000   | 200.  | .0000   | 200.0 | 0000   | 199.9 | 9999   | 200.0 | 0000   | 200.0 | 0000   | 200.0 | 0000   | 200.  | 0000         | 200.  | 0000   |
|                       | Start Time    | Temp. [°F] | 13h18 | 69.4   | 9h15  | 68.9   | 13h38 | 68.9    | 14h30 | 69.6   | 12h58 | 69.4   | 14h09 | 69.6   | 8h45  | 69.2   | 8h45  | 70.1   | 8h00  | 70.3         | 7h45  | 69.9   |
|                       | End Time      | RH [%]     | 14h00 | 0      | 10h03 | 0      | 14h30 | 0       | 15h32 | 0.9    | 13h45 | 1.4    | 14h38 | 1.2    | 9h45  | 1      | 9h53  | 0      | 9h15  | 0.1          | 9h00  | 0      |
|                       | #Run.#Sys     | Probe ID   | Weig  | ht (g) | Weigl | ht (g) | Weig  | ght (g) | Weigl | ht (g) | Weigh | nt (g) | Weig  | ht (g)       | Weig  | ht (g) |
|                       | 1.1           | 1          | 80.1  |        | 80.1  |        |       | 1505    | 80.1  |        | 80.1  |        | 80.1  |        | 80.1  |        |       |        |       |              |       |        |
|                       | 3.1           | 6          | 80.5  |        | 80.5  |        |       | 5800    | 80.5  |        | 80.5  |        | 80.5  |        | 80.5  |        | 80.5  | 801    | 80.5  | 801          |       |        |
|                       | 1.2           | 12         | 81.0  |        | 81.0  |        |       | 0302    | 81.0  |        | 81.0  | 303    | 81.0  | 303    | 81.0  | 303    |       |        |       |              |       |        |
|                       | 2.1           | 26         | 80.8  | 544    | 80.8  | 540    | 80.8  | 8538    | 80.8  | 545    | 80.8  | 540    | 80.8  | 3540   | 80.8  | 543    | 80.8  | 545    |       |              |       |        |
|                       | 1.3           | 34         | 80.6  | 259    | 80.6  | 251    | 80.6  | 6248    | 80.6  | 251    | 80.6  | 246    | 80.6  | 246    | 80.6  | 245    |       |        |       |              |       |        |
|                       | 3.2           | 37         | 80.7  | 562    | 80.7  | 556    | 80.7  | 7555    | 80.7  | 563    | 80.7  | 558    | 80.7  | '558   | 80.7  | 560    | 80.7  | '565   | 80.7  | <b>'</b> 563 |       |        |
|                       | 2.2           | 50         | 94.1  | 153    | 94.1  | 147    | 94.1  | 1148    | 94.1  | 153    | 94.1  | 148    | 94.1  | .147   | 94.1  | 152    | 94.1  | .155   |       |              |       |        |
|                       | 3.3           | 51         | 94.2  | 010    | 94.2  | 003    | 94.2  | 2003    | 94.2  | 007    | 94.2  | 004    | 94.2  | 2005   | 94.2  | .009   | 94.2  | 011    | 94.2  | 011          |       |        |
|                       | 2.3           | 53         | 93.7  | 797    | 93.7  | 790    | 93.7  | 7790    | 93.7  | 796    | 93.7  | 791    | 93.7  | 790    | 93.7  | 794    | 93.7  | 797    |       |              |       |        |
|                       | 4.1           | 57         | 80.6  | 852    | 80.6  | 844    | 80.6  | 6842    | 80.6  | 850    | 80.6  | 843    | 80.6  | 844    | 80.6  | 846    | 80.6  | 852    | 80.6  | 851          | 80.6  | 5851   |
|                       | 4.2           | 58         | 93.8  | 972    | 93.8  | 966    | 93.8  | 8965    | 93.8  | 972    | 93.8  | 965    | 93.8  | 965    | 93.8  | 970    | 93.8  | 971    | 93.8  | 971          | 93.8  | 3970   |
|                       | 4.3           | 64         | 94.2  | 305    | 94.2  | 294    | 94.2  | 2294    | 94.2  | 302    | 94.2  | 297    | 94.2  | 290    | 94.2  | 293    | 94.2  | 299    | 94.2  | 300          | 94.2  | 2300   |
|                       |               |            |       |        |       |        |       |         |       |        |       |        |       |        |       |        |       |        |       |              |       |        |
|                       |               |            |       |        |       |        |       |         |       |        |       |        |       |        |       |        |       |        |       |              |       |        |

| Project:          | G104576994     |
|-------------------|----------------|
| Project Engineer: | Claude Pelland |
| Scale ID:         | SBI-206        |

|             | Scale ID:  Date/Pressure [kPa]    |                                                                                                                          |                                                       |             |            | SBI-206     |            |             |            |             |            |
|-------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------|------------|-------------|------------|-------------|------------|-------------|------------|
|             |                                   | Date/Pres                                                                                                                | sure [kPa]                                            | 2021-02-2   | 2/100.5    | 2021-02-2   | 2/100.5    | 2021-02-2   | 25 / 99.7  | 2021-03-0   | 02 / 99.6  |
| G-1:        | <b></b>                           | SBI-237                                                                                                                  | 0.1000                                                | 0.10        | 000        | 0.10        | 00         | 0.10        | 01         | 0.10        | 000        |
|             | bration<br>ecord                  | SBI-238                                                                                                                  | 10.0001                                               | 10.00       | 000        | 10.00       | 000        | 10.0        | 001        | 10.0        | 002        |
| Ke          | ecora                             | SBI-238                                                                                                                  | 200.0000                                              | 200.0       | 000        | 200.0       | 000        | 200.0       | 0000       | 200.0       | 0000       |
|             |                                   | Start Time                                                                                                               | Temp. [°F]                                            | 8h45        | 69.2       | 17h15       | 68.8       | 7h45        | 69.9       | 9h46        | 68.8       |
|             |                                   | End Time                                                                                                                 | RH [%]                                                | 9h45        | 1          | 17h26       | 0.1        | 9h00        | 0          | 10h28       | 0          |
| Run         | Samp                              | oling train                                                                                                              | Filter ID                                             | Pretest We  | eight (mg) | Post test W | eight (mg) | Post test W | eight (mg) | Post test W | eight (mg) |
|             | 1                                 | front                                                                                                                    | 1                                                     | 176         | . 1        | 178         | 0          | 178         | 0.2        | 178         | 0          |
|             |                                   | rear                                                                                                                     | 2                                                     | 170         | ·. ±       | 170         | .0         | 1/0         |            | 170         | ,.o        |
| 1           | 2                                 | front                                                                                                                    | 9                                                     | 183         | .4         | 185         | .7         | 185         | 5.7        | 185         | 5.7        |
| 1           | _                                 | rear                                                                                                                     | 10                                                    |             |            |             |            |             |            |             |            |
|             | 3 (1 hr)                          | front                                                                                                                    | 27                                                    | 182         | 5          | 184         | .6         | 184         | .6         | 184         | 1.6        |
|             | _                                 | rear                                                                                                                     | 28                                                    |             |            |             |            |             |            |             |            |
|             | Date/Pressure SBI-237 0.1         |                                                                                                                          |                                                       |             |            |             |            |             |            |             |            |
| Cali        | bration                           |                                                                                                                          | 0.1000                                                |             |            |             |            |             |            |             |            |
|             | ecord                             | SBI-238                                                                                                                  | 10.0001                                               |             |            |             |            |             |            |             |            |
| <u></u>     |                                   | SBI-238                                                                                                                  | 200.0000                                              |             | 1          |             |            |             | 1          |             | 1          |
|             |                                   | Start Time                                                                                                               | Temp. [°F]                                            |             |            |             |            |             |            |             |            |
| _           |                                   | End Time                                                                                                                 | RH [%]                                                |             |            |             |            |             |            |             |            |
| Run         | Samp                              | oling train                                                                                                              | Filter ID                                             | Post test W | eight (mg) |
|             |                                   | front                                                                                                                    |                                                       |             |            |             |            |             |            |             |            |
|             | 1                                 |                                                                                                                          |                                                       |             |            |             |            |             |            |             |            |
|             | 1                                 | rear                                                                                                                     |                                                       |             |            |             |            |             |            |             |            |
| 1           | 2                                 | rear<br>front                                                                                                            |                                                       |             |            |             |            |             |            |             |            |
| 1           |                                   | rear<br>front<br>rear                                                                                                    |                                                       |             |            |             |            |             |            |             |            |
| 1           |                                   | rear<br>front<br>rear<br>front                                                                                           |                                                       |             |            |             |            |             |            |             |            |
| 1           | 2                                 | rear<br>front<br>rear<br>front<br>rear                                                                                   | rossuro                                               |             |            |             |            |             |            |             |            |
| 1           | 2                                 | rear front rear front rear Date/P                                                                                        | ressure                                               |             |            |             |            |             |            |             |            |
|             | 2                                 | rear front rear front rear  Date/P                                                                                       | 0.1000                                                |             |            |             |            |             |            |             |            |
| Calil       | 2<br>3 (1 hr)                     | rear front rear front rear  Date/P SBI-237 SBI-238                                                                       | 0.1000<br>10.0001                                     |             |            |             |            |             |            |             |            |
| Calil       | 2<br>3 (1 hr)<br>bration          | rear front rear front rear  Date/P SBI-237 SBI-238 SBI-238                                                               | 0.1000<br>10.0001<br>200.0000                         |             |            |             |            |             |            |             |            |
| Calil       | 2<br>3 (1 hr)<br>bration          | rear front rear front rear  Date/P SBI-237 SBI-238 SBI-238 Start Time                                                    | 0.1000<br>10.0001<br>200.0000<br>Temp. [°F]           |             |            |             |            |             |            |             |            |
| Calil<br>Re | 2<br>3 (1 hr)<br>bration<br>ecord | rear front rear front rear  Date/P SBI-237 SBI-238 SBI-238 Start Time End Time                                           | 0.1000<br>10.0001<br>200.0000                         |             | eight (mg) | Post test W | eight (mg) | Post test W | eight (mg) | Post test W | eight (mg) |
| Calil       | 2<br>3 (1 hr)<br>bration<br>ecord | rear front rear front rear  SBI-237 SBI-238 SBI-238 Start Time End Time                                                  | 0.1000<br>10.0001<br>200.0000<br>Temp. [°F]<br>RH [%] |             | eight (mg) | Post test W | eight (mg) | Post test W | eight (mg) | Post test W | eight (mg) |
| Calil<br>Re | 2<br>3 (1 hr)<br>bration<br>ecord | rear front rear front rear  Date/P SBI-237 SBI-238 SBI-238 Start Time End Time                                           | 0.1000<br>10.0001<br>200.0000<br>Temp. [°F]<br>RH [%] |             | eight (mg) | Post test W | eight (mg) | Post test W | eight (mg) | Post test W | eight (mg) |
| Calil<br>Re | 2 3 (1 hr) bration ecord Samp     | rear front rear front rear  Date/P SBI-237 SBI-238 SBI-238 SSI-238 Start Time End Time oling train front                 | 0.1000<br>10.0001<br>200.0000<br>Temp. [°F]<br>RH [%] |             | eight (mg) | Post test W | eight (mg) | Post test W | eight (mg) | Post test W | eight (mg) |
| Calil<br>Re | 2<br>3 (1 hr)<br>bration<br>ecord | rear front rear front rear  Date/P SBI-237 SBI-238 SBI-238 Start Time End Time pling train front rear                    | 0.1000<br>10.0001<br>200.0000<br>Temp. [°F]<br>RH [%] |             | eight (mg) | Post test W | eight (mg) | Post test W | eight (mg) | Post test W | eight (mg) |
| Calil<br>Re | 2 3 (1 hr) bration ecord Samp     | rear front rear front rear  SBI-237 SBI-238 SBI-238 SSBI-238 Start Time End Time Diing train front rear front rear front | 0.1000<br>10.0001<br>200.0000<br>Temp. [°F]<br>RH [%] |             | eight (mg) | Post test W | eight (mg) | Post test W | eight (mg) | Post test W | eight (mg) |

|       |           |             |                   |             | Filters      | weigh       | ts         |             |            |             |            |
|-------|-----------|-------------|-------------------|-------------|--------------|-------------|------------|-------------|------------|-------------|------------|
| Ger   | neral i   | nformatio   | n                 |             |              |             |            |             |            |             |            |
| Proje | ect:      |             |                   |             |              |             |            | G1045       | 76994      |             |            |
| Proje | ect Engi  | neer:       |                   |             |              |             |            | Claude I    | Pelland    |             |            |
| Scale | D:        |             |                   |             |              |             |            | SBI-2       | 206        |             |            |
|       |           | Date/P      | ressure           | 2021-02-2   | 2 / 00 7     | 2021-02-2   | 2 / 00 7   | 2021-02-2   | 0E / 00 7  | 2021-03-0   | 2 / 00 6   |
|       |           | SBI-237     | 0.1000            | 0.10        | -            | 0.10        | -          | 0.10        |            | 0.10        | · ·        |
| Calib | oration   | SBI-237     | 10.0001           | 10.00       |              | 10.00       |            | 10.0        |            | 10.00       |            |
| Re    | cord      | SBI-238     | 200.0000          | 200.0       |              | 200.0       |            | 200.0       |            | 200.0       |            |
|       |           | Start Time  |                   | 8h45        |              | 18h16       | 70.1       |             | 69.9       |             | 68.8       |
|       |           | End Time    | RH [%]            | 9h53        | 0            |             |            | 9h00        | 03.3       |             | 00.0       |
| Run   |           | oling train | Filter ID         |             | ight (mg)    | Post test W |            |             | eight (mg) |             | eight (mg) |
|       |           | front       | 13                |             |              |             |            |             |            |             |            |
|       | 1         | rear        | 14                | 183         | .3           | 185         | .9         | 185         | 5.9        | 185         | 5.9        |
|       | 2         | front       | 47                | 174         | 0            | 177         | . 4        | 47-         | 7.2        | 4.77        | 7.2        |
| 2     | 2         | rear        | 48                | 174         | .9           | 1//         | .4         | 177         | .3         | 177         | .3         |
|       | 3 (1 hr)  | front       | 81                | 186         | 1            | 188         | . 0        | 187         | 7 Q        | 188         | 2.0        |
|       | 2 (T III) | rear        | 82                | 190         | <del>-</del> | 100         | <u> </u>   | 187         | .0         | 100         | 5.U        |
|       |           | Date/P      | ressure           |             |              |             |            |             |            |             |            |
| Calik | oration   | SBI-237     | 0.1000            |             |              |             |            |             |            |             |            |
|       | cord      | SBI-238     | 10.0001           |             |              |             |            |             |            |             |            |
|       |           | SBI-238     | 200.0000          |             |              |             |            |             | 1          |             | •          |
|       |           |             | Temp. [°F]        |             |              |             |            |             |            |             |            |
|       |           | End Time    | RH [%]            |             |              |             |            |             |            |             |            |
| Run   | Sam       | oling train | Filter ID         | Post test W | eight (mg)   | Post test W | eight (mg) | Post test W | eight (mg) | Post test W | eight (mg) |
|       | 1         | front       |                   |             |              |             |            |             |            |             |            |
|       |           | rear        |                   |             |              |             |            |             |            |             |            |
| 2     | 2         | front       |                   |             |              |             |            |             |            |             |            |
|       |           | rear        |                   |             |              |             |            |             |            |             |            |
|       | 3 (1 hr)  | front       |                   |             |              |             |            |             |            |             |            |
|       |           | rear        | 100001110         |             |              |             |            |             |            |             |            |
|       |           | SBI-237     | ressure<br>0.1000 |             |              |             |            |             |            |             |            |
| Calib | oration   | SBI-237     | 10.0001           |             |              |             |            |             |            |             |            |
| Re    | cord      | SBI-238     | 200.0000          |             |              |             |            |             |            |             |            |
|       |           | Start Time  | Temp. [°F]        |             |              |             |            |             |            |             |            |
|       |           | End Time    | RH [%]            |             |              |             |            |             |            |             |            |
| Run   | Samı      | oling train | Filter ID         | Post test W | eight (mg)   | Post test W | eight (mg) | Post test W | eight (mg) | Post test W | eight (mg) |
|       |           | front       |                   |             |              |             | 0/         |             | 0/         |             |            |
|       | 1         | rear        |                   |             |              |             |            |             |            |             |            |
| _     | 2         | front       |                   |             |              |             |            |             |            |             |            |
| 2     | 2         | rear        |                   |             |              |             |            |             |            |             |            |
|       | 3 (1 hr)  | front       |                   |             |              |             |            |             |            |             |            |
|       | 2 (T III) | rear        |                   |             |              |             |            |             |            |             |            |
|       |           |             |                   |             |              |             |            |             |            |             |            |
|       |           |             |                   |             |              |             |            |             |            |             |            |
|       |           |             |                   |             |              |             |            |             |            |             |            |
|       |           |             |                   |             |              |             |            |             |            |             |            |
|       |           |             |                   |             |              |             |            |             |            |             |            |

| Project:          | G104576994     |
|-------------------|----------------|
| Project Engineer: | Claude Pelland |
| Scale ID:         | SBI-206        |

|                  | e ID:                           |                                                                                                                                         |                                                   |               |            |             |            | SBI-2       | 206        |             |            |
|------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------|------------|-------------|------------|-------------|------------|-------------|------------|
|                  |                                 | Date/P                                                                                                                                  | ressure                                           | 2021-02-2     | 4 / 99.5   | 2021-02-2   | 4 / 99.5   | 2021-03-0   | 2 / 99.6   | 2021-03-0   | 8 / 101.2  |
|                  |                                 | SBI-237                                                                                                                                 | 0.1000                                            | 0.09          | 99         | 0.09        | 99         | 0.10        |            | 0.10        | 000        |
|                  | bration                         | SBI-238                                                                                                                                 | 10.0001                                           | 10.00         |            | 10.00       | 002        | 10.00       |            | 10.00       |            |
| Ke               | ecord                           | SBI-238                                                                                                                                 | 200.0000                                          | 200.0         | 000        | 200.0       | 000        | 200.0       | 000        | 200.0       | 0000       |
|                  |                                 | Start Time                                                                                                                              | Temp. [°F]                                        | 8h00          | 70.3       | 19h20       | 70.3       | 9h46        | 68.8       | 12h45       | 69.5       |
|                  |                                 | End Time                                                                                                                                | RH [%]                                            | 9h15          | 0.1        | 19h38       | 0.1        | 10h28       | 0          | 13h01       | 0.2        |
| Run              | Samp                            | oling train                                                                                                                             | Filter ID                                         | Pretest We    | ight (mg)  | Post test W | eight (mg) | Post test W | eight (mg) | Post test W | eight (mg) |
|                  | 1                               | front                                                                                                                                   | 23                                                | 181           | Q          | 184         | 7          | 184         | 7          | 184         | 1 7        |
|                  | 1                               | rear                                                                                                                                    | 24                                                | 101           | 0          | 104         | . /        | 104         | /          | 104         | /          |
| 3                | 2                               | front                                                                                                                                   | 35                                                | 184           | n          | 186         | Q          | 186         | S          | 186         | ; <u>Q</u> |
|                  |                                 | rear                                                                                                                                    | 36                                                | 104           |            | 100         | .0         | 100         |            | 100         | 7.0        |
|                  | 3 (1 hr)                        | front                                                                                                                                   | 49                                                | 178           | . 2        | 180         | 1          | 180         | . 0        | 180         |            |
|                  | rear 50                         |                                                                                                                                         | 170                                               |               | 100        | . +         | 100        |             | 100        | 7.0         |            |
|                  |                                 | Date/P                                                                                                                                  | ressure                                           |               |            |             |            |             |            |             |            |
| Calil            | bration SBI-237 0.1000          |                                                                                                                                         |                                                   |               |            |             |            |             |            |             |            |
|                  | ecord                           | SBI-238                                                                                                                                 | 10.0001                                           |               |            |             |            |             |            |             |            |
| , re             | ecoru                           | SBI-238                                                                                                                                 | 200.0000                                          |               |            |             |            |             |            |             |            |
|                  |                                 | Start Time                                                                                                                              | Temp. [°F]                                        |               |            |             |            |             |            |             |            |
|                  |                                 | End Time                                                                                                                                | RH [%]                                            |               |            |             |            |             |            |             |            |
| Run              | Same                            | oling train                                                                                                                             | Filter ID                                         | D = -+ ++ 14/ | / \        |             |            |             |            |             |            |
| Kun              | Sairi                           | Jillig traili                                                                                                                           | Filter ID                                         | Post test W   | eignt (mg) | Post test W | eight (mg) | Post test W | eight (mg) | Post test W | eight (mg) |
| Kun              |                                 | front                                                                                                                                   | Filter ID                                         | Post test w   | eignt (mg) | Post test W | eight (mg) | Post test W | eight (mg) | Post test W | eight (mg) |
| Kun              | 1                               |                                                                                                                                         | riitei ib                                         | Post test w   | eignt (mg) | Post test W | eight (mg) | Post test W | eight (mg) | Post test W | eight (mg) |
|                  | 1                               | front                                                                                                                                   | Filter ID                                         | Post test W   | eignt (mg) | Post test W | eight (mg) | Post test W | eight (mg) | Post test W | eight (mg) |
| 3                |                                 | front<br>rear                                                                                                                           | Filter ID                                         | Post test W   | eignt (mg) | Post test W | eight (mg) | Post test W | eight (mg) | Post test W | eight (mg) |
|                  | 2                               | front rear front rear front                                                                                                             | Filter ID                                         | Post test W   | eight (mg) | Post test W | eight (mg) | Post test W | eight (mg) | Post test W | eight (mg) |
|                  | 1                               | front rear front rear front rear front                                                                                                  |                                                   | Post test W   | eignt (mg) | Post test W | eight (mg) | Post test W | eight (mg) | Post test W | eight (mg) |
|                  | 2                               | front rear front rear front rear front                                                                                                  | ressure                                           | Post test W   | eignt (mg) | Post test W | eight (mg) | Post test W | eight (mg) | Post test W | eight (mg) |
| 3                | 1<br>2<br>3 (1 hr)              | front rear front rear front rear front rear SBI-237                                                                                     |                                                   |               | eignt (mg) | Post test W | eight (mg) | Post test W | eight (mg) | Post test W | eight (mg) |
| 3<br>Calil       | 1<br>2<br>3 (1 hr)<br>bration   | front rear front rear front rear  front Date/P                                                                                          | ressure                                           |               | eignt (mg) | Post test W | eight (mg) | Post test W | eight (mg) | Post test W | eight (mg) |
| 3<br>Calil       | 1<br>2<br>3 (1 hr)              | front rear front rear front rear front rear SBI-237                                                                                     | ressure<br>0.1000                                 |               | eignt (mg) | Post test W | eight (mg) | Post test W | eight (mg) | Post test W | eight (mg) |
| 3<br>Calil       | 1<br>2<br>3 (1 hr)<br>bration   | front rear front rear front rear  SBI-237 SBI-238 SBI-238 Start Time                                                                    | 0.1000<br>10.0001<br>200.0002<br>Temp. [°F]       |               | eignt (mg) | Post test W | eight (mg) | Post test W | eight (mg) | Post test W | eight (mg) |
| 3<br>Calil       | 1 2 3 (1 hr) bration            | front rear front rear front rear  SBI-237 SBI-238 SBI-238 Start Time                                                                    | ressure 0.1000 10.0001 200.0002 Temp. [°F] RH [%] |               | eignt (mg) | Post test W | eight (mg) | Post test W | eight (mg) | Post test W | eight (mg) |
| 3<br>Calil       | 1 2 3 (1 hr) bration            | front rear front rear front rear  SBI-237 SBI-238 SBI-238 Start Time                                                                    | 0.1000<br>10.0001<br>200.0002<br>Temp. [°F]       |               |            |             |            | Post test W |            |             |            |
| 3<br>Calil<br>Re | 1 2 3 (1 hr) bration ecord      | front rear front rear front rear  Date/P SBI-237 SBI-238 SBI-238 Start Time End Time                                                    | ressure 0.1000 10.0001 200.0002 Temp. [°F] RH [%] |               |            |             |            |             |            |             |            |
| 3<br>Calil<br>Re | 1 2 3 (1 hr) bration            | front rear front rear front rear  SBI-237 SBI-238 SBI-238 Start Time End Time                                                           | ressure 0.1000 10.0001 200.0002 Temp. [°F] RH [%] |               |            |             |            |             |            |             |            |
| 3<br>Calil<br>Re | 1 2 3 (1 hr) bration ecord Samp | front rear front rear front rear  Date/P SBI-237 SBI-238 SBI-238 SBI-238 Start Time End Time oling train front                          | ressure 0.1000 10.0001 200.0002 Temp. [°F] RH [%] |               |            |             |            |             |            |             |            |
| 3<br>Calil<br>Re | 1 2 3 (1 hr) bration ecord      | front rear front rear front rear  Date/P SBI-237 SBI-238 SBI-238 SSI-238 Start Time End Time pling train front rear                     | ressure 0.1000 10.0001 200.0002 Temp. [°F] RH [%] |               |            |             |            |             |            |             |            |
| 3<br>Calil<br>Re | 1 2 3 (1 hr) bration ecord Samp | front rear front rear front rear  Date/P SBI-237 SBI-238 SBI-238 Start Time End Time pling train front rear front rear front rear front | ressure 0.1000 10.0001 200.0002 Temp. [°F] RH [%] |               |            |             |            |             |            |             |            |

| Project:          | G104576994     |
|-------------------|----------------|
| Project Engineer: | Claude Pelland |
| Scale ID:         | SBI-206        |

| Scale | e ID:                                           |             |            |             |             |             |            | SBI-2       | 206         |             |             |
|-------|-------------------------------------------------|-------------|------------|-------------|-------------|-------------|------------|-------------|-------------|-------------|-------------|
|       |                                                 | Date/P      | ressure    | 2021-02-2   | 25 / 99.7   | 2021-02-2   | 5 / 99.7   | 2021-03-0   | 02 / 99.6   | 2021-03-0   | 8 / 101.2   |
| 6-10  | L4! -                                           | SBI-237     | 0.1000     | 0.10        | 001         | 0.10        | 01         | 0.10        | 000         | 0.10        | 000         |
|       | bration                                         | SBI-238     | 10.0001    | 10.0        | 001         | 10.00       | 001        | 10.0        | 002         | 10.0        | 001         |
| Ke    | ecord                                           | SBI-238     | 200.0000   | 200.0       | 0000        | 200.0       | 000        | 200.0       | 0000        | 200.0       | 0000        |
|       |                                                 | Start Time  | Temp. [°F] | 7h45        | 69.9        | 12h30       | 69.9       | 9h46        | 68.8        | 12h45       | 69.5        |
|       |                                                 | End Time    | RH [%]     | 9h00        | 0           | 12h44       | 0          | 10h28       | 0           | 13h01       | 0.2         |
| Run   | Samp                                            | oling train | Filter ID  | Pretest We  | eight (mg)  | Post test W | eight (mg) | Post test W | eight (mg)  | Post test W | eight (mg)  |
|       | 1                                               | front       | 3          | 184         | 1 2         | 186         | 2          | 186         | . 2         | 186         | . 7         |
|       |                                                 | rear        | 4          | 10-         | r.          | 100         |            | 100         | 7.0         | 100         | ,. <i>,</i> |
| 4     | 2                                               | front       | 7          | 183         | <b>1</b> 5  | 186         | 1          | 186         | 5.1         | 186         | i n         |
|       |                                                 | rear        | 8          | 100         | ,. <u>.</u> | 100         | • •        | 100         | ,. <u> </u> | 100         | ,. <b>.</b> |
|       | 3 (1 hr)                                        | front       | 11         | 183         | 3.8         | 186         | .2         | 186         | 5.1         | 186         | 5.0         |
|       | (- 111)                                         | rear        | 12         | 100         |             | 100         | -          | 100         |             | 100         |             |
|       |                                                 |             | ressure    |             |             |             |            |             |             |             |             |
| Calil | libration — — — — — — — — — — — — — — — — — — — |             | 0.1000     |             |             |             |            |             |             |             |             |
|       | ecord                                           | SBI-238     | 10.0001    |             |             |             |            |             |             |             |             |
| - 1.0 | coru                                            | SBI-238     | 200.0000   |             |             |             |            |             |             |             | _           |
|       |                                                 | Start Time  | Temp. [°F] |             |             |             |            |             |             |             |             |
|       |                                                 | End Time    | RH [%]     |             |             |             |            |             |             |             |             |
| Run   | Samp                                            | oling train | Filter ID  | Post test W | eight (mg)  | Post test W | eight (mg) | Post test W | eight (mg)  | Post test W | eight (mg)  |
|       | 1                                               | front       |            |             |             |             |            |             |             |             |             |
|       |                                                 | rear        |            |             |             |             |            |             |             |             |             |
| 4     | 2                                               | front       |            |             |             |             |            |             |             |             |             |
|       |                                                 | rear        |            |             |             |             |            |             |             |             |             |
|       | 3 (1 hr)                                        | front       |            |             |             |             |            |             |             |             |             |
|       | - ()                                            | rear        |            |             |             |             |            |             |             |             |             |
|       |                                                 |             | ressure    |             |             |             |            |             |             |             |             |
| Calil | bration                                         | SBI-237     | 0.1000     |             |             |             |            |             |             |             |             |
|       | ecord                                           | SBI-238     | 10.0001    |             |             |             |            |             |             |             |             |
| L.,   |                                                 | SBI-238     | 200.0002   |             |             |             | 1          |             | ı           |             | 1           |
|       |                                                 |             | Temp. [°F] |             |             |             |            |             |             |             |             |
|       |                                                 |             | RH [%]     |             |             |             |            |             |             |             |             |
| Run   | Sam                                             | oling train | Filter ID  | Post test W | eight (mg)  | Post test W | eight (mg) | Post test W | eight (mg)  | Post test W | eight (mg)  |
|       | 1                                               | front       |            |             |             |             |            |             |             |             |             |
|       | _                                               | rear        |            |             |             |             |            |             |             |             |             |
| 11    |                                                 | front       |            |             |             |             |            |             |             |             |             |
|       | 2                                               |             |            |             |             |             |            |             |             |             |             |
|       | 2                                               | rear        |            |             |             |             |            |             |             |             |             |
|       | 2<br>3 (1 hr)                                   | rear        |            |             |             |             |            |             |             |             |             |

|          |              | itormatio   | <u> </u>   |             |            | ,           |            |             |            |             |            |  |  |
|----------|--------------|-------------|------------|-------------|------------|-------------|------------|-------------|------------|-------------|------------|--|--|
| Projec   |              |             |            |             |            | G104576994  |            |             |            |             |            |  |  |
| _        | t Engir      | neer:       |            |             |            |             |            | Claude      |            |             |            |  |  |
| Scale I  | ID:          |             |            |             |            |             |            | SBI-        | 206        |             |            |  |  |
|          |              | Date/P      | ressure    | 2021-02-2   | 2/100.5    | 2021-02-2   | 2/100.5    | 2021-03-0   | 04 / 99.1  | 2021-03-    | 05 / 99.2  |  |  |
|          |              | SBI-237     | 0.1000     | 0.10        | 00         | 0.10        | 000        | 0.10        | 000        | 0.10        | 000        |  |  |
| Rec      | ation<br>ord | SBI-238     | 10.0001    | 10.00       | 000        | 10.00       | 000        | 10.0        | 001        | 9.99        | 999        |  |  |
|          |              | SBI-238     | 200.0000   | 200.0       | 000        | 200.0       | 000        | 200.0       | 0000       | 200.0       | 0000       |  |  |
|          |              | Start Time  | Temp. [°F] | 8h45        | 69.2       | 17h15       | 68.8       | 14h00       | 69.8       | 15h00       | 69.6       |  |  |
| End Time |              | End Time    | RH [%]     | 9h45        | 1          | 17h26       | 0.1        | 14h21       | 0.2        | 15h17       | 0.1        |  |  |
| Run      | Sam          | pling train | Probe ID   | Pretest W   | eight (g)  | Post test V | Veight (g) | Post test V | Veight (g) | Post test \ | Neight (g) |  |  |
| 1        |              | 1           | 80.15      | 504         | 80.1       | 512         | 80.1       | 512         | 80.1       | .513        |            |  |  |
| 1        |              | 2           | 12         | 81.03       | 303        | 81.0        | 311        | 81.0        | 312        | 81.0        | 313        |  |  |
|          | 3            | 3 (1 hr)    | 34         | 80.62       | 245        | 80.6        | 256        | 80.6        | 247        | 80.6        | 246        |  |  |
|          |              | Date/P      | ressure    |             |            |             |            |             |            |             |            |  |  |
| Caliba   | ation        | SBI-237     | 0.1000     |             |            |             |            |             |            |             |            |  |  |
| Rec      |              | SBI-238     | 10.0001    |             |            |             |            |             |            |             |            |  |  |
| Nec      |              | SBI-238     | 200.0000   |             |            |             |            |             |            |             |            |  |  |
|          |              | Start Time  | Temp. [°F] |             |            |             |            |             |            |             |            |  |  |
|          |              | End Time    | RH [%]     |             |            |             |            |             |            |             |            |  |  |
| Run      | Sam          | pling train | Probe ID   | Post test w | eight (g)  | Post test V | Veight (g) | Post test V | Veight (g) | Post test \ | Weight (g) |  |  |
|          |              | 1           |            |             |            |             |            |             |            |             |            |  |  |
| 1        |              | 2           |            |             |            |             |            |             |            |             |            |  |  |
|          | 3            | 3 (1 hr)    |            |             |            |             |            |             |            |             |            |  |  |
|          |              | Date/P      | ressure    |             |            |             |            |             |            |             |            |  |  |
| Calibr   | ation        | SBI-237     | 0.1000     |             |            |             |            |             |            |             |            |  |  |
| Rec      |              | SBI-238     | 10.0001    |             |            |             |            |             |            |             |            |  |  |
| Itee     | 0.4          | SBI-238     | 200.0000   |             |            |             |            |             |            |             |            |  |  |
|          |              | Start Time  | Temp. [°F] |             |            |             |            |             |            |             |            |  |  |
| r        |              | End Time    | RH [%]     |             |            |             |            |             |            |             |            |  |  |
| Run      | Sam          | pling train | Probe ID   | Post test W | /eight (g) | Post test V | Veight (g) | Post test V | Veight (g) | Post test \ | Weight (g) |  |  |
|          |              | 1           |            |             |            |             |            |             |            |             |            |  |  |
| 1        |              | 2           |            |             |            |             |            |             |            |             |            |  |  |
|          | 3            | 3 (1 hr)    |            |             |            |             |            |             |            |             |            |  |  |

| Projec   |                                              | Hormatio               |                      |             |                |             |                     | G1045       | 76994       |             |            |
|----------|----------------------------------------------|------------------------|----------------------|-------------|----------------|-------------|---------------------|-------------|-------------|-------------|------------|
|          | t Engir                                      | neer:                  |                      |             |                |             |                     | Claude      |             |             |            |
| Scale I  |                                              |                        |                      |             |                |             |                     | SBI-:       |             |             |            |
|          |                                              | Date/P                 | ressure              | 2021-02-2   | 3 / 98.7       | 2021-02-2   | 23 / 98.7           | 2021-03-0   |             | 2021-03-    | 05 / 99.2  |
|          |                                              | SBI-237                | 0.1000               | 0.10        | 01             | 0.10        | 001                 | 0.10        | 000         | 0.10        | 000        |
|          | ation                                        | SBI-238                | 10.0001              |             |                | 10.00       |                     | 10.0        |             | 9.99        |            |
| Rec      | ord                                          | SBI-238                | 200.0000             |             |                | 200.0       |                     | 200.0       |             | 200.0       |            |
| <u> </u> |                                              | Start Time             | Temp. [°F]           | 8h45        |                | 18h16       |                     | 14h00       |             | 15h00       | 69.6       |
| End Time |                                              |                        |                      |             |                |             |                     |             |             |             |            |
| Dun      | End Time RH [%]  Run Sampling train Probe ID |                        |                      | 9h53        |                | 18h30       |                     | 14h21       |             | 15h17       | 0.1        |
| Kun      | 1 0                                          |                        | Pretest W<br>80.85   |             | 80.8           |             | Post test V<br>80.8 |             | Post test \ | 0 .0.       |            |
| 2        | 1 26<br>2 2 50                               |                        |                      | 94.11       |                | 94.1        |                     | 94.1        |             | 00.8        | J4/        |
|          | 3                                            | 3 (1 hr)               | 53                   | 93.77       |                | 93.78       |                     | 93.7        |             | 93.7        | 799        |
|          |                                              |                        | ressure              |             |                |             |                     |             |             |             |            |
|          |                                              | SBI-237                | 0.1000               |             |                |             |                     |             |             |             |            |
| Calibr   |                                              | SBI-238                | 10.0001              |             |                |             |                     |             |             |             |            |
| Rec      | ora                                          | SBI-238                | 200.0000             |             |                |             |                     |             |             |             |            |
|          |                                              | Start Time             | Temp. [°F]           |             |                |             |                     |             |             |             |            |
|          |                                              | End Time               | RH [%]               |             |                |             |                     |             |             |             |            |
| Run      | Sam                                          | pling train            | Probe ID             | Post test w | veight (g)     | Post test V | Veight (g)          | Post test V | Veight (g)  | Post test \ | Veight (g) |
|          |                                              | 1                      |                      |             |                |             |                     |             |             |             |            |
| 2        |                                              | 2                      |                      |             |                |             |                     |             |             |             |            |
|          | 3                                            | 3 (1 hr)               |                      |             |                |             |                     |             |             |             |            |
| 1        |                                              |                        | ressure              |             |                |             |                     |             |             |             |            |
| Calibr   | ation                                        | SBI-237                | 0.1000               |             |                |             |                     |             |             |             |            |
| Rec      | ord                                          | SBI-238                | 10.0001              |             |                |             |                     |             |             |             |            |
|          |                                              | SBI-238                | 200.0000             |             | <u> </u>       |             |                     |             | <u> </u>    |             | <u> </u>   |
|          |                                              | Start Time<br>End Time | Temp. [°F]<br>RH [%] |             |                |             |                     |             |             |             |            |
| Run      |                                              | pling train            | Probe ID             | Post test W | Veight (g)     | Post test V | Veight (g)          | Post test V | Veight (g)  | Post test \ | Veight (g) |
|          |                                              | 1                      | 1.000.5              |             | <i>3</i> - (8) |             | <i>3</i> - (8)      |             | 0 - 107     |             | 0 - 10/    |
| 2        |                                              | 2                      |                      |             |                |             |                     |             |             |             |            |
|          | 3                                            | 3 (1 hr)               |                      |             |                |             |                     |             |             |             |            |
|          |                                              | • •                    | •                    |             |                |             |                     |             |             |             |            |

|         |                 | Hormatio    | ••         |             |            |             |            | G1045       | 76004      |             |            |
|---------|-----------------|-------------|------------|-------------|------------|-------------|------------|-------------|------------|-------------|------------|
| Projec  | t Engir         | noor:       |            |             |            |             |            | Claude      |            |             |            |
| Scale 1 |                 | ieer:       |            |             |            |             |            | SBI-        |            |             |            |
| Scale   | <u>. را</u>     |             |            |             |            |             |            | 301-        | 200        |             |            |
|         |                 | Date/P      | ressure    | 2021-02-2   | 4 / 99.5   | 2021-02-2   | 24 / 99.5  | 2021-03-0   | 04 / 99.1  | 2021-03-0   | 05 / 99.2  |
|         |                 | SBI-237     | 0.1000     | 0.09        | 99         | 0.09        | 99         | 0.10        | 000        | 0.10        | 000        |
| Calibr  | ration<br>ord   | SBI-238     | 10.0001    | 10.00       | 002        | 10.00       | 002        | 10.0        | 001        | 9.99        | 999        |
|         |                 | SBI-238     | 200.0000   | 200.0       | 000        | 200.0       | 0000       | 200.0       | 0000       | 200.0       | 0000       |
| •       |                 | Start Time  | Temp. [°F] | 8h00        | 70.3       | 19h20       | 70.3       | 14h00       | 69.8       | 15h00       | 69.6       |
|         |                 | RH [%]      | 9h15       | 0.1         | 19h38      | 0.1         | 14h21      | 0.2         | 15h17      | 0.1         |            |
| Run     | Sam             | pling train | Probe ID   | Pretest W   | eight (g)  | Post test V | Veight (g) | Post test V | Veight (g) | Post test V | Veight (g) |
|         | 1 6             |             | 6          | 80.58       | 301        | 80.58       | 813        | 80.5        | 807        | 80.5        | 805        |
| 3       |                 | 2           | 37         | 80.75       | 563        | 80.7        | 570        | 80.7        | 567        | 80.7        | 566        |
|         | (1)             | 3 (1 hr)    | 51         | 94.20       | 011        | 94.20       | 018        | 94.2        | 014        | 94.2        | 012        |
|         |                 | Date/P      | ressure    |             |            |             |            |             |            |             |            |
| Caliby  | ation           | SBI-237     | 0.1000     |             |            |             |            |             |            |             |            |
| Rec     |                 | SBI-238     | 10.0001    |             |            |             |            |             |            |             |            |
| Rec     | oru             | SBI-238     | 200.0000   |             |            |             |            |             |            |             |            |
| •       |                 | Start Time  | Temp. [°F] |             |            |             |            |             |            |             |            |
|         |                 | End Time    | RH [%]     |             |            |             |            |             |            |             |            |
| Run     | Sam             | pling train | Probe ID   | Post test w | eight (g)  | Post test V | Veight (g) | Post test V | Veight (g) | Post test V | Weight (g) |
|         |                 | 1           |            |             |            |             |            |             |            |             |            |
| 3       |                 | 2           |            |             |            |             |            |             |            |             |            |
|         | 3               | 3 (1 hr)    |            |             |            |             |            |             |            |             |            |
|         |                 | Date/P      | ressure    |             |            |             |            |             |            |             |            |
| Calibr  | ration          | SBI-237     | 0.1000     |             |            |             |            |             |            |             |            |
|         | ord             | SBI-238     | 10.0001    |             |            |             |            |             |            |             |            |
|         |                 | SBI-238     | 200.0000   |             |            |             |            |             | •          |             |            |
|         |                 | Start Time  | Temp. [°F] |             |            |             |            |             |            |             |            |
| ·       |                 | End Time    | RH [%]     |             |            |             |            |             |            |             |            |
| Run     | Sam             | pling train | Probe ID   | Post test W | /eight (g) | Post test V | Veight (g) | Post test V | Veight (g) | Post test V | Weight (g) |
|         |                 | 1           |            |             |            |             |            |             |            |             |            |
| 3       |                 |             |            |             |            |             |            |             |            |             |            |
|         | 3 2<br>3 (1 hr) |             |            |             |            |             |            |             |            |             |            |

| Projec         | ct:           |               |            |             |            | G104576994  |            |             |            |             |            |  |  |
|----------------|---------------|---------------|------------|-------------|------------|-------------|------------|-------------|------------|-------------|------------|--|--|
| Projec         | t Engir       | eer:          |            |             |            |             |            | Claude      | Pelland    |             |            |  |  |
| Scale          | ID:           |               |            |             |            |             |            | SBI-        | 206        |             |            |  |  |
|                |               | Date/P        | ressure    | 2021-02-2   | 5 / 99.7   | 2021-02-2   | 25 / 99.7  | 2021-03-0   | 05 / 99.2  | 2021-03-2   | 22 / 101.0 |  |  |
|                |               | SBI-237       | 0.1000     | 0.10        | 01         | 0.10        | 001        | 0.10        | 000        | 0.10        | 000        |  |  |
|                | ration<br>ord | SBI-238       | 10.0001    | 10.00       | 001        | 10.00       | 001        | 9.99        | 999        | 10.0        | 0001       |  |  |
|                |               | SBI-238       | 200.0000   | 200.0       | 000        | 200.0       | 0000       | 200.0       | 0000       | 200.0       | 0000       |  |  |
|                |               | Start Time    | Temp. [°F] | 7h45        | 69.9       | 12h30       | 69.9       | 15h00       | 69.6       | 15h05       | 71.1       |  |  |
| End Time       |               | RH [%]        | 9h00       | 0           | 12h44      | 0           | 15h17      | 0.1         | 15h20      | 1.8         |            |  |  |
| Run            | Sam           |               |            | Post test V | Veight (g) | Post test V | Veight (g) | Post test \ | Weight (g) |             |            |  |  |
|                | 1 57          |               | 57         | 80.68       | 351        | 80.68       | 849        | 80.6        | 851        | 80.6        | 852        |  |  |
| 4              |               | 2             | 58         | 93.89       | 970        | 93.89       | 972        | 93.8        | 973        | 93.8        | 972        |  |  |
|                | 3             | (1 hr)        | 64         | 94.23       | 300        | 94.2        | 312        | 94.2        | 299        | 94.2        | 300        |  |  |
| ·              |               |               | ressure    |             |            |             |            |             |            |             |            |  |  |
| Calib          | ration I      | SBI-237       | 0.1000     |             |            |             |            |             |            |             |            |  |  |
|                | ord           | SBI-238       | 10.0001    |             |            |             |            |             |            |             |            |  |  |
|                |               | SBI-238       | 200.0000   |             |            |             |            |             | •          |             | •          |  |  |
|                |               |               | Temp. [°F] |             |            |             |            |             |            |             |            |  |  |
| ſ <del>-</del> |               | End Time      | RH [%]     |             |            |             |            |             |            |             |            |  |  |
| Run            | Sam           | pling train   | Probe ID   | Post test w | eight (g)  | Post test V | Veight (g) | Post test V | Veight (g) | Post test \ | Neight (g) |  |  |
|                |               | 2             |            |             |            |             |            |             |            |             |            |  |  |
| 4              | 3             | 2<br>3 (1 hr) |            |             |            |             |            |             |            |             |            |  |  |
|                |               |               | ressure    |             |            |             |            |             |            |             |            |  |  |
|                |               | SBI-237       | 0.1000     |             |            |             |            |             |            |             |            |  |  |
|                | ration        | SBI-238       | 10.0001    |             |            |             |            |             |            |             |            |  |  |
| Rec            | ord           | SBI-238       | 200.0000   |             |            |             |            |             |            |             |            |  |  |
|                |               | Start Time    | Temp. [°F] |             |            |             |            |             |            |             |            |  |  |
|                |               | End Time      | RH [%]     |             |            |             |            |             |            |             |            |  |  |
| Run            | Sam           | pling train   | Probe ID   | Post test W | /eight (g) | Post test V | Veight (g) | Post test V | Veight (g) | Post test \ | Weight (g) |  |  |
|                |               | 1             |            |             |            |             |            |             |            |             |            |  |  |
| 4              |               | 2             |            |             |            |             |            |             |            |             |            |  |  |
|                | 3             | (1 hr)        |            |             |            |             |            |             |            |             |            |  |  |

| Time | Ambiant | Flue        | <b>Dilution Tunnel</b> | Firebox Top | Firebox Back | Firebox Right | Firebox Left | <b>Firebox Botto</b> |
|------|---------|-------------|------------------------|-------------|--------------|---------------|--------------|----------------------|
| 0    | 74.2751 | 281.4400051 | 85.53013684            | 479.3472238 | 604.4016565  | 454.448848    | 451.8773115  | 502.760868           |
| 10   | 75.8764 | 337.6351916 | 86.75863704            | 467.92441   | 555.1520178  | 452.2073426   | 427.556931   | 499.052985           |
| 20   | 72.9064 | 411.3232362 | 93.04626007            | 747.5475384 | 509.0588652  | 465.8452047   | 413.4462446  | 479.657432           |
| 30   | 67.7142 | 424.2620281 | 93.84986218            | 826.1205769 | 423.5521377  | 496.4782484   | 426.0357555  | 396.849687           |
| 40   | 68.2134 | 435.3971266 | 93.50252146            | 868.5492207 | 375.0402266  | 516.0215443   | 437.1248074  | 333.456577           |
| 50   | 68.7395 | 442.1807741 | 94.02638105            | 888.829986  | 358.1546006  | 529.7554848   | 453.9631682  | 298.518894           |
| 60   | 67.7802 | 423.004239  | 93.1555971             | 871.9284985 | 356.0299493  | 539.6624132   | 475.4998074  | 278.994873           |
| 70   | 70.7514 | 377.1127994 | 88.60403206            | 759.3548165 | 360.9316022  | 539.2182884   | 490.0578295  | 269.948119           |
| 80   | 79.7552 | 352.4463293 | 88.48958712            | 681.7868438 | 372.6099272  | 532.4674853   | 493.6733343  | 270.536582           |
| 90   | 82.6913 | 318.8297512 | 87.52469564            | 606.040977  | 370.2220723  | 522.4901534   | 490.25869    | 273.566896           |
| 100  | 83.808  | 294.8885435 | 86.11018054            | 545.8414394 | 362.9353114  | 507.6425612   | 481.2192617  | 276.938243           |
| 110  | 82.985  | 263.6963257 | 84.20762335            | 486.5966155 | 351.4998939  | 488.6010042   | 466.615359   | 279.133854           |
| 120  | 83.7162 | 232.1557287 | 81.9657658             | 407.0400427 | 335.5840954  | 466.0850014   | 441.3439919  | 279.186055           |
| 130  | 83.2411 | 216.5508461 | 80.96364485            | 361.7959128 | 325.1269687  | 441.6071801   | 413.9951734  | 277.572243           |
| 140  | 82.5503 | 207.8851332 | 79.9665658             | 336.3449286 | 318.531222   | 419.585101    | 389.8856655  | 274.785729           |
| 150  | 81.9739 | 203.6824125 | 79.0140294             | 324.6343229 | 314.8909695  | 403.8595608   | 370.3546834  | 271.925392           |
| 160  | 82.0063 | 199.4131868 | 78.43382374            | 315.4768005 | 314.1029879  | 391.8276999   | 355.0916669  | 269.943423           |
| 170  | 82.0011 | 196.0221865 | 78.23234553            | 309.7003045 | 314.8753786  | 381.1409654   | 343.5308576  | 268.46307            |
| 180  | 81.6405 | 194.9432317 | 78.25452706            | 306.4270974 | 317.1244347  | 371.0758203   | 334.9537556  | 267.064246           |
| 190  | 81.5311 | 190.8841391 | 77.5635323             | 300.9643442 | 315.5681199  | 361.7425864   | 327.9882724  | 265.957214           |
| 200  | 80.9345 | 187.2458924 | 77.43683618            | 293.2249012 | 311.1288799  | 351.0849644   | 321.6848814  | 264.562901           |
| 210  | 80.7561 | 183.3526244 | 77.10954583            | 283.5408972 | 304.9600683  | 339.1500405   | 315.8212733  | 262.748237           |
| 220  | 80.74   | 179.522108  | 76.67274973            | 275.1664553 | 295.9589049  | 325.8685184   | 310.0508974  | 260.710902           |
| 230  | 80.3999 | 176.7042177 | 76.29331338            | 268.798885  | 285.4414377  | 313.1991509   | 304.7852246  | 258.753168           |
| 240  | 80.201  | 174.3588927 | 76.33821971            | 262.7694174 | 277.5460334  | 302.2968172   | 299.5251519  | 257.200634           |
| 250  | 79.3962 | 172.4031594 | 75.91109011            | 256.3776451 | 271.5080821  | 292.2269831   | 293.8392649  | 255.573088           |
| 260  | 79.2418 | 169.3235061 | 75.38043838            | 251.3810019 | 266.8449071  | 282.9951439   | 288.6632224  | 253.947249           |
| 270  | 78.9799 | 163.5038943 | 75.15250172            | 242.5834389 | 261.3024663  | 274.2424167   | 281.8528515  | 251.066513           |
| 280  | 78.8098 | 158.2127615 | 74.41344661            | 232.8670102 | 255.9885394  | 265.2031818   | 272.0168882  | 245.898304           |
| 290  | 78.7055 | 153.262767  | 74.12636866            | 223.7500618 | 247.8658825  | 256.615443    | 261.37137    | 240.311723           |
| 300  | 78.5681 | 149.9257073 | 73.91343937            | 216.2938622 | 239.0511105  |               | 250.8541343  | 234.814906           |
| 310  | 78.0128 | 144.582501  | 73.34022391            | 208.3530616 | 230.2765437  | 240.0225323   | 241.3587502  | 230.201966           |
| 320  | 77.5761 | 138.8963248 | 73.06093009            | 197.9680234 | 220.7920839  | 230.9802574   | 230.7984632  | 224.27282            |
| 330  | 77.1998 | 134.5737216 | 72.59893736            | 189.3043789 | 216.4983575  | 222.542201    | 219.9760077  | 217.04106            |

1 of 7

|                |          |          |                      |          |          |          |          |          |          |       |          |                    |                    |          | F                   | со | CO2 | O2 | scale      | 0.1891554    | Meter          | Meter        |          |            |
|----------------|----------|----------|----------------------|----------|----------|----------|----------|----------|----------|-------|----------|--------------------|--------------------|----------|---------------------|----|-----|----|------------|--------------|----------------|--------------|----------|------------|
| Time           | Flue     | Room     | Tunnel               | DGM 1    | DGM 1    | Filter 1 | DGM 2    | DGM 2    | Filter 2 | DGM 3 | Filter 3 | Meter #1           | Meter #2           | Draft    | Tunnel              | %  | %   | %  | Lbs        | Corrected    | #1             | #2           | Draft    | Calculated |
| 10.0           | Temp 1   | Temp 2   | Dry Bulb 3           | In 13    | Out 14   | 15       | In 16    | Out 17   | 18       | In 19 | 20       | 21                 | 22                 | 23       | 24                  | 25 | 25  | 27 | 28         | Scale        | Cu Ft          | Cu Ft        |          | Tunnel     |
| 0.0            | 281.44   | 74.27511 | 85.53014             | 63.05497 | 63.13103 | 77.12469 | 63.22381 | 63.48248 | 71.93682 |       |          | 394.516            | 107.713            | 0.053447 | 0.074708            |    |     |    | 12.8       | 12.61        | 13.93          | 3.80         | -0.23663 | -0.23132   |
| 10.0           | 337.6352 | 75.87641 | 86.75864             | 63.66305 | 63.241   | 82.1312  | 63.81764 | 63.62962 | 84.73353 |       |          | 395.736            | 109.024            | 0.067658 | 0.074379            |    |     |    | 11.9       | 11.69        | 13.97          | 3.85         | -0.23308 | -0.23141   |
| 20.0           | 411.3232 | 72.90645 | 93.04626             | 63.80509 | 63.3137  | 84.82531 | 63.89325 | 63.73573 | 86.18602 |       |          | 396.942            | 110.312            | 0.07754  | 0.075477            |    |     |    | 10.4       | 10.23        | 14.01          | 3.89         | -0.23061 |            |
| 30.0           | 424.262  | 67.71416 | 93.84986             | 63.90673 | 63.38318 | 85.79109 | 63.97107 | 63.78014 | 79.77916 |       |          | 398.147            | 111.585            | 0.078359 | 0.074211            |    |     |    | 8.9        | 8.76         | 14.05          | 3.94         | -0.2304  |            |
| 40.0           | 435.3971 | 68.21337 | 93.50252             | 64.04003 | 63.53741 | 83.796   | 64.17371 | 63.91888 | 86.20352 |       |          | 399.372            | 112.880            | 0.076933 | 0.076033            |    |     |    | 7.4        | 7.25         | 14.10          | 3.98         | -0.23076 |            |
| 50.0           | 442.1808 | 68.73948 | 94.02638             |          |          | 84.62692 |          |          | 86.06422 |       |          | 400.586            | 114.161            |          | 0.075849            |    |     |    | 6.0        | 5.77         | 14.14          | 4.03         | -0.2305  |            |
| 60.0           |          | 67.78018 |                      |          | 63.73012 |          |          |          |          |       |          | 401.816            |                    |          | 0.076556            |    |     |    | 4.7        | 4.50         | 14.18          | 4.08         | -0.23129 |            |
| 70.0           | 377.1128 |          | 88.60403             |          |          |          |          |          |          |       |          | 403.044            | 116.750            |          | 0.076561            |    |     |    | 3.8        | 3.60         | 14.23          | 4.12         | -0.23210 |            |
| 80.0           |          |          | 88.48959             |          |          |          |          |          | 84.7097  |       |          | 404.270            | 118.037            |          | 0.07606             |    |     |    | 3.1        | 2.88         | 14.27          | 4.17         | -0.23339 |            |
| 90.0           | 318.8298 |          |                      |          | 64.02233 |          |          |          |          |       |          | 405.510            |                    |          | 0.076449            |    |     |    | 2.6        | 2.38         | 14.31          | 4.21         | -0.23438 |            |
| 100.0          | 294.8885 |          |                      |          | 64.10065 |          |          |          |          |       |          | 406.747            |                    |          | 0.076807            |    |     |    | 2.2        | 2.02         | 14.36          | 4.26         | -0.23553 |            |
| 110.0          |          |          | 84.20762             |          |          |          |          |          |          |       |          | 407.984            | 121.942            |          | 0.075993            |    |     |    | 2.0        | 1.83         | 14.40          | 4.30         | -0.2370  |            |
| 120.0          |          |          | 81.96577             |          |          |          |          |          |          |       |          | 409.231            | 123.250            |          | 0.077504            |    |     |    | 1.9        | 1.74         | 14.45          | 4.35         | -0.23831 | -0.23062   |
| 130.0          |          |          | 80.96364             |          |          |          |          |          | 83.19597 |       |          | 410.485            | 124.572            |          | 0.075824            |    |     |    | 1.9        | 1.66         | 14.49          | 4.40         | -0.23913 |            |
| 140.0          |          |          | 79.96657             |          |          |          |          |          |          |       |          | 411.744            |                    |          | 0.076777            |    |     |    | 1.8        | 1.56         | 14.53          | 4.44         | -0.239   |            |
| 150.0          |          |          | 79.01403             |          | 64.33193 |          |          |          |          |       |          | 412.990            | 127.225            |          | 0.077474            |    |     |    | 1.7        | 1.46         | 14.58          | 4.49         | -0.23949 |            |
| 160.0          |          |          | 78.43382             |          |          |          |          |          | 82.6265  |       |          | 414.239            | 128.553            |          | 0.076689            |    |     |    | 1.5        | 1.36         | 14.62          | 4.54         | -0.24013 |            |
| 170.0          |          |          | 78.23235             |          |          |          |          |          |          |       |          | 415.490            | 129.880            |          | 0.077789            |    |     |    | 1.4        | 1.23         | 14.67          | 4.58         | -0.24028 |            |
| 180.0          |          |          | 78.25453             |          |          |          |          |          |          |       |          | 416.741            |                    |          | 0.077972            |    |     |    | 1.3        | 1.11         | 14.71          | 4.63         | -0.24009 |            |
| 190.0          |          |          | 77.56353<br>77.43684 |          |          |          |          |          |          |       |          | 417.987<br>419.237 | 132.525<br>133.850 |          | 0.07735<br>0.077645 |    |     |    | 1.2        | 1.01<br>0.91 | 14.75<br>14.80 | 4.68<br>4.72 | -0.24062 |            |
| 200.0          |          |          | 77.10955             |          |          |          |          |          |          |       |          | 419.237            |                    |          | 0.077645            |    |     |    | 1.1        | 0.80         | 14.84          | 4.77         | -0.24053 | 3 -0.23027 |
| 210.0<br>220.0 |          |          | 76.67275             |          |          | 86.26635 |          |          |          |       |          | 420.491            | 135.175            |          | 0.076922            |    |     |    | 1.0<br>0.9 | 0.60         | 14.89          | 4.77         | -0.24081 |            |
| 230.0          |          |          | 76.29331             |          |          |          |          |          |          |       |          | 422.989            | 137.818            |          | 0.076846            |    |     |    | 0.9        | 0.62         | 14.93          | 4.86         | -0.24086 |            |
| 240.0          |          |          | 76.33822             |          |          |          |          |          | 86.22026 |       |          | 424.235            | 139,135            |          | 0.07782             |    |     |    | 0.8        | 0.62         | 14.98          | 4.91         | -0.24094 |            |
| 250.0          |          |          | 75.91109             |          |          |          |          |          | 86.1755  |       |          | 425.484            | 140.454            |          | 0.076615            |    |     |    | 0.6        | 0.45         | 15.02          | 4.96         | -0.24172 | -0.23085   |
| 260.0          |          |          | 75.38044             |          |          |          | 65.43032 |          | 82.2315  |       |          | 426.737            |                    |          | 0.079274            |    |     |    | 0.6        | 0.37         | 15.06          | 5.00         | -0.24161 |            |
| 270.0          |          | 78.97987 |                      |          | 64.70727 |          |          |          | 82.6962  |       |          | 427.983            | 143.101            |          | 0.077806            |    |     |    | 0.5        | 0.30         | 15.11          | 5.05         | -0.24241 |            |
| 280.0          |          |          | 74.41345             |          |          |          |          |          |          |       |          | 429.224            | 144.420            |          | 0.079606            |    |     |    | 0.4        | 0.23         | 15.15          | 5.10         | -0.24252 |            |
| 290.0          |          |          | 74.12637             |          |          |          |          |          |          |       |          | 430.487            | 145.750            |          | 0.077935            |    |     |    | 0.4        | 0.17         | 15.20          | 5.14         | -0.24264 |            |
| 300.0          |          |          | 73.91344             |          |          |          |          |          |          |       |          | 431.756            | 147.086            |          | 0.077006            |    |     |    | 0.3        | 0.11         | 15.24          | 5.19         | -0.24301 |            |
| 310.0          |          |          | 73.34022             |          |          |          |          |          |          |       |          | 433.006            | 148.413            |          | 0.078601            |    |     |    | 0.3        | 0.07         | 15.29          | 5.24         | -0.24319 |            |
| 320.0          |          |          | 73.06093             |          |          |          |          |          |          |       |          | 434,270            | 149.743            |          | 0.077451            |    |     |    | 0.2        | 0.03         | 15.33          | 5.29         | -0.2438  |            |
| 330.0          |          |          | 72.59894             |          |          |          |          |          |          |       |          | 435.543            | 151.084            |          | 0.078989            |    |     |    | 0.2        | 0.00         | 15.37          | 5.33         | -0.24404 |            |
|                |          |          |                      |          |          |          |          |          |          |       |          |                    |                    |          |                     |    |     |    |            |              |                |              |          |            |

| intertek                | Intertek Testi         | ng Services |               |                                         |                                       |         |
|-------------------------|------------------------|-------------|---------------|-----------------------------------------|---------------------------------------|---------|
| o icci cch              | •                      |             |               |                                         |                                       |         |
| Total Quality. Assured. |                        |             |               |                                         |                                       |         |
|                         |                        |             | <br>          |                                         |                                       |         |
| Manufacture             |                        |             |               | RESULT                                  | S                                     |         |
|                         | el: 2.1 Series         |             |               |                                         |                                       |         |
|                         | e: 2-22-21             |             | Average em    | ission ra                               | te:(gr/hr)                            | 1.312   |
|                         | n: 1                   |             |               |                                         | ļ                                     |         |
|                         | #: G104576994          |             | Burn Rat      | e (Dry kg                               | /hr):                                 | 0.863   |
| Test Duratio            |                        |             |               |                                         |                                       |         |
| (minute                 | s)                     |             |               |                                         |                                       |         |
|                         |                        |             |               | <br>                                    | ļ                                     |         |
|                         |                        |             |               | <u> </u>                                | <u>L</u>                              |         |
| PRES                    | SSURE FACTOR:          | 0.98763     | BAROMETRIC    |                                         |                                       |         |
|                         |                        |             |               |                                         | Average:                              | 29.55   |
| TEMPERATUR              |                        |             |               | <br>                                    | Start:                                | 29.7    |
|                         | DGM #1:                | 1.00684     | <br>          | i<br>i<br>                              | End:                                  | 29.4    |
|                         | DGM #2:                | 1.00619     |               |                                         |                                       |         |
|                         |                        |             | DRY GAS MET   | ER VALU                                 | ES                                    |         |
| VOLUMES SAMPLED         |                        |             |               | DGM #1                                  | Final:                                | 435.543 |
|                         | DGM #1:                | 41.20461    |               |                                         | Initial:                              | 394.516 |
|                         | DGM #2:                | 43.57388    |               |                                         |                                       |         |
|                         |                        |             |               | DGM #2                                  | Final:                                | 151.084 |
| TOTAL TUNNEL VOLUME (so | of):                   | 100450      |               |                                         | Initial:                              | 107.713 |
|                         |                        |             |               |                                         |                                       |         |
| SAMPLE RATIOS           |                        |             | TEMPERATUR    | ES (DEG                                 | . RANKIN)                             |         |
|                         | Sample Train 1:        | 2437.843    |               | <del>-</del>                            | DGM #1:                               | 524.415 |
|                         | Sample Train 2:        | 2305.288    | <br>          |                                         | DGM #2:                               | 524.752 |
|                         |                        |             |               | <br> <br>                               | · · · · · · · · · · · · · · · · · · · |         |
| TOTAL EMISSIONS         |                        |             | CALIBRATION   | FACTOR                                  | S                                     |         |
|                         | Sample Train 1 (g):    | 6.826       |               |                                         | DGM #1:                               | 1.0100  |
|                         | Sample Train 2 (g):    | 7.607       |               |                                         | DGM #2:                               | 1.0110  |
|                         |                        |             | <br>          | <br>                                    |                                       |         |
| EMISSION RATES          |                        |             | TUNNEL FLOW   | RATE:                                   |                                       | 304.395 |
|                         | Sample Train 1 (g/hr): | 1.24        | !             | <br> <br>                               |                                       |         |
|                         | Sample Train 2 (g/hr): | 1.38        | PARTICULATE   | CATCH (                                 | (mg)                                  |         |
|                         |                        |             | Tot           | al Sampl                                | e Train 1:                            | 2.8     |
|                         |                        |             |               |                                         | e Train 2:                            | 3.3     |
|                         |                        |             | Filter and se | . – – – – – – – – – – – – – – – – – – – | <del></del>                           | 1.9     |
|                         | MAX Allowed            | 7.50%       | Filter and se |                                         |                                       | 2.3     |
|                         |                        |             |               |                                         | e Train 1:                            | 0.9     |
| DEVIA                   | TION:                  | 5.41%       |               | oe Sampl                                | <del></del>                           | 1       |

### intertek

Room Temp Bar Pressure Relative Humidity Air Velocity After After Before After Before Before After Before 74 77 29.70 29.40 8.6 9.5 Sample Data Average Dilution Tunnel Measurements Total Sample Burn Velocity Flow Rate Temp Particulate Catch (R) 541.20 Time (Ft/sec) (dscf/min) 1 2 1 2 15.40 304.39 41.20 43.57 2.80 3.30 Dilution Tunnel Dual Train Precision Total Emissions (g) Sample Ratios Train 1 Train 2 Train 1 Train 2 Deviation (%) 2437.84 2305.29 7.61 5.41% Burn Initial Run Average Surface Draft Rate Draft Time 0.863 0.000 0.053 330.000 0.047 Run Date Burn Rate Emission 2021-02-22 0.863 1.312



### **E&E Tunnel Traverse Worksheet**

Static Pressure: 0.118
Barometer: 29.7

|          | TUNNEL   | TUNNEL | SQUARE |           |        |
|----------|----------|--------|--------|-----------|--------|
|          | VELOCITY | TEMP   | ROOT   |           |        |
| A CENTER | 0.070    | 93.200 | 0.2646 |           |        |
| B CENTER | 0.077    | 88.500 | 0.2775 |           |        |
| A1       | 0.073    | 93.000 | 0.2702 | PITOT     |        |
| A2       | 0.080    | 93.100 | 0.2828 | CONSTANT= | 0.9641 |
| A3       | 0.067    | 92.700 | 0.2588 |           |        |
| A4       | 0.046    | 74.200 | 0.2145 |           |        |
| B1       | 0.070    | 91.500 | 0.2646 |           |        |
| B2       | 0.079    | 91.800 | 0.2811 |           |        |
| В3       | 0.070    | 91.700 | 0.2646 |           |        |
| B4       | 0.055    | 82.000 | 0.2345 |           |        |
| AVERAGE  |          | 89.17  | 0.2613 |           |        |

### **E&E FUEL LOAD DATA SHEET**

Test Load Weight:

 Lower
 Ideal
 Upper

 Firebox Volume:
 1.03
 cu. ft
 11.74
 12.36
 12.98

Load Volume: 1.0300 cu. ft Loading Density: 12.431 lbs./ft3

Number of Spacers: Load Density: 12.431 lbs./ft3

|       |   | Piece Size | :      | Weight | Meter | Moisture C | ontent |
|-------|---|------------|--------|--------|-------|------------|--------|
| Thick | Χ | Wide x     | Length | lbs    | Dry   | Uncorrecte | ed %   |
|       | 2 | 4          | 16     | 2.33   | 21.20 | 19.10      | 18.60  |
|       | 2 | 4          | 16     | 2.29   | 26.90 | 20.40      | 20.30  |
|       | 2 | 4          | 16     | 2.67   | 18.10 | 19.10      | 17.60  |
|       | 2 | 4          | 16     | 3.56   | 19.80 | 23.20      | 16.40  |
|       | 2 | 4          | 16     | 1.95   | 20.90 | 20.40      | 21.20  |
|       |   |            |        |        |       |            |        |
|       |   |            |        |        |       |            |        |
|       |   |            |        |        |       |            |        |
|       |   |            |        |        |       |            |        |

Test Load Weight 12.804 lbs. Dry Weigh 4.831 kg.

Average Moisture Content: %

Pre-test moisture content: %

#DIV/0! Wet: #DIV/0!

Coal Bed Range: 2.6 lbs. to 3.2 lbs. 20% to 25% of test load

November 20, 2015 Adjunct to ASTM E XXXX Wood Heater Cordwood Test Method Cordwood Fuel Load Calculators - 12 lb/ft<sup>3</sup> Nominal Load Density Core 45-65% of Total Load Weight, Remainder 35-55% of Total Load Weight

THIS DOCUMENT IS NOT AN ASTM STANDARD; IT IS UNDER CONSIDERATION WITHIN AN ASTM TECHNICAL COMMITTEE BUT HAS NOT RECEIVED ALL APPROVALS REQUIRED TO BECOME AN ASTM STANDARD. IT SHALL NOT BE REPRODUCED OR CIRCULATED OR QUOTED, IN WHOLE OR IN PART, OUTSIDE OF ASTM COMMITTEE ACTIVITIES EXCEPT WITH THE APPROVAL OF THE CHAIRMAN OF THE COMMITTEE HAVING JURISDICTION AND THE PRESIDENT OF THE SOCIETY. COPYRIGHT ASTM, 100 BARR HARBOR DRIVE, WEST CONSIDERATED BASES ALL BROSS SELECTS PRESENCES.

| Core 45-65% of Total Load Weight, Remainder 3              | 35-55% of Tot | al Load \        | Veight                 |          |           | COMMITTEE ACTIVITIES<br>JURISDICTION AND THE<br>CONSHOHOCKEN, PA 1942 | PRESIDENT OF     | F THE SOCIET  | AL OF THE C<br>Y. COPYRIGHT | HAIRMAN OF THE<br>T ASTM, 100 BARR | COMMITTEE H.<br>HARBOR DRIVE, | AVING<br>WEST |
|------------------------------------------------------------|---------------|------------------|------------------------|----------|-----------|-----------------------------------------------------------------------|------------------|---------------|-----------------------------|------------------------------------|-------------------------------|---------------|
| For Usable Firebox Volumes up to 3.0 ft <sup>3</sup> - Low | and Medium    | Fire             |                        |          |           | CONSHOHOCKEN, PA 1942                                                 | S. ALL KIGHIS KE | SERVED.       |                             |                                    |                               | I             |
| Nominal Required Load Density (wet basis)                  | <b>12</b> lb  | /ft <sup>3</sup> |                        |          |           | 1                                                                     |                  |               |                             |                                    |                               |               |
| Usable Firebox Volume                                      | 1.03 ft       | 3                |                        |          |           |                                                                       |                  |               |                             |                                    |                               |               |
| Total Nom. Load Wt. Target                                 | 12.36 lb      |                  |                        |          |           |                                                                       |                  |               |                             |                                    |                               |               |
| Total Load Wt. Allowable Range                             | 11.74         | to               | 12.98                  | lb       |           |                                                                       |                  |               |                             |                                    |                               |               |
| Core Target Wt. Allowable Range                            | 5.562         | to               | 8.03                   | lb       |           |                                                                       |                  |               |                             |                                    |                               |               |
| Remainder Load Wt. Allowable Range                         | 4.33          | to               | 6.80                   | lb       |           |                                                                       |                  |               |                             |                                    |                               |               |
|                                                            |               |                  |                        |          | Mid-Point |                                                                       |                  |               |                             |                                    |                               |               |
| Core Load Fuel Pc. Wt. Allowable Range                     | 1.85          | to               | 3.09                   | lb       | 2.47      |                                                                       |                  |               |                             |                                    |                               |               |
| Remainder Load Pc. Wt. Allowable Range                     | 1.24          | to               | 3.71                   | lb       | 2.47      | Fuel Piece I                                                          | Noisture Read    | ing (%-dry ba | isis)                       |                                    |                               |               |
|                                                            | Pc. #         |                  |                        |          | Ordre     | 1                                                                     | 2                | 3             | Ave.                        |                                    | Pc. Wt. D                     | ry Basis      |
| Core Load Piece Wt. Actual                                 | 1             | 2.               | <mark>33</mark> lb     | In Range |           | 21.2                                                                  | 19.1             | 18.6          | 19.6                        | In Range                           | 1.95 lb                       | 0.88          |
|                                                            | 2             |                  | <mark>29</mark> lb     | In Range |           | 26.9                                                                  | 20.4             | 20.3          | 22.5                        | In Range                           | 1.87 lb                       | 0.85          |
|                                                            | 3             | 2.               | <mark>67</mark> lb     | In Range |           | 18.1                                                                  | 19.1             | 17.6          | 18.3                        | In Range                           | 2.26 lb                       | 1.02          |
| Core Load Total. Wt. Actual                                |               | 7.               | 29 lb                  | In Range |           |                                                                       |                  |               |                             |                                    |                               |               |
|                                                            | Pc. #         |                  |                        |          |           |                                                                       |                  |               |                             | _                                  |                               |               |
| Remainder Load Piece Wt.                                   | 1             | 3.               | <mark>56</mark> lb     | In Range |           | 19.8                                                                  | 23.2             | 16.4          | 19.8                        | In Range                           | 2.97 lb                       | 1.35          |
| (2 or 3 Pcs.)                                              | 2             | 1.               | <mark>95</mark> lb     | In Range |           | 20.9                                                                  | 20.4             | 21.2          | 20.8                        | In Range                           | 1.62 lb                       | 0.73          |
|                                                            | 3             |                  | lb                     | NA       |           |                                                                       |                  |               |                             |                                    | 0.00 lb                       | 0.00          |
| Remainder Load Piece Weight Ratio - Small/Lar              | ge            |                  | 5%                     | In Range | ≤ 67%     |                                                                       | Ave. MC % (dr    | •             | 20.1                        | In Range                           |                               |               |
| Remainder Load Tot. Wt. Act                                |               |                  | <mark>52</mark> lb     | In Range |           |                                                                       | Ave. MC % (we    | ,             | 16.7                        |                                    |                               |               |
| Total Load Wt. Actual                                      |               |                  | <mark>80</mark> lb     | In Range |           |                                                                       | oad Weight (d    |               |                             | <del></del>                        | 10.66 lb                      |               |
| Core % of Total Wt.                                        |               |                  | 7%                     | In Range | 45-65%    | Total Fuel \                                                          | Veight Burned    | During Test I | Run (dry basi               | s)                                 | 10.5 lb                       | 4.75          |
| Remainder % of Total Wt.                                   |               |                  | 3%                     | In Range | 35-55%    |                                                                       |                  |               |                             |                                    |                               |               |
| Actual Load % of Nominal Target                            |               | 10               |                        | In Range | 95-105%   |                                                                       |                  |               |                             |                                    |                               |               |
| Actual Fuel Load Density                                   |               | 13               | 2.4 lb/ft <sup>3</sup> |          |           | 1.920                                                                 |                  |               |                             |                                    |                               |               |
| Allowable Charcoal Bed Wt. Range (lb)                      | 1.3           | to               | 2.5                    |          | Mid-Point | 14.7                                                                  |                  |               |                             |                                    |                               |               |
| Actual Charcoal Bed Wt.                                    |               |                  | <mark>L.3</mark> lb    | In Range | 1.9       | 3.8                                                                   | 2 braise         |               |                             |                                    |                               |               |
| Actual Fuel Load Ending Wt.                                |               |                  | <mark>).2</mark> lb    | lb       | ≥ 90%     |                                                                       |                  |               |                             |                                    |                               |               |
| Total Wt. of Fuel Burned During Test Run lb.               |               | 13               | 2.6 lb                 |          |           |                                                                       |                  |               |                             |                                    |                               |               |

November 20 Adjunct to ASTM E XXXX Wood Heater Cordwood Test Method Cordwood Fuel Load Calculators - 10 lb/ft <sup>3</sup> Nominal Load Density Core 45-65% of Total Load Weight, Remainder 35-55% of Total Load Weight

THIS DOCUMENT IS NOT AN ASTM STANDARD; IT IS UNDER CONSIDERATION WITHIN AN ASTM TECHNICAL COMMITTEE BUT HAS NOT RECEIVED ALL APPROVALS REQUIRED TO BECOME AN ASTM STANDARD. IT SHALL NOT BE REPRODUCED OR CIRCULATED OR QUOTED, IN WHOLE OR IN PART, OUTSIDE OF ASTM COMMITTEE ACTIVITIES EXCEPT WITH THE APPROVAL OF THE CHAIRMAN OF THE COMMITTEE HAVING JURISDICTION AND THE PRESIDENT OF THE SOCIETY. COPYRIGHT ASTM, 100 BARR HARBOR DRIVE, WEST

| Core 45-65% of Total Load Weight, Remainder 35-55   | % of Total L | oad Weight      |                    |              |           | COMMITTEE ACTIVITIES EXCEPT WI<br>JURISDICTION AND THE PRESIDENT | THE APPRO     | OVAL OF THE O   | CHAIRMAN      | OF THE COMMIT<br>O RARR HARROR | TEE HAVING    |      |
|-----------------------------------------------------|--------------|-----------------|--------------------|--------------|-----------|------------------------------------------------------------------|---------------|-----------------|---------------|--------------------------------|---------------|------|
| Values to be input manually                         |              |                 |                    |              |           | CONSHOHOCKEN, PA 19428. ALL RIGHTS                               |               |                 | 1 1101111, 10 | o Billi Tillibon               | 51072, 77201  |      |
| For All Usable Firebox Volumes - High Fire Test Onl |              |                 |                    |              |           | 1                                                                |               |                 |               |                                |               |      |
| Nominal Required Load Density (wet basis)           |              | lb/ft³          |                    |              |           |                                                                  |               |                 |               |                                |               |      |
| Usable Firebox Volume                               | 1.03 f       | ft <sup>3</sup> |                    |              |           |                                                                  |               |                 |               |                                |               |      |
| Total Nom. Load Wt. Target                          | 10.30 l      | lb              |                    |              |           |                                                                  |               |                 |               |                                |               |      |
| Total Load Wt. Allowable Range                      | 9.80         | to              | 10.80              | lb           |           |                                                                  |               |                 |               |                                |               |      |
| Core Target Wt. Allowable Range                     | 4.60         | to              | 6.70               | lb           |           |                                                                  |               |                 |               |                                |               |      |
| Remainder Load Wt. Allowable Range                  | 3.60         | to              | 5.70               | lb           |           |                                                                  |               |                 |               |                                |               |      |
|                                                     |              |                 |                    |              | Mid-Point |                                                                  |               |                 |               |                                |               |      |
| Core Load Pc. Wt. Allowable Range                   | 1.50         | to              | 2.60               | lb           | 2.05      | <u> </u>                                                         |               |                 |               |                                |               |      |
| Remainder Load Pc. Wt. Allowable Range              | 1.00         | to              | 5.70               | lb           | 3.35      |                                                                  |               | g (%-dry basis) |               |                                |               |      |
| Court Lord Disco W/t Asharl                         | Pc. #        | 2.00            | <b>.</b>           | In Dance     |           | 1                                                                | 2             | 3               | Ave.          | In Danse                       | Pc. Wt. Dry E |      |
| Core Load Piece Wt. Actual                          | 1            | 2.02            |                    | In Range     |           | 20                                                               | 15            | 20.4            | 18.5          | In Range                       | 1.71 lb       | 0.77 |
|                                                     | 2            | 2.36            | =                  | In Range     |           | 25.8                                                             | 20.4          | 26.5            | 24.2          | In Range                       | 1.90 lb       | 0.86 |
|                                                     | 3            | 1.99            |                    | In Range     |           | 25.4                                                             | 22.4          | 12              | 19.9          | In Range                       | 1.66 lb       | 0.75 |
| Core Load Total. Wt. Actual                         | Pc. #        | 6.37            | / ID               | In Range     |           |                                                                  |               |                 |               |                                |               |      |
| Remainder Load Piece Wt.                            | PC. #        | 4.39            | ) lb               | In Range     |           | 24.9                                                             | 20            | 22.7            | 22.5          | In Range                       | 3.59 lb       | 1.63 |
| (1 to 3 Pcs.)                                       | 2            | 4.33            | lb                 | NA           |           | 24.9                                                             | 20            | 22.7            | 22.3          | iii Kange                      | 0.00 lb       | 0.00 |
| (1 to 3 FCs.)                                       | 2            |                 | lb                 | NA           |           | 1                                                                |               |                 |               |                                | 0.00 lb       | 0.00 |
| Remainder Load Piece Weight Ratio - Small/Large     | ٦ <u>ـ</u>   | 100%            |                    | NA           | ≤ 67%     | Total Load Ave                                                   | MC (%-dry l   | hasis)          | 21.6          | In Range                       | 0.00          | 0.00 |
| Remainder Load Tot. Wt. Act                         |              | 4.39            | _                  | In Range     | 2 07/0    | Total Load Ave                                                   |               | •               | 17.8          | III Kange                      |               |      |
| Total Load Wt. Actual                               |              | 10.76           |                    | In Range     |           | Total Test Load                                                  | •             | ,               | 27.0          |                                | 8.85 lb       | 4.01 |
| Core % of Total Wt.                                 |              | 59%             |                    | In Range     | 45-65%    |                                                                  | - 0 - (- /    | ,               |               |                                |               |      |
| Remainder % of Total Wt.                            |              | 41%             | 6                  | In Range     | 35-55%    | Kindling Moist                                                   | ure (%-dry ba | isis)           |               |                                |               |      |
| Actual Load % of Nominal Target                     |              | 105%            | 6                  | In Range     | 95-105%   | 10                                                               | 10            | 10              | 10.0          | In Range                       | 1.96 lb       | 0.89 |
| Actual Fuel Load Density                            |              | 10.5            | lb/ft <sup>3</sup> |              |           | Start-up Fuel N                                                  | oisture Read  | dings (%-dry ba | asis)         |                                |               |      |
| Kindling and Start-up Fuel                          |              |                 |                    |              |           | 20.5                                                             | 16.4          | 21.5            | 19.5          | In Range                       | 2.68 lb       | 1.22 |
| Maximim Kindling Wt. (20% of Tot. Load Wt.)         |              | 2.15            | 5 lb               |              |           |                                                                  |               |                 |               | _                              |               |      |
| Actual Kindling Wt.                                 | <u> </u>     | 2.15            | lb                 | In Range     | 20.0%     | Total Wt. All F                                                  | uel Added (dr | y basis) ——     |               |                                | 13.49 lb      | 6.12 |
| Maximum Start-up Fuel Wt. (30% of Tot. Load Wt.)    |              | 3.23            | 3 lb               |              |           | Total Wt. All F                                                  | uel Burned (d | lry basis)      |               |                                | 12.4 lb       | 5.6  |
| Actual Start-up Fuel Wt.                            |              | 3.21            | <mark>I</mark> lb  | In Range     | 29.8%     |                                                                  |               |                 |               |                                |               |      |
| Allowable Residual Start-up Fuel Wt. Range          | 1.1          | to              | 2.2                | lb           | Mid-Point |                                                                  |               |                 |               |                                |               |      |
| Actual Residual Start-up Fuel Wt.                   |              | 1.10            |                    | In Range     | 1.6       |                                                                  |               |                 |               |                                |               |      |
| Total Wt. All Fuel Added (wet basis)                |              | 16.12           | 2 lb               |              |           |                                                                  |               |                 |               |                                |               |      |
| High Fire Test Run End Point Range                  | Low          |                 | High               |              | Mid-Point |                                                                  |               |                 |               |                                |               |      |
| Based on Fuel Load Wt. (w/tares)                    | 1.0          | to              | 1.2                | lb           | 1.1       |                                                                  |               |                 |               |                                |               |      |
| Actual Fuel Load Ending Wt.                         |              | 0.0             | <mark>)</mark> lb  | Out of Range |           |                                                                  |               |                 |               |                                |               |      |

ITS-ASTM cordwood-PM-2021-02-22-1st hour Raw Data 1 of 2

|      |          |          |            |          |          |          |       |        |          |       |          |          |          |          |          | CO | CO2 | O2 | scale | 4.6907659 | Meter | Meter |           |            |
|------|----------|----------|------------|----------|----------|----------|-------|--------|----------|-------|----------|----------|----------|----------|----------|----|-----|----|-------|-----------|-------|-------|-----------|------------|
| Time | Flue     | Room     | Tunnel     | DGM 1    | DGM 1    | Filter 1 | DGM 2 | DGM 2  | Filter 2 | DGM 3 | Filter 3 | Meter #1 | Meter #2 | Draft    | Tunnel   | %  | %   | %  | Lbs   | Corrected | #1    | #2    | Draft     | Calculated |
| 10.0 | Temp 1   | Temp 2   | Dry Bulb 3 | In 13    | Out 14   | 15       | In 16 | Out 17 | 18       | In 19 | 20       | 21       | 22       | 23       | 24       | 25 | 25  | 27 | 28    | Scale     | Cu Ft | Cu Ft |           | Tunnel     |
| 0.0  | 281.44   | 74.27511 | 85.53014   | 64.51104 | 64.51104 | 73.61479 |       |        |          |       |          | 87.125   |          | 0.053447 | 0.074708 |    |     |    | 12.8  | 8.11      | 3.08  | 0.00  | -0.236638 | -0.23132   |
| 10.0 | 337.6352 | 75.87641 | 86.75864   | 64.56288 | 64.56288 | 86.38106 |       |        |          |       |          | 88.332   |          | 0.067658 | 0.074379 |    |     |    | 11.9  | 7.19      | 3.12  |       | -0.233086 | -0.23141   |
| 20.0 | 411.3232 | 72.90645 | 93.04626   | 64.68775 | 64.68775 | 83.34858 |       |        |          |       |          | 89.552   |          | 0.07754  | 0.075477 |    |     |    | 10.4  | 5.73      | 3.16  |       | -0.230615 | -0.23113   |
| 30.0 | 424.262  | 67.71416 | 93.84986   | 64.79854 | 64.79854 | 81.37961 |       |        |          |       |          | 90.790   |          | 0.078359 | 0.074211 |    |     |    | 8.9   | 4.26      | 3.20  |       | -0.23041  | -0.23145   |
| 40.0 | 435.3971 | 68.21337 | 93.50252   | 65.08922 | 65.08922 | 87.91541 |       |        |          |       |          | 92.022   |          | 0.076933 | 0.076033 |    |     |    | 7.4   | 2.74      | 3.25  |       | -0.230767 | -0.23099   |
| 50.0 | 442.1808 | 68.73948 | 94.02638   | 65.25577 | 65.25577 | 84.36844 |       |        |          |       |          | 93.265   |          | 0.077761 | 0.075849 |    |     |    | 6.0   | 1.27      | 3.29  |       | -0.23056  | -0.23104   |
| 60.0 | 423.0042 | 67.78018 | 93.1556    | 65.35487 | 65.35487 | 82.17697 |       |        |          |       |          | 94.512   |          | 0.074806 | 0.076556 |    |     |    | 4.7   | 0.00      | 3.34  |       | -0.231298 | -0.23086   |

| interte                 | 4        | Intertek Testi       | ng Services |                      |              |         |
|-------------------------|----------|----------------------|-------------|----------------------|--------------|---------|
|                         | .V.      |                      |             |                      |              |         |
| Total Quality. Assured. |          |                      |             |                      |              |         |
| Manufac                 | turor    | CRI                  |             | RESUL                | TQ           |         |
|                         |          | 2.1 Series           |             | INLOUL               |              |         |
|                         |          | 2-22-21              |             | Average emission r   | ate:(ar/hr)  | #DIV/0! |
|                         | Run:     |                      |             | Average emission i   | ate.(gi/iii) | #DIV/0: |
| Proi                    |          | G104576994           |             | Burn Rate (Dry k     | n/hr)·       | 4.831   |
| Test Dura               |          | L                    |             | Dani Rate (Dry N     | J, 111 ).    | 7.001   |
|                         | iutes)   |                      |             |                      |              |         |
|                         | iatoo,   |                      |             |                      |              |         |
|                         |          |                      |             |                      |              |         |
| P                       | RESS     | URE FACTOR:          | 0.98763     | BAROMETRIC PRESSU    | JRE          |         |
|                         |          |                      |             |                      | Average:     | 29.55   |
| TEMPERAT                | URE F    |                      |             |                      | Start:       | 29.7    |
|                         |          | DGM #1:              | 1.00592     |                      | End:         | 29.4    |
|                         |          | DGM #2:              | 1.14783     |                      |              |         |
|                         |          |                      |             | DRY GAS METER VALU   | JES          |         |
| VOLUMES SAMPLE          | D        |                      |             | DGM #                | Final:       | 94.512  |
|                         |          | DGM #1:              | 7.41221     |                      | Initial:     | 87.125  |
|                         |          | DGM #2:              | 0.00000     |                      |              |         |
|                         |          |                      |             | DGM #2               | Final:       | 0.000   |
| TOTAL TUNNEL VOLUMI     | E (scf): |                      | 17891       |                      | Initial:     | 0.000   |
|                         |          |                      |             |                      |              |         |
| SAMPLE RATIOS           |          |                      |             | TEMPERATURES (DEG    | G. RANKIN)   |         |
|                         |          | Sample Train 1:      | 2413.678    |                      | DGM #1:      | 524.894 |
|                         |          | Sample Train 2:      | #DIV/0!     |                      | DGM #2:      | 460.000 |
|                         |          |                      |             |                      |              |         |
| TOTAL EMISSIONS         | 3        |                      |             | CALIBRATION FACTOR   | RS           |         |
|                         | S        | Sample Train 1 (g):  | 5.310       |                      | DGM #1:      | 1.0100  |
|                         | S        | Sample Train 2 (g):  | #DIV/0!     |                      | DGM #2:      | 1.0110  |
|                         |          |                      |             |                      |              |         |
| EMISSION RATES          |          |                      |             | TUNNEL FLOW RATE:    |              | 298.178 |
|                         | San      | nple Train 1 (g/hr): | 5.31        |                      |              |         |
|                         | San      | nple Train 2 (g/hr): | #DIV/0!     | PARTICULATE CATCH    | (mg)         |         |
|                         |          |                      |             | Total Samp           | ole Train 1: | 2.2     |
|                         |          |                      |             | Total Samp           | ole Train 2: | 0       |
|                         |          |                      |             | Filter and seal Samp | ole Train 1: | 2.1     |
|                         |          | MAX Allowed          | 7.50%       | Filter and seal Samp | ole Train 2: |         |
|                         |          |                      |             | Probe Samp           | ole Train 1: | 0.1     |
| DI                      | EVIATIO  | ON:                  | #DIV/0!     | Probe Samp           | ole Train 2: |         |

2021-02-23- Run-2 Surface Temperature

| Time | Ambiant   | Flue        | <b>Dilution Tunnel</b> | Firebox Top | Firebox Back | Firebox Right | Firebox Left | Firebox Bottom |
|------|-----------|-------------|------------------------|-------------|--------------|---------------|--------------|----------------|
| 0    | 83.23501  | 301.2575721 | 91.43603598            | 507.0046602 | 569.0643234  | 480.903476    | 508.418085   | 480.4750497    |
| 10   | 83.43669  | 456.0407639 | 98.48547378            | 589.1175568 | 527.099325   | 472.9993836   | 477.9647924  | 482.6436858    |
| 20   | 78.653965 | 384.8489777 | 96.36836027            | 818.2269735 | 505.8987755  | 489.6860027   | 468.4748543  | 472.6924839    |
| 30   | 72.734141 |             | 92.40588651            | 871.5868682 | 485.7686631  | 499.5976501   | 465.0994364  | 451.6390247    |
| 40   | 69.797641 | 370.171828  | 92.55346439            | 892.5821253 | 449.9361097  | 514.4805017   | 466.632236   | 401.3366859    |
| 50   | 68.741481 | 368.1594722 | 91.94093401            | 909.9780517 | 431.9299357  | 528.695055    | 478.4954254  | 360.6582303    |
| 60   | 69.666817 | 358.7040674 | 91.50018121            | 921.556362  | 428.5729163  | 542.5367428   | 496.3426636  | 336.4307334    |
| 70   | 68.222267 | 308.1208285 | 88.78144643            | 826.6952826 | 424.7107919  | 545.280091    | 512.2189437  | 321.2384567    |
| 80   | 67.185261 | 271.9737987 | 86.21301165            | 730.8665424 | 414.3020052  | 524.5439028   | 509.3149612  | 310.2168484    |
| 90   | 72.57079  | 230.8318568 | 84.52147766            | 624.3818143 | 395.184583   | 493.9429142   | 491.4307229  | 302.3706781    |
| 100  | 77.697584 | 211.7948535 | 84.59253346            | 525.8682902 | 378.7163168  | 468.8296748   | 463.1767428  | 297.7443224    |
| 110  | 79.969673 | 207.7209217 | 84.00263545            | 485.4029246 | 371.0580438  | 451.797586    | 440.0248289  | 294.4714397    |
| 120  | 80.765239 | 211.5785173 | 83.97431838            | 490.7409926 | 382.5900115  | 444.384323    | 423.3543471  | 292.1193486    |
| 130  | 80.627018 | 193.6215004 | 83.30588826            | 451.4688205 | 364.5777587  | 428.5510652   | 409.7570568  | 290.0176942    |
| 140  | 80.145609 | 182.8200483 | 80.48422771            | 413.570089  | 350.5836509  | 405.4566309   | 397.4322959  | 287.758724     |
| 150  | 76.993431 | 176.5954438 | 83.99763393            | 388.1199937 | 345.8326891  | 384.5100962   | 386.3451261  | 286.4440654    |
| 160  | 76.228962 | 170.553736  | 83.05260352            | 370.8826853 | 345.3267916  | 366.6680763   | 375.5626196  | 284.2617211    |
| 170  | 75.617998 | 166.1018155 | 82.17135953            | 358.3004825 | 348.8523678  | 353.2366344   | 365.6974671  | 282.639166     |
| 180  | 75.316829 | 162.7895436 | 81.53283291            | 348.7853564 | 353.5675776  | 342.7511504   | 356.5624421  | 281.369309     |
| 190  | 74.792567 | 160.1441001 | 81.12003651            | 340.256991  | 357.3025117  | 334.3459893   | 347.1333947  | 280.0942558    |
| 200  | 74.728516 | 157.9496507 | 80.55523195            | 332.8002624 | 358.6308216  | 326.9012695   | 338.4790308  | 278.5281048    |
| 210  | 74.609711 | 155.9028285 | 80.16530382            | 326.441245  | 359.7374076  | 320.3843268   | 330.6016398  | 277.1716538    |
| 220  | 74.644811 |             | 79.9188443             | 322.1581735 | 359.8126754  | 314.4042924   | 323.5293085  | 275.7869082    |
| 230  |           | 154.1545328 | 79.77805924            | 319.8469176 | 357.1636521  | 308.8383291   | 319.1947325  | 274.6159743    |
| 240  |           |             | 79.47192758            | 316.544411  | 353.2845435  | 303.9452559   | 314.4940593  | 273.2096434    |
| 250  |           | 150.8460083 | 79.10662327            | 311.8424667 | 349.7321204  | 299.2253656   | 308.6351646  | 271.1909042    |
| 260  |           | 149.0631953 | 75.86739497            | 305.9533403 | 346.7777676  | 294.4496261   | 302.6855011  | 268.8131634    |
| 270  |           | 148.5087126 | 75.7989487             | 300.2295407 | 344.613334   | 290.4817095   | 296.5402147  | 267.3905891    |
| 280  |           | 147.6230928 | 75.70982887            | 294.9968637 | 342.7251143  | 286.1033242   | 290.4150697  | 266.000896     |
| 290  |           | 146.5677268 | 75.49257422            | 290.3665349 | 341.6628929  | 281.5221064   | 284.4570838  | 265.0504971    |
| 300  |           | 145.4150751 | 75.30164651            | 285.6968027 | 339.3373938  | 277.2609456   | 278.3030383  | 263.3739138    |
| 310  |           | 144.0629898 | 75.21689489            | 280.8883441 | 336.0921341  | 272.5468099   | 272.2432323  | 261.0620774    |
| 320  |           | 142.5923135 | 75.16671064            | 276.1183951 | 333.3015074  | 267.4286773   | 266.755707   |                |
| 330  |           | 141.5447632 | 75.02332358            | 271.6122962 | 330.8009032  | 262.3107247   | 261.3799164  | 255.1673466    |
| 340  | 77.183421 | 140.2228699 | 74.96367198            | 267.0857577 | 328.363663   | 257.2000241   | 256.3418294  | 252.4225552    |
| 350  |           | 139.3009487 | 74.88563632            | 263.4109675 | 325.7991799  | 252.4316834   | 251.9757212  | 249.7305466    |
| 360  |           | 138.6317011 | 74.63870815            | 260.7508726 | 323.3137186  | 248.1963839   | 248.0656369  | 247.4714022    |
| 370  |           | 137.9281666 | 74.37073276            | 258.0315345 | 316.8528579  | 244.6519338   | 244.4009799  | 245.2931255    |
| 380  |           |             | 74.46011807            | 254.281791  | 309.1499269  | 241.040658    | 240.5573457  | 242.6677905    |
| 390  |           | 134.9010047 | 74.23727377            | 249.9061778 | 302.2930832  | 237.1603198   | 236.3586998  | 239.7920402    |
| 400  |           | 133.3130019 | 73.95969524            | 245.1176196 | 296.8594381  | 233.2698585   | 232.0944676  | 236.7357591    |
| 406  | 76.991505 | 132.4592671 | 74.18331292            | 242.0959419 | 293.9180373  | 230.9129096   | 229.4613176  | 234.9585858    |

1 of7

|                |          |          |                      |          |          |          |          |          |          |       |          |                    |                    |          | ľ        | CO CO2 O2 | scale      | 0.0306189 | Meter          | Meter |                        |                      |
|----------------|----------|----------|----------------------|----------|----------|----------|----------|----------|----------|-------|----------|--------------------|--------------------|----------|----------|-----------|------------|-----------|----------------|-------|------------------------|----------------------|
| Time           | Flue     | Room     | Tunnel               | DGM 1    | DGM 1    | Filter 1 | DGM 2    | DGM 2    | Filter 2 | DGM 3 | Filter 3 | Meter #1           | Meter #2           | Draft    | Tunnel   | % % %     | Lbs        | Corrected | #1             | #2    | Draft                  | Calculated           |
| 10.0           | Temp 1   | Temp 2   | Dry Bulb 3           | In 13    | Out 14   | 15       | In 16    | Out 17   | 18       | In 19 | 20       | 21                 | 22                 | 23       | 24       | 25 25 27  | 28         | Scale     | Cu Ft          | Cu Ft |                        | Tunnel               |
| 0.0            | 301.2576 | 83.23501 | 91.43604             | 64.95233 | 65.02666 | 83.51391 | 65.08053 | 65.26384 | 81.289   |       |          | 437.755            | 151.214            | 0.054278 | 0.071095 |           | 12.8       | 12.72     | 15.45          | 5.34  | -0.236431              | -0.23223             |
| 10.0           | 456.0408 | 83.43669 | 98.48547             | 65.72324 | 65.22391 | 83.25627 | 65.818   | 65.46774 | 81.85121 |       |          | 438.989            | 152.444            | 0.081441 | 0.068985 |           | 11.4       | 11.32     | 15.50          | 5.38  | -0.22964               | -0.23275             |
| 20.0           | 384.849  | 78.65396 | 96.36836             | 65.98    | 65.36007 | 82.22104 | 66.06515 | 65.68154 | 85.78685 |       |          | 440.218            | 153.667            | 0.073013 | 0.071996 |           | 9.8        | 9.79      | 15.54          | 5.42  | -0.231747              | -0.232               |
| 30.0           | 370.91   | 72.73414 | 92.40589             | 66.11308 | 65.5437  | 86.96054 | 66.23829 | 65.88518 | 86.3033  |       |          | 441.451            | 154.898            | 0.07122  | 0.072088 |           | 8.6        | 8.58      | 15.58          | 5.47  | -0.232195              | -0.23198             |
| 40.0           | 370.1718 | 69.79764 | 92.55346             | 66.25388 | 65.66074 | 81.81157 | 66.39786 | 66.03976 | 83.13637 |       |          | 442.690            | 156.133            | 0.071216 | 0.072225 |           | 7.2        | 7.19      | 15.63          | 5.51  | -0.232196              | -0.23194             |
| 50.0           | 368.1595 | 68.74148 | 91.94093             | 66.39904 | 65.78382 | 83.25756 | 66.5572  | 66.19371 | 82.12167 |       |          | 443.931            | 157.360            | 0.070946 | 0.072865 |           | 5.9        | 5.89      | 15.67          | 5.55  | -0.232264              | -0.23178             |
| 60.0           | 358.7041 | 69.66682 | 91.50018             | 66.39662 | 65.89953 | 86.76037 | 66.63782 | 66.28185 | 83.7732  |       |          | 445.167            | 158.585            | 0.069201 | 0.070932 |           | 4.7        | 4.66      | 15.71          | 5.60  | -0.2327                | -0.23227             |
| 70.0           | 308.1208 | 68.22227 | 88.78145             | 66.56541 | 66.02453 | 82.15631 | 66.77321 | 66.45732 | 82.87086 |       |          | 446.403            | 159.819            | 0.060143 | 0.073668 |           | 3.9        | 3.84      | 15.76          | 5.64  | -0.234964              | -0.23158             |
| 80.0           | 271.9738 | 67.18526 | 86.21301             | 66.68668 | 66.09491 | 82.56604 | 66.86067 | 66.54438 | 82.01744 |       |          | 447.643            | 161.064            |          | 0.074185 |           | 3.4        | 3.35      | 15.80          | 5.69  | -0.236719              | -0.23145             |
| 90.0           | 230.8319 | 72.57079 | 84.52148             | 66.65995 | 66.15874 | 82.87937 | 66.87192 | 66.60362 | 84.29815 |       |          | 448.884            | 162.310            | 0.047236 | 0.073332 |           | 3.1        | 3.07      | 15.85          | 5.73  | -0.238191              | -0.23167             |
| 100.0          |          |          | 84.59253             |          |          |          |          |          |          |       |          | 450.139            | 163.553            |          | 0.072486 |           | 2.8        | 2.79      | 15.89          | 5.77  | -0.238887              | -0.23188             |
| 110.0          |          |          | 84.00264             |          |          |          |          |          |          |       |          | 451.402            | 164.813            |          | 0.074471 |           | 2.5        | 2.50      | 15.93          | 5.82  | -0.239192              | -0.23138             |
| 120.0          |          |          | 83.97432             |          |          |          | 66.90701 |          |          |       |          | 452.663            | 166.080            |          | 0.074653 |           | 2.2        | 2.20      | 15.98          | 5.86  | -0.238954              | -0.23134             |
| 130.0          |          |          | 83.30589             |          |          |          |          |          | 83.67539 |       |          | 453.929            | 167.338            |          | 0.074093 |           | 2.1        | 2.07      | 16.02          | 5.91  | -0.240071              | -0.23148             |
| 140.0          |          |          | 80.48423             |          |          |          |          |          |          |       |          | 455.191            | 168.610            |          | 0.073123 |           | 2.0        | 1.97      | 16.07          | 5.95  | -0.24067               | -0.23172             |
| 150.0          |          |          | 83.99763             |          |          |          |          |          |          |       |          | 456.433            | 169.857            |          | 0.075394 |           | 1.9        | 1.90      | 16.11          | 6.00  | -0.241322              | -0.23115             |
| 160.0          |          | 76.22896 |                      |          |          |          | 67.24053 |          |          |       |          | 457.685            | 171.110            |          | 0.07636  |           | 1.9        | 1.91      | 16.16          | 6.04  | -0.241725              | -0.23091             |
| 170.0          | 166.1018 |          | 82.17136             |          |          |          |          |          |          |       |          | 458.951            | 172.366            |          | 0.073962 |           | 1.9        | 1.84      | 16.20          | 6.08  | -0.242087              | -0.23151             |
| 180.0          |          |          | 81.53283             |          |          |          |          |          |          |       |          | 460.209            | 173.629            |          | 0.076207 |           | 1.8        | 1.75      | 16.25          | 6.13  | -0.24198               | -0.23095             |
| 190.0          |          |          | 81.12004             |          |          |          |          |          |          |       |          | 461.465            | 174.884            |          | 0.075582 |           | 1.7        | 1.68      | 16.29          | 6.17  | -0.242209              | -0.2311              |
| 200.0          |          |          | 80.55523             |          |          |          |          |          |          |       |          | 462.732            | 176.139            |          | 0.074954 |           | 1.6        | 1.60      | 16.33          | 6.22  | -0.242425              | -0.23126             |
| 210.0          |          | 74.60971 |                      |          |          |          | 67.4566  |          |          |       |          | 463.988            | 177.397            |          | 0.074449 |           | 1.6        | 1.52      | 16.38          | 6.26  | -0.242306              | -0.23139             |
| 220.0          |          |          | 79.91884             |          |          |          |          |          |          |       |          | 465.244            | 178.651            |          | 0.074491 |           | 1.4        | 1.41      | 16.42          | 6.31  | -0.242686              | -0.23138             |
| 230.0          |          |          | 79.77806             |          |          |          |          |          |          |       |          | 466.509            | 179.902            |          | 0.07423  |           | 1.4        | 1.32      | 16.47          | 6.35  | -0.2427                | -0.23144             |
| 240.0          |          |          | 79.47193             |          |          |          |          |          |          |       |          | 467.765            | 181.156            |          | 0.072985 |           | 1.3        | 1.23      | 16.51          | 6.39  | -0.24258               | -0.23175             |
| 250.0          |          |          | 79.10662             |          |          |          |          |          |          |       |          | 469.019            | 182.414            |          | 0.074822 |           | 1.2        | 1.15      | 16.56          | 6.44  | -0.24277               | -0.23129             |
| 260.0          |          |          | 75.86739             |          |          |          |          |          |          |       |          | 470.291            |                    |          | 0.073688 |           | 1.0        | 1.00      | 16.60          | 6.48  | -0.242767<br>-0.242971 | -0.23158             |
| 270.0<br>280.0 |          |          | 75.79895<br>75.70983 |          |          |          |          |          |          |       |          | 471.555<br>472.827 | 184.939<br>186.203 |          | 0.073499 |           | 0.9<br>0.8 | 0.85      | 16.65<br>16.69 | 6.53  | -0.242971              | -0.23163<br>-0.23148 |
| 290.0          |          |          | 75.49257             |          |          |          | 67.68908 |          |          |       |          | 474.102            | 187.477            |          | 0.074074 |           | 0.8        | 0.73      | 16.74          | 6.62  | -0.242743              | -0.23146             |
| 300.0          |          |          | 75.30165             |          |          |          |          |          |          |       |          | 475.376            | 188.755            |          | 0.07401  |           | 0.6        | 0.63      | 16.74          | 6.66  | -0.242980              | -0.2313              |
| 310.0          |          |          | 75.21689             |          |          |          |          |          |          |       |          | 476.651            | 190.029            |          | 0.074103 |           | 0.5        | 0.51      | 16.83          | 6.71  | -0.243142              | -0.23123             |
| 320.0          | 142.5923 |          | 75.16671             |          |          |          |          |          |          |       |          | 477.918            | 191.306            |          | 0.075634 |           | 0.5        | 0.43      | 16.87          | 6.75  | -0.243191              | -0.23123             |
| 330.0          |          |          | 75.02332             |          |          |          |          |          |          |       |          | 479.192            | 192.575            |          | 0.073034 |           | 0.4        | 0.43      | 16.92          | 6.80  | -0.243208              | -0.23109             |
| 340.0          |          |          | 74.96367             |          |          |          |          |          |          |       |          | 480.459            | 193.851            |          | 0.075182 |           | 0.3        | 0.31      | 16.96          | 6.84  | -0.243463              | -0.2312              |
| 350.0          |          |          | 74.88564             |          |          |          |          |          |          |       |          | 481.735            | 195.117            |          | 0.07405  |           | 0.3        | 0.26      | 17.01          | 6.89  | -0.243735              | -0.23149             |
| 360.0          |          |          | 74.63871             |          |          |          |          |          |          |       |          | 482,996            | 196.389            |          | 0.074107 |           | 0.3        | 0.20      | 17.05          | 6.93  | -0.243409              | -0.23147             |
| 370.0          |          |          | 74.37073             |          | 66.7829  |          | 67.54091 |          |          |       |          | 484.267            | 197.659            |          | 0.074858 |           | 0.2        | 0.15      | 17.09          | 6.98  | -0.243558              | -0.23129             |
| 380.0          |          |          | 74.46012             |          |          |          |          |          | 82.4276  |       |          | 485.537            | 198.925            |          | 0.073896 |           | 0.1        | 0.09      | 17.14          | 7.02  | -0.243932              | -0.23153             |
| 390.0          | 134.901  | 76.98436 | 74.23727             | 67.14086 | 66.70278 | 83.9009  | 67.46875 | 67.25851 | 82.19615 |       |          | 486.797            | 200.195            | 0.02437  | 0.073798 |           | 0.1        | 0.04      | 17.18          | 7.07  | -0.243908              | -0.23155             |
| 400.0          | 133.313  | 76.91187 | 73.9597              | 67.14354 | 66.7309  | 84.0231  | 67.48894 | 67.25742 | 82.13172 |       |          | 488.069            | 201.455            | 0.024515 | 0.07438  |           | 0.0        | 0.00      | 17.23          | 7.11  | -0.243871              | -0.2314              |
| 406.0          | 132.4593 | 76.99151 | 74.18331             | 67.20603 | 66.78673 | 84.11526 | 67.52264 | 67.29906 | 82.10721 |       |          | 488.846            | 202.233            | 0.024057 | 0.075235 |           | 0.0        | -0.03     | 17.26          | 7.14  | -0.243986              | -0.23119             |
|                |          |          |                      |          |          |          |          |          |          |       |          |                    |                    |          |          |           |            |           |                |       |                        |                      |

| iotoch                 | ملا                    | Intertek Testi       | ng Services  |       |           |              |            |         |
|------------------------|------------------------|----------------------|--------------|-------|-----------|--------------|------------|---------|
| intert                 | GK                     |                      | <u> </u>     |       |           |              | <u> </u>   |         |
| Total Quality. Assured |                        |                      | <u> </u>     |       |           |              | ļ<br>      |         |
| Manu                   | facturer:              | e Di                 |              |       |           | RESULT       | <u>.</u>   |         |
| wanu                   |                        | Ļ                    | <u>i</u>     |       |           | KESULI       | <b>S</b>   |         |
|                        |                        | 2.1 Series           |              | A     |           |              | 4 ((l)     | 0.000   |
|                        |                        | 2-23-21              |              | AVE   | erage emi | ission ra    | te:(gr/nr) | 0.962   |
|                        | Run:                   | i i                  |              |       | D D4      | - (D         | /          | 0.707   |
|                        | roject #:<br>ouration: | G104576994           |              |       | Burn Rat  | е (Бгу кд    | /nr):      | 0.707   |
|                        |                        |                      |              |       |           |              | ļi         |         |
| (1                     | minutes)               |                      |              |       |           |              | ļ          |         |
|                        |                        |                      |              |       |           |              |            |         |
|                        | PRESS                  | URE FACTOR:          | 0.97844      | BARO  | METRIC    | PRESSU       | RE         |         |
|                        |                        |                      | i            |       |           |              | Average:   | 29.275  |
| TEMPER                 | ATURE F                | ACTORS               |              |       |           |              | Start:     | 29.2    |
|                        |                        | DGM #1:              | 1.00254      |       |           |              | End:       | 29.35   |
|                        |                        | DGM #2:              | 1.00182      |       |           |              |            |         |
|                        |                        |                      | i            | DRY C | SAS METI  | ER VALU      | ES         |         |
| VOLUMES SAM            | PI FD                  | }                    | <del> </del> |       |           | DGM #1       | Final:     | 488.846 |
|                        |                        | DGM #1:              | 50.61778     |       |           |              | Initial:   | 437.755 |
|                        |                        | DGM #2:              | 50.56024     |       |           |              |            |         |
|                        |                        |                      |              |       |           | DGM #2       | Final:     | 202.233 |
| TOTAL TUNNEL VOL       | UMF (scf):             |                      | 121941       |       |           |              | Initial:   | 151.214 |
|                        | (00.).                 |                      |              |       |           |              |            |         |
| SAMPLE RATI            | OS                     |                      | i            | TEMP  | ERATURI   | ES (DEG      | RANKIN)    |         |
|                        |                        | Sample Train 1:      | 2409.057     |       |           | <del>-</del> | DGM #1:    | 526.662 |
|                        |                        | Sample Train 2:      | 2411.799     |       |           |              | DGM #2:    | 527.040 |
|                        |                        |                      |              |       |           |              |            |         |
| TOTAL EMISSI           | ONS                    |                      |              | CALIB | RATION    | FACTOR       |            |         |
|                        | S                      | Sample Train 1 (g):  | 6.745        |       |           |              | DGM #1:    | 1.0100  |
|                        |                        | Sample Train 2 (g):  | 6.271        |       |           |              | DGM #2:    | 1.0110  |
|                        |                        |                      |              |       |           |              | ļ          |         |
| EMISSION RAT           |                        | ļ                    |              | TUNN  | EL FLOW   | RATE:        | ļ          | 300.348 |
|                        |                        | nple Train 1 (g/hr): | 1.00         |       | <u> </u>  |              | ļļ         |         |
|                        | San                    | nple Train 2 (g/hr): | 0.93         | PARTI | CULATE    |              |            |         |
|                        |                        |                      |              |       |           |              | e Train 1: | 2.8     |
|                        |                        | i<br>                |              |       |           |              | e Train 2: | 2.6     |
|                        |                        | ļ                    |              |       | er and se |              |            | 2.6     |
|                        |                        | MAX Allowed          | 7.50%        | Filt  | er and se |              |            | 2.4     |
|                        |                        | <u> </u>             |              |       |           |              | e Train 1: | 0.2     |
|                        | DEVIATION              | ON:                  | 3.65%        |       | Prob      | oe Sampl     | e Train 2: | 0.2     |

### intertek Total Quality. Assured.

| sured.    | Room Tem         | ıp            | Bar Pressur | e          | Relative Hu  | midity      | Air Velo | city  |
|-----------|------------------|---------------|-------------|------------|--------------|-------------|----------|-------|
|           | Before           | After         | Before      | After      | Before       | After       | Before   | After |
|           | 83               | 0             | 29.20       | 29.35      | 11.8         | 12.7        | 0        | 0     |
|           |                  |               |             |            |              |             | ļ        |       |
| Average D | ilution Tunnel M | leasurements  | 3           |            |              | Sample Da   | ıta      |       |
| Burn      | Velocity         | Flow Rate     |             | Total Samp | le           | Particulate |          |       |
| Time      | (Ft/sec)         | (dscf/min)    | (R)         | 1          | 2            | 1           | 2        |       |
| 406       | 15.35            | 300.35        | 541.45      | 50.62      | 50.56        | 2.80        | 2.60     |       |
|           |                  |               |             |            |              |             |          |       |
|           | Dilution Tunn    | el Dual Train | Precision   |            |              |             |          |       |
| İ         | Sample Ration    | os            | Total Emis  | sions (g)  |              | i<br>!      | <u> </u> |       |
|           | Train 1          | Train 2       | Train 1     | Train 2    | Deviation (% | 6)          |          |       |
| <br>      | 2409.06          | 2411.80       | 6.75        | 6.27       | 3.65%        |             |          |       |
|           |                  |               |             |            |              |             | İ        |       |
| Burn      |                  |               |             | Initial    |              | Run         | Average  |       |
| Rate      | İ                | Surface       |             | Draft      |              | Time        | Draft    |       |
| 0.707     |                  | 0.000         |             | 0.054      |              | 406.000     | 0.039    |       |
| Run       | Date             | Burn Rate     | Emission    |            |              | <br>        | -        |       |
| 2         | 2021-02-23       | 0.707         | 0.962       |            |              |             | T        |       |



### **E&E Tunnel Traverse Worksheet**

Static Pressure: 0.116

Barometer: 29.2

|          | TUNNEL<br>VELOCITY | TUNNEL<br>TEMP | SQUARE<br>ROOT |           |        |
|----------|--------------------|----------------|----------------|-----------|--------|
| A CENTER | 0.067              | 97.200         | 0.2588         |           |        |
| B CENTER | 0.072              | 94.600         | 0.2683         |           |        |
| A1       | 0.070              | 95.900         | 0.2646         | PITOT     |        |
| A2       | 0.074              | 96.800         | 0.2720         | CONSTANT= | 0.9761 |
| A3       | 0.064              | 95.600         | 0.2530         |           |        |
| A4       | 0.054              | 73.200         | 0.2324         |           |        |
| B1       | 0.066              | 95.500         | 0.2569         |           |        |
| B2       | 0.076              | 96.600         | 0.2757         |           |        |
| В3       | 0.067              | 96.300         | 0.2588         |           |        |
| B4       | 0.054              | 82.000         | 0.2324         |           |        |
| AVERAGE  |                    | 92.37          | 0.2573         |           |        |

### **E&E FUEL LOAD DATA SHEET**



Test Load Weight:

|                 |      |        | Lower | Ideal | Upper |
|-----------------|------|--------|-------|-------|-------|
| Firebox Volume: | 1.03 | cu. ft | 11.74 | 12.36 | 12.98 |

Load Volume: 1.0300 cu. ft Loading Density: 12.377 lbs./ft3

Number of Spacers: Load Density: 12.377 lbs./ft3

|       |   | Piece Size | :      | Weight | Meter Moisture Content |            |       |  |  |  |  |
|-------|---|------------|--------|--------|------------------------|------------|-------|--|--|--|--|
| Thick | Χ | Wide x     | Length | lbs    | Dry                    | Uncorrecte | ed %  |  |  |  |  |
|       | 2 | 4          | 16     | 2.27   | 21.20                  | 23.20      | 17.60 |  |  |  |  |
|       | 2 | 4          | 16     | 2.50   | 23.70                  | 16.40      | 23.60 |  |  |  |  |
|       | 2 | 4          | 16     | 2.48   | 20.10                  | 16.60      | 24.90 |  |  |  |  |
|       | 2 | 4          | 16     | 2.00   | 20.40                  | 23.70      | 24.90 |  |  |  |  |
|       | 2 | 4          | 16     | 3.50   | 20.30                  | 19.40      | 17.60 |  |  |  |  |
|       |   |            |        |        |                        |            |       |  |  |  |  |
|       |   |            |        |        |                        |            |       |  |  |  |  |
|       |   |            |        |        |                        |            |       |  |  |  |  |
|       |   |            |        |        |                        |            |       |  |  |  |  |

|                  |        |      |           |       | ì   |
|------------------|--------|------|-----------|-------|-----|
| Test Load Weight | 12.748 | lbs. | Dry Weigh | 4.782 | kg. |

**Average Moisture Content: %** 

Pre-test moisture content: %

#DIV/0! Wet: #DIV/0!

Coal Bed Range:2.6lbs.to3.1lbs.20% to 25% of test load

November 20, 2015 Adjunct to ASTM E XXXX Wood Heater Cordwood Test Method Cordwood Fuel Load Calculators - 12 lb/ft<sup>3</sup> Nominal Load Density Core 45-65% of Total Load Weight, Remainder 35-55% of Total Load Weight

THIS DOCUMENT IS NOT AN ASTM STANDARD; IT IS UNDER CONSIDERATION WITHIN AN ASTM TECHNICAL COMMITTEE BUT HAS NOT RECEIVED ALL APPROVALS REQUIRED TO BECOME AN ASTM STANDARD. IT SHALL NOT BE REPRODUCED OR CIRCULATED OR QUOTED, IN WHOLE OR IN PART, OUTSIDE OF ASTM COMMITTEE ACTIVITIES EXCEPT WITH THE APPROVAL OF THE CHAIRMAN OF THE COMMITTEE HAVING THE DESIDED OF A CONTROL ASTM. JOB OF THE CHAIRMAN OF THE COMMITTEE ACTIVITIES EXCEPT WITH THE SOCIETY. CONDUCTING ASTM. JOB OF THE CHAIRMAN OF THE COMMITTEE ACTIVITIES IN ADD. THE DESIDENT OF THE SOCIETY. CONDUCTING ASTM. JOB OF THE DESIDENT OF THE SOCIETY.

| Values to be input manually                                  |              |                | _                      |          |           | JURISDICTION AND THE PRESIDENT OF THE SOCIETY. COPYRIGHT ASTM, 100 BARR HARBOR DRIVE, WEST CONSHOHOCKEN, PA 19428. ALL RIGHTS RESERVED. |
|--------------------------------------------------------------|--------------|----------------|------------------------|----------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|
| For Usable Firebox Volumes up to 3.0 ft <sup>3</sup> - Low a | ınd Medium   | ı Fire         |                        |          |           |                                                                                                                                         |
| Nominal Required Load Density (wet basis)                    | <b>12</b> lk | o/ft³          |                        |          |           |                                                                                                                                         |
| Usable Firebox Volume                                        | 1.03 ft      | t <sup>3</sup> |                        |          |           |                                                                                                                                         |
| Total Nom. Load Wt. Target                                   | 12.36 lk     | )              |                        |          |           |                                                                                                                                         |
| Total Load Wt. Allowable Range                               | 11.74        | to             | 12.98                  | lb       |           |                                                                                                                                         |
| Core Target Wt. Allowable Range                              | 5.562        | to             | 8.03                   | lb       |           |                                                                                                                                         |
| Remainder Load Wt. Allowable Range                           | 4.33         | to             | 6.80                   | lb       |           |                                                                                                                                         |
|                                                              |              |                |                        |          | Mid-Point |                                                                                                                                         |
| Core Load Fuel Pc. Wt. Allowable Range                       | 1.85         | to             | 3.09                   | lb       | 2.47      |                                                                                                                                         |
| Remainder Load Pc. Wt. Allowable Range                       | 1.24         | to             | 3.71                   | lb       | 2.47      | Fuel Piece Moisture Reading (%-dry basis)                                                                                               |
|                                                              | Pc. #        |                |                        |          | Ordre     | 1 2 3 Ave. Pc. Wt. Dry Basis                                                                                                            |
| Core Load Piece Wt. Actual                                   | 1            | 2              | <mark>.27</mark> lb    | In Range |           | 21.2 23.2 17.6 20.7 In Range 1.88 lb 0.85                                                                                               |
|                                                              | 2            | 2              | <mark>.50</mark> lb    | In Range |           | 23.7 16.4 23.6 21.2 In Range 2.06 lb 0.94                                                                                               |
|                                                              | 3            | 2              | <mark>.48</mark> lb    | In Range |           | 20.1 16.6 24.9 20.5 In Range 2.06 lb 0.93                                                                                               |
| Core Load Total. Wt. Actual                                  |              | 7.             | .25 lb                 | In Range | <u>-</u>  |                                                                                                                                         |
|                                                              | Pc. #        |                |                        |          |           |                                                                                                                                         |
| Remainder Load Piece Wt.                                     | 1            |                | . <mark>00</mark> lb   | In Range |           | 20.4 23.7 24.9 23.0 In Range 1.63 lb 0.74                                                                                               |
| (2 or 3 Pcs.)                                                | 2            | 3              | <mark>.50</mark> lb    | In Range |           | 20.3 19.4 17.6 19.1 In Range 2.94 lb 1.33                                                                                               |
|                                                              | 3            |                | lb                     | NA       |           | 0.00 lb 0.00                                                                                                                            |
| Remainder Load Piece Weight Ratio - Small/Larg               | e            | 5              | 7%                     | In Range | ≤ 67%     | Total Load Ave. MC % (dry basis) 20.7 In Range                                                                                          |
| Remainder Load Tot. Wt. Act                                  |              | 5              | <mark>.50</mark> lb    | In Range |           | Total Load Ave. MC % (wet basis) 17.1                                                                                                   |
| Total Load Wt. Actual                                        |              |                | <mark>.75</mark> lb    | In Range |           | Total Test Load Weight (dry basis) 10.56 lb 4.79                                                                                        |
| Core % of Total Wt.                                          |              | 5              | 7%                     | In Range | 45-65%    | Total Fuel Weight Burned During Test Run (dry basis) 10.6 lb 4.79                                                                       |
| Remainder % of Total Wt.                                     |              | 4              | 3%                     | In Range | 35-55%    |                                                                                                                                         |
| Actual Load % of Nominal Target                              |              | 10             | 3%                     | In Range | 95-105%   |                                                                                                                                         |
| Actual Fuel Load Density                                     |              | 1              | 2.4 lb/ft <sup>3</sup> |          |           | 1.9122                                                                                                                                  |
| Allowable Charcoal Bed Wt. Range (lb)                        | 1.3          | to             | 2.5                    |          | Mid-Point | 14.66                                                                                                                                   |
| Actual Charcoal Bed Wt.                                      |              |                | <mark>1.9</mark> lb    | In Range | 1.9       | 3.82 braise                                                                                                                             |
| Actual Fuel Load Ending Wt.                                  |              |                | <mark>0.0</mark> lb    | lb       | ≥ 90%     |                                                                                                                                         |
| Total Wt. of Fuel Burned During Test Run lb.                 |              | 1              | 2.7 lb                 |          |           |                                                                                                                                         |

November 20 Adjunct to ASTM E XXXX Wood Heater Cordwood Test Method Cordwood Fuel Load Calculators - 10 lb/ft <sup>3</sup> Nominal Load Density Core 45-65% of Total Load Weight, Remainder 35-55% of Total Load Weight

THIS DOCUMENT IS NOT AN ASTM STANDARD; IT IS UNDER CONSIDERATION WITHIN AN ASTM TECHNICAL COMMITTEE BUT HAS NOT RECEIVED ALL APPROVALS REQUIRED TO BECOME AN ASTM STANDARD. IT SHALL NOT BE REPRODUCED OR CIRCULATED OR QUOTED, IN WHOLE OR IN PART, OUTSIDE OF ASTM COMMITTEE ACTIVITIES EXCEPT WITH THE APPROVAL OF THE CHAIRMAN OF THE COMMITTEE HAVING JURISDICTION AND THE PRESIDENT OF THE SOCIETY. COPYRIGHT ASTM, 100 BAR HARROT DRIFE, WEST

| Values to be input manually                         |                      |       |                    |              |           | JURISDICTION AND THE PRESIDENT<br>CONSHOHOCKEN, PA 19428. ALL RIGHTS | RESERVED.     | EII. COPIRIGH   | 1 ASIM, 100 | ) BARK HARBOR | DRIVE, WEST    |     |
|-----------------------------------------------------|----------------------|-------|--------------------|--------------|-----------|----------------------------------------------------------------------|---------------|-----------------|-------------|---------------|----------------|-----|
| or All Usable Firebox Volumes - High Fire Test Only |                      |       |                    |              |           |                                                                      |               |                 |             |               |                |     |
| Nominal Required Load Density (wet basis)           | <b>10</b> lb/        | /ft³  |                    |              |           |                                                                      |               |                 |             |               |                |     |
| Jsable Firebox Volume                               | 1.03 ft <sup>3</sup> |       |                    |              |           |                                                                      |               |                 |             |               |                |     |
| Total Nom. Load Wt. Target                          | 10.30 lb             |       |                    |              |           |                                                                      |               |                 |             |               |                |     |
| Total Load Wt. Allowable Range                      | 9.80                 | to    | 10.80              | lb           |           |                                                                      |               |                 |             |               |                |     |
| Core Target Wt. Allowable Range                     | 4.60                 | to    | 6.70               | lb           |           |                                                                      |               |                 |             |               |                |     |
| Remainder Load Wt. Allowable Range                  | 3.60                 | to    | 5.70               | lb           |           |                                                                      |               |                 |             |               |                |     |
|                                                     |                      |       |                    |              | Mid-Point |                                                                      |               |                 |             |               |                |     |
| Core Load Pc. Wt. Allowable Range                   | 1.50                 | to    | 2.60               | lb           | 2.05      |                                                                      |               |                 |             |               |                |     |
| Remainder Load Pc. Wt. Allowable Range              | 1.00                 | to    | 5.70               | lb           | 3.35      | Fuel Piece Moi                                                       | sture Reading | g (%-dry basis) |             |               |                |     |
|                                                     | Pc. #                |       |                    |              |           | 1                                                                    | 2             | 3               | Ave.        |               | Pc. Wt. Dry Ba | sis |
| Core Load Piece Wt. Actual                          | 1                    | 2.10  | <mark>)</mark> lb  | In Range     |           | 27.8                                                                 | 15.9          | 20.8            | 21.5        | In Range      | 1.73 lb        | 0.7 |
|                                                     | 2                    | 2.25  | lb                 | In Range     |           | 24.5                                                                 | 18.6          | 17.9            | 20.3        | In Range      | 1.87 lb        | 0.8 |
|                                                     | 3                    | 2.32  | 2 lb               | In Range     |           | 24.8                                                                 | 22.1          | 20.4            | 22.4        | In Range      | 1.89 lb        | 0.8 |
| Core Load Total. Wt. Actual                         |                      | 6.68  | 3 lb               | In Range     |           |                                                                      |               |                 |             |               |                |     |
|                                                     | Pc. #                |       |                    | •            |           |                                                                      |               |                 |             |               |                |     |
| Remainder Load Piece Wt.                            | 1                    | 4.50  | ) lb               | In Range     |           | 18.1                                                                 | 25.2          | 20.3            | 21.2        | In Range      | 3.71 lb        | 1.6 |
| (1 to 3 Pcs.)                                       | 2                    |       | lb                 | NA           |           |                                                                      |               |                 |             |               | 0.00 lb        | 0.0 |
|                                                     | 3                    |       | lb                 | NA           |           |                                                                      |               |                 |             |               | 0.00 lb        | 0.0 |
| Remainder Load Piece Weight Ratio - Small/Large     |                      | 100%  | 6                  | NA           | ≤ 67%     | Total Load Ave                                                       | . MC (%-dry b | oasis)          | 21.3        | In Range      |                |     |
| Remainder Load Tot. Wt. Act                         |                      | 4.50  | ) lb               | In Range     |           | Total Load Ave                                                       | MC % (wet     | basis)          | 17.6        | J             |                |     |
| Total Load Wt. Actual                               |                      | 11.18 | B lb               | Out of Range | 2         | Total Test Load                                                      | Weight (dry   | basis) —        |             |               | 9.21 lb        | 4.1 |
| Core % of Total Wt.                                 |                      | 60%   |                    | In Range     | 45-65%    |                                                                      | . ,           | ,               |             |               |                |     |
| Remainder % of Total Wt.                            |                      | 40%   | 6                  | In Range     | 35-55%    | Kindling Moist                                                       | ıre (%-dry ba | sis)            |             |               |                |     |
| Actual Load % of Nominal Target                     |                      | 109%  | 6                  | Out of Range | 95-105%   | 10                                                                   | 10            | 10              | 10.0        | In Range      | 1.94 lb        | 0.8 |
| Actual Fuel Load Density                            |                      | 10.9  | lb/ft <sup>3</sup> |              |           | Start-up Fuel N                                                      | loisture Read | dings (%-dry ba | isis)       |               |                |     |
| Kindling and Start-up Fuel                          |                      |       |                    |              |           | 20.4                                                                 | 22.7          | 16.4            | 19.8        | In Range      | 2.67 lb        | 1.2 |
| Maximim Kindling Wt. (20% of Tot. Load Wt.)         |                      | 2.24  | 1 lb               |              |           |                                                                      |               |                 |             | . 0-          |                |     |
| Actual Kindling Wt.                                 |                      | 2.14  |                    | In Range     | 19.1%     | Total Wt. All F                                                      | iel Added (dr | v basis)        |             |               | 13.83 lb       | 6.2 |
| Maximum Start-up Fuel Wt. (30% of Tot. Load Wt.)    |                      | 3.35  |                    |              |           | Total Wt. All F                                                      |               |                 |             |               | 12.5 lb        | 5.  |
| Actual Start-up Fuel Wt.                            |                      | 3.20  |                    | In Range     | 28.6%     |                                                                      |               | , ,             |             |               |                |     |
| Allowable Residual Start-up Fuel Wt. Range          | 1.1                  | to    | 2.2                | lb           | Mid-Point |                                                                      |               |                 |             |               |                |     |
| Actual Residual Start-up Fuel Wt.                   |                      | 1.36  |                    | In Range     | 1.7       |                                                                      |               |                 |             |               |                |     |
| Total Wt. All Fuel Added (wet basis)                | •                    | 16.52 |                    | Ü            |           |                                                                      |               |                 |             |               |                |     |
| High Fire Test Run End Point Range                  | Low                  |       | High               |              | Mid-Point |                                                                      |               |                 |             |               |                |     |
| Based on Fuel Load Wt. (w/tares)                    | 1.0                  | to    | 1.2                | lb           | 1.1       |                                                                      |               |                 |             |               |                |     |
| Actual Fuel Load Ending Wt.                         |                      |       | lb                 | Out of Range |           |                                                                      |               |                 |             |               |                |     |

ITS-ASTM cordwood-PM-2021-02-23-1st hour Raw Data 1 of 2

|      |          |          |            |          |          |          |       |        |          |       |          |          |          |          |          | co | CO2 | 02 | scale | 4.690729  | Meter | Meter |           |            |
|------|----------|----------|------------|----------|----------|----------|-------|--------|----------|-------|----------|----------|----------|----------|----------|----|-----|----|-------|-----------|-------|-------|-----------|------------|
| Time | Flue     | Room     | Tunnel     | DGM 1    | DGM 1    | Filter 1 | DGM 2 | DGM 2  | Filter 2 | DGM 3 | Filter 3 | Meter #1 | Meter #2 | Draft    | Tunnel   | %  | %   | %  | Lbs   | Corrected | #1    | #2    | Draft     | Calculated |
| 10.0 | Temp 1   | Temp 2   | Dry Bulb 3 | In 13    | Out 14   | 15       | In 16 | Out 17 | 18       | In 19 | 20       | 21       | 22       | 23       | 24       | 25 | 25  | 27 | 28    | Scale     | Cu Ft | Cu Ft |           | Tunnel     |
| 0.0  | 301.2576 | 83.23501 | 91.43604   | 66.7018  | 66.7018  | 82.58642 |       |        |          |       |          | 94.549   |          | 0.054278 | 0.071095 |    |     |    | 12.75 | 8.06      | 3.34  | 0.00  | -0.236431 | -0.23223   |
| 10.0 | 456.0408 | 83.43669 | 98.48547   | 66.88221 | 66.88221 | 85.31313 |       |        |          |       |          | 95.802   |          | 0.081441 | 0.068985 |    |     |    | 11.35 | 6.66      | 3.38  |       | -0.22964  | -0.23275   |
| 20.0 | 384.849  | 78.65396 | 96.36836   | 67.09962 | 67.09962 | 82.79856 |       |        |          |       |          | 97.081   |          | 0.073013 | 0.071996 |    |     |    | 9.82  | 5.13      | 3.43  |       | -0.231747 | -0.232     |
| 30.0 | 370.91   | 72.73414 | 92.40589   | 67.34108 | 67.34108 | 88.23181 |       |        |          |       |          | 98.347   |          | 0.07122  | 0.072088 |    |     |    | 8.61  | 3.92      | 3.47  |       | -0.232195 | -0.23198   |
| 40.0 | 370.1718 | 69.79764 | 92.55346   | 67.48681 | 67.48681 | 83.84683 |       |        |          |       |          | 99.613   |          | 0.071216 | 0.072225 |    |     |    | 7.22  | 2.53      | 3.52  |       | -0.232196 | -0.23194   |
| 50.0 | 368.1595 | 68.74148 | 91.94093   | 67.57725 | 67.57725 | 82.13824 |       |        |          |       |          | 100.875  |          | 0.070946 | 0.072865 |    |     |    | 5.92  | 1.23      | 3.56  |       | -0.232264 | -0.23178   |
| 60.0 | 358.7041 | 69.66682 | 91.50018   | 67.68744 | 67.68744 | 86.17166 |       |        |          |       |          | 102.166  |          | 0.069201 | 0.070932 |    |     |    | 4.69  | 0.00      | 3.61  |       | -0.2327   | -0.23227   |

| intert                 | ملا        | Intertek Testi       | ng Services |             |                        |                    |         |
|------------------------|------------|----------------------|-------------|-------------|------------------------|--------------------|---------|
| n icel c               | GK         | <u> </u>             |             | <u> </u>    |                        |                    |         |
| Total Quality. Assured |            |                      |             |             |                        |                    |         |
| Manu                   | £          | CDI                  |             |             | DECLUT                 | <u> </u>           |         |
| wanu                   | facturer:  |                      |             |             | RESULT                 | 8                  |         |
|                        |            | 2.1 Series           |             |             |                        | ( ( ) \            | #DD//OI |
|                        |            | 2-23-21              |             | Average e   | mission rat            | te:(gr/nr)         | #DIV/0! |
|                        | Run:       |                      |             | D           | ) - 1 - (D = 1   1 = 1 | /l=\ .             | 4 700   |
|                        |            | G104576994           |             | Burn F      | ate (Dry kg/           | nr):               | 4.783   |
|                        | Ouration:  | 60                   |             | <u>i</u>    |                        |                    |         |
| (1                     | minutes)   |                      |             |             |                        |                    |         |
|                        |            |                      |             |             |                        |                    |         |
|                        | DDESS      | URE FACTOR:          | 0.97844     | BAROMETRI   | C DDECCIII             | )<br>)[            |         |
|                        | PKE99      | UKE FACTUR:          | 0.97844     | BARUNE I RI |                        |                    | 29.275  |
| TEMPER                 |            | ACTORS               |             |             |                        | Average:<br>Start: | 29.275  |
| ICIVIPER               | AIURE      | DGM #1:              | 1.00142     |             |                        |                    | 29.2    |
|                        |            | DGM #1.              | 1.14783     |             |                        | End:               | 29.30   |
|                        |            | DGIVI #2.            | 1.14700     |             | TEDVALL                |                    |         |
| <u> </u>               |            |                      |             | DRY GAS ME  |                        |                    | 400 400 |
| VOLUMES SAM            | PLED       |                      |             |             | DGM #1                 | Final:             | 102.166 |
|                        |            | DGM #1:              | 7.53798     |             |                        | Initial:           | 94.549  |
|                        |            | DGM #2:              | 0.00000     | i           |                        |                    |         |
| <u> </u>               |            |                      |             |             | DGM #2                 | Final:             | 0.000   |
| OTAL TUNNEL VOL        | UME (scf): |                      | 17526       |             |                        | Initial:           | 0.000   |
|                        |            |                      |             | TEMPEDATI   |                        | DANIIZINI)         |         |
| SAMPLE RATI            | IOS        |                      |             | TEMPERATU   |                        |                    |         |
|                        |            | Sample Train 1:      | 2325.036    |             |                        | DGM #1:            | 527.254 |
|                        |            | Sample Train 2:      | #DIV/0!     |             |                        | DGM #2:            | 460.000 |
| <u> </u>               |            |                      |             |             |                        |                    |         |
| TOTAL EMISSI           |            | <u> </u>             |             | CALIBRATIO  |                        |                    |         |
|                        |            | Sample Train 1 (g):  | 4.185       |             |                        | DGM #1:            | 1.0100  |
|                        | S          | Sample Train 2 (g):  | #DIV/0!     |             |                        | DGM #2:            | 1.0110  |
| <u> </u>               |            |                      |             |             |                        |                    |         |
| EMISSION RA            |            |                      |             | TUNNEL FLC  | W RATE:                |                    | 292.101 |
|                        |            | nple Train 1 (g/hr): | 4.19        |             |                        | L                  |         |
|                        | San        | nple Train 2 (g/hr): | #DIV/0!     | PARTICULAT  |                        |                    |         |
|                        |            |                      |             |             | Total Sample           |                    | 1.8     |
| i                      |            |                      |             |             | Total Sample           | <del></del>        | 0       |
|                        |            |                      |             |             | seal Sample            | <del></del>        | 1.6     |
|                        |            | MAX Allowed          | 7.50%       |             | seal Sample            | <del>}</del>       |         |
|                        |            | <u> </u>             |             |             | robe Sample            |                    | 0.2     |
| i                      | DEVIATION  | ON:                  | #DIV/0!     | į P         | robe Sample            | e Train 2:         |         |

2021-02-24-Run-3 Surface Temperature

| Time | Ambiant    | Flue        | <b>Dilution Tunnel</b> | Firebox Top | Firebox Back | Firebox Right | Firebox Left | Firebox Bottom |
|------|------------|-------------|------------------------|-------------|--------------|---------------|--------------|----------------|
| 0    | 72.7647844 | 287.1258049 | 90.76383645            | 502.3911208 | 547.7881522  | 495.7331036   | 479.035211   | 482.0223515    |
| 10   | 79.0814281 | 394.4809138 | 95.70184264            | 522.4732657 | 512.4419486  | 472.6877681   | 458.893719   | 477.5260339    |
| 20   | 81.6949427 | 341.2050989 | 88.91014053            | 724.7131766 | 483.1653016  | 468.6983908   | 456.3889637  | 463.0601936    |
| 30   | 82.1670292 | 345.939923  | 94.4926936             | 793.969591  | 468.956822   | 476.5578181   | 453.2023351  | 442.8093377    |
| 40   | 79.2616652 | 346.31116   | 94.84467202            | 827.5624062 | 429.1370869  | 488.2679594   | 457.287727   | 384.1367222    |
| 50   | 78.9610597 | 344.7092307 | 96.28178593            | 838.5110456 | 412.6579829  | 491.9115396   | 464.1274008  | 344.8764632    |
| 60   | 79.0527341 | 334.7746301 | 94.17953202            | 837.0884217 | 408.5451773  | 495.8550964   | 474.743742   | 319.7791452    |
| 70   | 78.3701511 | 306.9712629 | 92.54428087            | 770.3906825 | 410.0193119  | 493.1522666   | 476.5620785  | 303.0355181    |
| 80   | 78.781904  | 272.5227491 | 92.9945718             | 702.9067584 | 402.3080366  | 479.0368427   | 469.8229425  | 293.4233239    |
| 90   | 81.5447325 | 250.6764563 | 89.63054161            | 620.3203153 | 385.4803275  | 460.4328144   | 457.2697784  | 287.349972     |
| 100  | 82.5716997 | 234.1795099 | 89.03531818            | 562.5886768 | 380.5250375  | 451.5992324   | 442.6140467  | 283.739205     |
| 110  | 82.6284813 | 223.3136733 | 88.55715356            | 516.882096  | 376.8382495  | 446.5634433   | 426.283921   | 281.2442279    |
| 120  | 82.5232654 | 218.3874495 | 88.0527304             | 493.3965009 | 373.0959065  | 440.3989561   | 412.6954433  | 279.2222507    |
| 130  | 82.5260286 | 216.4280444 | 87.15540009            | 485.2698149 | 374.643145   | 435.4193327   | 403.1624794  | 277.654747     |
| 140  | 81.2515476 | 210.5194036 | 87.13866579            | 469.4234475 | 372.2058598  | 428.2993231   | 395.6809498  | 276.9137154    |
| 150  | 80.8761483 | 203.4303579 | 86.53226817            | 450.1839491 | 365.4550084  | 418.4363915   | 387.9461654  | 276.2110632    |
| 160  | 80.5684686 | 204.1122554 | 86.35647511            | 445.57325   | 366.3416022  | 407.2613652   | 381.4637691  | 275.5546884    |
| 170  | 80.3747792 | 190.057363  | 85.53934316            | 425.724901  | 355.0966205  | 394.4585296   | 376.3924155  | 274.8241023    |
| 180  | 79.6999445 | 177.6310561 | 84.50863889            | 384.6276868 | 340.6707303  | 375.4893918   | 367.1498284  | 273.7401216    |
| 190  | 78.3821574 | 170.7978247 | 84.83144271            | 358.4522373 | 332.7237536  | 359.7634358   | 356.8433004  | 272.1416864    |
| 200  | 77.3839694 | 164.6754412 | 83.65498174            | 341.4099515 | 328.2566074  | 346.0367175   | 347.3592609  | 270.8932866    |
| 210  | 77.8759358 | 161.2491006 | 82.56791064            | 329.6542342 | 327.4388874  | 335.9364031   | 339.3303457  | 271.6766823    |
| 220  | 77.6242904 | 158.5374183 | 82.23241344            | 320.6035832 | 327.4232631  | 328.015209    | 332.5703954  | 272.8891543    |
| 230  | 79.3927365 | 154.9217584 | 79.65727447            | 311.077754  | 326.6899104  | 320.9624708   | 325.5472806  | 274.1876791    |
| 240  | 79.8364898 | 152.9759365 | 80.16355727            | 303.0208068 | 326.1446163  | 314.1815414   | 318.1382484  | 274.5179977    |
| 250  | 78.5377729 | 151.0865471 | 80.39995844            | 296.6488838 | 326.0857973  | 307.606512    | 310.7242933  | 273.8437203    |
| 260  | 78.0132685 | 149.4489236 | 80.0666482             | 291.5463958 | 327.0155365  | 301.8163258   | 304.3528359  | 273.3470128    |
| 270  | 77.9346813 | 148.0927716 | 79.81568952            | 288.1159847 | 328.7950261  | 296.6457494   | 298.9873983  | 273.5373228    |
| 280  | 79.4856644 | 147.2875873 | 78.61595829            | 285.1689212 | 329.9959348  | 292.5484196   | 294.8016609  | 273.4311429    |
| 290  | 79.7728365 | 144.95232   | 78.35776046            | 280.2032689 | 327.7640113  | 287.0779109   | 290.6039523  | 273.225241     |
| 300  | 79.7302745 | 142.6179245 | 77.99484118            | 273.5112821 | 319.644169   | 280.2862069   | 285.6415384  | 271.7033315    |
| 310  | 79.5857896 | 140.4751595 | 77.87637114            | 267.0022574 | 311.8155664  | 273.147512    | 280.5128814  | 268.6157653    |
| 320  | 79.4443074 | 139.0253729 | 77.67832043            | 261.8717382 | 305.9918095  | 266.320629    | 275.4311289  | 265.2645926    |
| 330  | 79.4725778 | 138.2175506 | 77.48664043            | 257.7457517 | 301.4604184  | 260.1777789   | 270.9074678  | 261.6474523    |
| 340  | 79.2682536 | 137.0101605 | 76.98942793            | 254.1344347 | 297.8533045  | 254.7414549   | 266.7157797  | 259.0107868    |
| 350  | 79.1867176 | 135.8295441 | 76.84842227            | 250.5249167 | 294.3669863  | 249.9388198   | 262.7400259  | 256.8428703    |
| 360  | 79.0774193 | 135.1829766 | 76.77553242            | 248.1781045 | 291.4409879  | 245.1252545   | 259.1954034  | 254.8789911    |
| 370  | 78.9576233 | 134.6781803 | 76.71331337            | 246.3895992 | 289.0872579  | 240.7724883   | 256.0335129  | 253.5570943    |
| 380  | 78.7579895 | 133.9202314 | 76.55788356            | 243.4104199 | 286.5079535  | 236.5313819   | 253.1607799  | 252.5023531    |
| 390  | 78.7331469 | 132.9263169 | 76.46739828            | 240.4166962 | 284.1975268  | 232.2774009   | 250.1875263  | 251.5137904    |
| 400  | 78.6143166 | 132.2849226 | 76.29236141            | 237.7883449 | 282.2574015  | 228.4968043   | 247.2394384  | 250.3924126    |
| 410  | 78.6151465 | 131.3402967 | 76.22756966            | 235.1203486 | 279.2410637  | 225.2997611   | 244.2927199  | 249.2749128    |
| 420  | 78.5943091 | 130.441484  | 76.15852621            | 232.4161766 | 275.0154957  | 222.4902865   | 240.8853915  | 247.9027954    |
| 430  | 78.3679237 | 129.5081983 | 75.79269329            | 230.0140106 | 270.5077281  | 220.0879891   | 237.2839219  | 245.9736137    |
| 440  | 78.4053323 | 128.7946518 | 75.86255406            | 227.743062  | 266.0172317  | 218.1842873   | 233.8236075  | 243.8630273    |
| 450  | 78.1932792 |             |                        | 225.2530275 | 260.0011658  | 216.0944057   | 230.5976322  | 241.3746363    |
| 460  | 78.2305289 | 126.3963471 | 75.59030438            | 222.1866524 | 253.2813045  | 213.5039766   | 227.1712513  | 237.8320248    |
| 464  | 78.1159572 | 126.0547582 | 75.3845817             | 220.8790156 | 250.8759551  | 212.3495039   | 225.6695859  | 236.5086985    |

1 of 7

|                |          |          |                      |          |          |          |          |          |          |       |          |                    |                    |          | ſ                    | со | CO2 | 02 | scale      | 0.2813563 | Meter          | Meter        |                        |                      |
|----------------|----------|----------|----------------------|----------|----------|----------|----------|----------|----------|-------|----------|--------------------|--------------------|----------|----------------------|----|-----|----|------------|-----------|----------------|--------------|------------------------|----------------------|
| Time           | Flue     | Room     | Tunnel               | DGM 1    | DGM 1    | Filter 1 | DGM 2    | DGM 2    | Filter 2 | DGM 3 | Filter 3 | Meter #1           | Meter #2           | Draft    | Tunnel               | %  | %   | %  | Lbs        | Corrected | #1             | #2           | Draft                  | Calculated           |
| 10.0           | Temp 1   | Temp 2   | Dry Bulb 3           | In 13    | Out 14   | 15       | In 16    | Out 17   | 18       | In 19 | 20       | 21                 | 22                 | 23       | 24                   | 25 | 25  | 27 | 28         | Scale     | Cu Ft          | Cu Ft        |                        | Tunnel               |
| 0.0            | 287.1258 | 72.76478 | 90.76384             | 67.41227 | 67.52364 |          | 67.65169 |          |          |       |          | 488.922            | 202.366            | 0.05203  | 0.103187             |    |     |    | 12.9       | 12.64     | 17.26          | 7.14         | -0.236992              | -0.2242              |
| 10.0           |          |          | 95.70184             |          | 67.62838 |          | 68.28311 |          |          |       |          | 490.187            | 203.620            |          | 0.071443             |    |     |    | 11.6       | 11.32     | 17.30          | 7.19         | -0.230915              | -0.23214             |
| 20.0           |          |          | 88.91014             |          |          |          |          |          |          |       |          | 491.442            | 204.869            |          | 0.072604             |    |     |    | 10.4       | 10.08     | 17.35          | 7.23         | -0.233245              | -0.23185             |
| 30.0           |          |          | 94.49269             |          | 67.90404 |          | 68.53326 |          |          |       |          | 492.712            |                    |          | 0.074632             |    |     |    | 9.2        | 8.97      | 17.39          | 7.28         | -0.233151              | -0.23134             |
| 40.0           |          |          | 94.84467             |          |          |          |          |          |          |       |          | 493.978            | 207.377            |          | 0.075024             |    |     |    | 8.2        | 7.91      | 17.44          | 7.32         | -0.233323              | -0.23124             |
| 50.0           |          |          | 96.28179             |          |          |          |          |          |          |       |          | 495.240            | 208.641            |          | 0.074942             |    |     |    | 7.1        | 6.86      | 17.48          | 7.37         | -0.233204              | -0.23126             |
| 60.0           |          |          | 94.17953             |          |          |          |          | 68.42229 |          |       |          | 496.516            | 209.899            |          | 0.074863             |    |     |    | 6.2        | 5.92      | 17.53          | 7.41         | -0.234056              | -0.23128             |
| 70.0           |          |          | 92.54428             |          |          |          |          |          |          |       |          | 497.778            | 211.165            |          | 0.074947             |    |     |    | 5.5        | 5.20      | 17.57          | 7.45         | -0.234894              | -0.23126             |
| 80.0           | 272.5227 |          | 92.99457             |          |          |          |          |          |          |       |          | 499.045            | 212.425            |          | 0.074106             |    |     |    | 5.0        | 4.70      | 17.62          | 7.50         | -0.236206              | -0.23147             |
| 90.0           |          |          | 89.63054             |          |          |          |          | 68.53507 |          |       |          | 500.313            | 213.682            |          | 0.07485              |    |     |    | 4.6        | 4.29      | 17.66          | 7.54         | -0.237347              | -0.23129             |
| 100.0          | 234.1795 |          | 89.03532             |          |          |          |          |          |          |       |          | 501.580            | 214.958            |          | 0.073779             |    |     |    | 4.1        | 3.84      | 17.71          | 7.59         | -0.238272              | -0.23156             |
| 110.0          |          |          | 88.55715             |          |          |          |          |          |          |       |          | 502.872            | 216.233            |          | 0.075492             |    |     |    | 3.7        | 3.44      | 17.75          | 7.63         | -0.23851               | -0.23113             |
| 120.0<br>130.0 |          |          | 88.05273             |          |          |          |          | 68.57596 |          |       |          | 504.157<br>505.442 | 217.521            |          | 0.07558              |    |     |    | 3.4        | 3.08      | 17.80          | 7.68         | -0.238711              | -0.23111             |
|                |          | 82.52603 |                      |          |          |          | 68.85805 |          |          |       |          |                    | 218.796            |          | 0.074912             |    |     |    | 3.0        | 2.72      | 17.84          | 7.72         | -0.238885<br>-0.239198 | -0.23127<br>-0.23111 |
| 140.0<br>150.0 |          |          | 87.13867<br>86.53227 |          |          |          | 68.85696 |          |          |       |          | 506.733<br>508.012 | 220.080<br>221.356 |          | 0.075559<br>0.075817 |    |     |    | 2.7<br>2.4 | 2.40      | 17.89<br>17.93 | 7.77<br>7.81 | -0.239196              | -0.23111             |
| 160.0          |          |          | 86.35648             |          |          |          | 68.88676 |          |          |       |          | 509.299            | 222.639            |          | 0.073817             |    |     |    | 2.4        | 1.91      | 17.98          | 7.86         | -0.239324              | -0.23103             |
| 170.0          |          |          | 85.53934             |          |          |          |          |          | 82.7829  |       |          |                    | 223.911            |          | 0.075255             |    |     |    | 2.0        | 1.77      | 18.02          | 7.90         | -0.240463              | -0.23119             |
| 180.0          |          |          | 84.50864             |          |          |          |          |          |          |       |          | 511.876            | 225.205            |          | 0.077192             |    |     |    | 1.9        | 1.66      | 18.07          | 7.95         | -0.241515              | -0.23119             |
| 190.0          |          |          | 84.83144             |          |          |          |          |          |          |       |          | 513.181            | 226.495            |          | 0.074989             |    |     |    | 1.8        | 1.57      | 18.12          | 8.00         | -0.241569              | -0.23125             |
| 200.0          |          |          | 83.65498             |          |          |          | 68.93509 |          |          |       |          | 514.474            | 227.780            |          | 0.077776             |    |     |    | 1.8        | 1.54      | 18.16          | 8.04         | -0.242016              | -0.23056             |
| 210.0          |          |          | 82.56791             |          |          |          |          | 68.65927 |          |       |          | 515.774            | 229.072            |          | 0.076009             |    |     |    | 1.7        | 1.44      | 18.21          | 8.09         | -0.241965              | -0.231               |
| 220.0          |          |          | 82.23241             |          |          |          | 68.97802 |          |          |       |          | 517.080            | 230.358            |          | 0.07577              |    |     |    | 1.6        | 1.35      | 18.25          | 8.13         | -0.242074              | -0.23106             |
| 230.0          |          |          | 79.65727             |          |          |          |          |          |          |       |          | 518.380            | 231.657            |          | 0.077434             |    |     |    | 1.5        | 1.22      | 18.30          | 8.18         | -0.242512              | -0.23064             |
| 240.0          |          |          | 80.16356             |          |          |          |          |          |          |       |          | 519.683            | 232.954            |          | 0.076164             |    |     |    | 1.4        | 1.08      | 18.34          | 8.22         | -0.242942              | -0.23096             |
| 250.0          | 151.0865 | 78.53777 | 80.39996             | 69.06991 | 68.53883 | 82,75837 | 69.12701 | 68.88442 | 85.89674 |       |          | 520,994            | 234,247            | 0.028216 | 0.07534              |    |     |    | 1.3        | 0.98      | 18.39          | 8.27         | -0.242946              | -0.23116             |
| 260.0          | 149.4489 | 78.01327 | 80.06665             | 69.09819 | 68.5692  | 82.71443 | 69.15362 | 68.9077  | 86.39376 |       |          | 522.311            | 235.550            | 0.026749 | 0.0767               |    |     |    | 1.2        | 0.89      | 18.44          | 8.31         | -0.243313              | -0.23082             |
| 270.0          | 148.0928 | 77.93468 | 79.81569             | 69.13554 | 68.59864 | 82.76891 | 69.22807 | 68.9388  | 86.48655 |       |          | 523.618            | 236.845            | 0.026635 | 0.077068             |    |     |    | 1.1        | 0.82      | 18.48          | 8.36         | -0.243341              | -0.23073             |
| 280.0          | 147.2876 | 79.48566 | 78.61596             | 69.13054 | 68.65534 | 82.46424 | 69.18431 | 68.93964 | 86.30023 |       |          | 524.921            | 238.138            | 0.028673 | 0.074396             |    |     |    | 1.0        | 0.72      | 18.53          | 8.41         | -0.242832              | -0.2314              |
| 290.0          | 144.9523 | 79.77284 | 78.35776             | 69.14664 | 68.61183 | 82.38583 | 69.19207 | 68.95116 | 86.32239 |       |          | 526.230            | 239.438            | 0.026749 | 0.075701             |    |     |    | 0.9        | 0.63      | 18.58          | 8.45         | -0.243313              | -0.23107             |
| 300.0          | 142.6179 | 79.73027 | 77.99484             | 69.08468 | 68.58987 | 82.18185 | 69.11302 | 68.95213 | 86.23328 |       |          | 527.542            | 240.737            | 0.025662 | 0.076584             |    |     |    | 8.0        | 0.56      | 18.62          | 8.50         | -0.243585              | -0.23085             |
| 310.0          | 140.4752 | 79.58579 | 77.87637             | 68.98944 | 68.52255 | 82.20111 | 69.06197 | 68.90233 | 85.97524 |       |          | 528.853            | 242.031            | 0.026327 | 0.075544             |    |     |    | 0.8        | 0.51      | 18.67          | 8.54         | -0.243418              | -0.23111             |
| 320.0          | 139.0254 | 79.44431 | 77.67832             | 68.99394 | 68.57415 | 82.22793 | 69.10939 | 68.90807 | 85.85117 |       |          | 530.157            | 243.329            | 0.026039 | 0.077812             |    |     |    | 0.7        | 0.44      | 18.71          | 8.59         | -0.24349               | -0.23055             |
| 330.0          | 138.2176 | 79.47258 | 77.48664             | 68.99151 | 68.5463  | 82.42302 | 69.13239 | 68.88814 | 85.88596 |       |          | 531.467            | 244.639            | 0.024792 | 0.075124             |    |     |    | 0.7        | 0.39      | 18.76          | 8.64         | -0.243802              | -0.23122             |
| 340.0          | 137.0102 | 79.26825 | 76.98943             | 68.89533 | 68.49846 | 82.29643 | 69.03372 | 68.82488 | 85.71332 |       |          | 532.778            | 245.951            | 0.024999 | 0.0756               |    |     |    | 0.6        | 0.32      | 18.81          | 8.68         | -0.24375               | -0.2311              |
| 350.0          |          |          | 76.84842             |          |          |          | 69.07598 |          |          |       |          | 534.093            | 247.260            |          | 0.075913             |    |     |    | 0.5        | 0.26      | 18.85          | 8.73         | -0.244059              | -0.23102             |
| 360.0          |          |          | 76.77553             |          |          |          | 69.09617 |          |          |       |          | 535.406            | 248.572            |          | 0.076272             |    |     |    | 0.5        | 0.20      | 18.90          | 8.77         | -0.243934              | -0.23093             |
| 370.0          |          |          | 76.71331             |          |          |          | 69.05122 |          |          |       |          | 536.715            |                    |          | 0.075801             |    |     |    | 0.4        | 0.16      | 18.95          | 8.82         | -0.243834              | -0.23105             |
| 380.0          |          |          | 76.55788             |          |          |          |          |          |          |       |          | 538.023            | 251.199            |          | 0.075538             |    |     |    | 0.4        | 0.11      | 18.99          | 8.87         | -0.244267              | -0.23112             |
| 390.0<br>400.0 | 132.9263 |          | 76.29236             |          | 68.49754 |          | 69.16701 |          |          |       |          | 539.338<br>540.655 | 252.511<br>253.820 |          | 0.075629<br>0.075658 |    |     |    | 0.3<br>0.3 | 0.05      | 19.04<br>19.09 | 8.91<br>8.96 | -0.243849<br>-0.244171 | -0.23109<br>-0.23109 |
| 400.0          |          |          | 76.29236             |          |          |          |          |          |          |       |          | 540.055            | 255.128            |          | 0.07598              |    |     |    | 0.3        | -0.04     | 19.09          | 9.01         | -0.244171              | -0.23109             |
| 420.0          |          |          | 76.15853             |          |          |          |          |          |          |       |          | 543,288            | 256.446            |          | 0.076689             |    |     |    | 0.2        | -0.04     | 19.13          | 9.05         | -0.244348              | -0.23083             |
| 430.0          |          |          | 75.79269             |          |          |          |          | 68.96512 |          |       |          | 544.585            | 257.751            |          | 0.076068             |    |     |    | 0.1        | -0.14     | 19.22          | 9.10         | -0.244539              | -0.23098             |
| 440.0          |          |          | 75.86255             |          |          |          | 69.20152 |          |          |       |          | 545.893            | 259.061            |          | 0.075821             |    |     |    | 0.1        | -0.18     | 19.27          | 9.14         | -0.244294              | -0.23104             |
| 450.0          |          |          | 75.71587             |          | 68.66626 | 82.41256 | 69.24065 | 69.01142 | 85.86767 |       |          | 547.207            | 260.367            |          | 0.075924             |    |     |    | 0.1        | -0.23     | 19.32          | 9.19         | -0.244145              | -0.23102             |
| 460.0          | 126.3963 |          |                      |          |          |          | 69.27682 |          |          |       |          | 548.521            | 261.671            |          | 0.076271             |    |     |    | 0.0        | -0.26     | 19.36          | 9.24         | -0.244647              | -0.23093             |
| 464.0          | 126.0548 | 78.11596 | 75.38458             | 69.26718 | 68.77117 | 82.52172 | 69.3247  | 69.04462 | 86.08035 |       |          | 549.061            | 262.208            | 0.020549 | 0.078098             |    |     |    | 0.0        | -0.28     | 19.38          | 9.26         | -0.244863              | -0.23048             |

| intertek                 | Intertek Testi              | ng Services |          |            |              |                    |         |
|--------------------------|-----------------------------|-------------|----------|------------|--------------|--------------------|---------|
|                          |                             |             |          |            |              |                    |         |
| Total Quality. Assured   |                             |             |          |            | <br>         | ļ<br>              |         |
|                          | CDI                         |             |          |            | DECLUT       |                    |         |
| Manufacture              |                             | <u>i</u>    |          |            | RESULT       | 5                  |         |
|                          | l: 2.1 Series<br>e: 2-24-21 |             | A        | <b>***</b> | iaaian ya    | to ( / or #/b #)   | 0.970   |
|                          |                             |             | Ave      | rage em    | ission ra    | te:(gr/hr)         | 0.970   |
| Rur                      |                             |             |          | D Dat      | - /D= - l-=  | /h \ .             | 0.632   |
| Test Duration            | : G104576994                |             |          | Burn Rai   | e (Dry kg    | /nr):              | 0.032   |
|                          |                             |             |          |            |              | ļi                 |         |
| (minutes                 | 5)                          |             |          |            | <br>         | ļ                  |         |
|                          |                             |             | i        |            |              | ļ                  |         |
| DDES                     | SURE FACTOR:                | 0.98429     | DADO     | METDIC     | PRESSU       | DE                 |         |
| PRES                     | SURE FACTUR.                | 0.96429     | DAROI    | VIETRIC    | PRESSU       |                    | 29.45   |
| TEMPERATURE              | FACTORS                     |             |          |            | i<br>!       | Average:<br>Start: | 29.45   |
| TEMPERATURE              | DGM #1:                     | 0.99884     |          |            |              | {                  | 29.5    |
|                          | DGM #1.                     | 0.99844     |          |            | <u> </u><br> | End:               | 29.4    |
|                          | DGIVI #2.                   | 0.99044     |          | A O NACT   |              | E0                 |         |
|                          |                             |             | DRYG     | AS ME I    | ER VALU      |                    |         |
| VOLUMES SAMPLED          |                             |             |          |            | DGM #1       | Final:             | 549.061 |
|                          | DGM #1:                     | 59.71709    |          |            |              | Initial:           | 488.922 |
|                          | DGM #2:                     | 59.45686    |          |            |              |                    |         |
|                          |                             |             |          |            | DGM #2       | Final:             | 262.208 |
| TOTAL TUNNEL VOLUME (scf | ):                          | 139686      |          |            |              | Initial:           | 202.366 |
|                          |                             | <u> </u>    |          |            | ļ            | <u> </u>           |         |
| SAMPLE RATIOS            |                             |             | TEMP     | ERATUR     | ES (DEG      | . RANKIN)          |         |
|                          | Sample Train 1:             | 2339.132    |          |            |              | DGM #1:            | 528.611 |
|                          | Sample Train 2:             | 2349.370    |          |            | <br>         | DGM #2:            | 528.826 |
|                          |                             | i           | <u>i</u> |            | <u> </u>     | <u> </u>           |         |
| TOTAL EMISSIONS          |                             |             | CALIB    | RATION     | FACTOR       |                    |         |
|                          | Sample Train 1 (g):         | 7.719       |          |            | <br>         | DGM #1:            | 1.0100  |
|                          | Sample Train 2 (g):         | 7.283       |          |            | <br>         | DGM #2:            | 1.0110  |
|                          |                             |             |          |            | <u> </u>     | <u> </u>           |         |
| EMISSION RATES           |                             |             | TUNN     | EL FLOW    | / RATE:      |                    | 301.048 |
|                          | ample Train 1 (g/hr):       | 1.00        | i        |            | i<br>!<br>!  | <u> </u>           |         |
| S                        | ample Train 2 (g/hr):       | 0.94        | PARTI    |            | CATCH        |                    |         |
|                          |                             | <u> </u>    |          |            |              | e Train 1:         | 3.3     |
|                          |                             |             |          |            |              | e Train 2:         | 3.1     |
|                          |                             |             |          |            |              | e Train 1:         | 2.9     |
|                          | MAX Allowed                 | 7.50%       | Filt     |            |              | e Train 2:         | 2.8     |
|                          | 1                           |             |          |            |              | e Train 1:         | 0.4     |
| DEVIA                    | TION:                       | 2.91%       |          | Prob       | oe Sampl     | e Train 2:         | 0.3     |

### intertek Total Quality. Assured:

| ssured.    | Room Tem             | Bar Pressur   | e          | Relative Hu | midity       | Air Velo    | city     |       |
|------------|----------------------|---------------|------------|-------------|--------------|-------------|----------|-------|
|            | Before               | After         | Before     | After       | Before       | After       | Before   | After |
|            | 73                   | 78            | 29.50      | 29.40       | 14.5         | 16.1        | 0        | 0     |
|            | ļ                    |               |            |             |              |             |          |       |
| Average Di | L<br>Iution Tunnel M | leasurements  | <b>3</b>   |             |              | Sample Da   | ita      |       |
| Burn       | Velocity             | Flow Rate     | Temp       | Total Samp  | ole          | Particulate | Catch    |       |
| Time       | (Ft/sec)             | (dscf/min)    | (R)        | 1           | 2            | 1           | 2        |       |
| 464        | 15.33                | 301.05        | 542.96     | 59.72       | 59.46        | 3.30        | 3.10     |       |
|            |                      |               |            |             |              |             |          |       |
|            | Dilution Tunn        | el Dual Train | Precision  |             |              |             |          |       |
|            | Sample Rati          | os            | Total Emis | sions (g)   |              |             |          |       |
|            | Train 1              | Train 2       | Train 1    | Train 2     | Deviation (9 | %)          |          |       |
|            | 2339.13              | 2349.37       | 7.72       | 7.28        | 2.91%        |             |          |       |
| ļ<br>!     |                      |               |            |             |              | <u> </u>    | 1        |       |
| Burn       |                      |               |            | Initial     |              | Run         | Average  |       |
| Rate       |                      | Surface       |            | Draft       | 1            | Time        | Draft    |       |
| 0.632      |                      | 0.000         |            | 0.052       |              | 464.000     | 0.037    |       |
| Run        | Date                 | Burn Rate     | Emission   |             |              | <u> </u>    | ļ        |       |
| 3          | 2021-02-24           | 0.632         | 0.970      |             |              | <u> </u>    | <u> </u> |       |



### **E&E Tunnel Traverse Worksheet**

Static Pressure: 0.116

Barometer: 29.5

|          | TUNNEL<br>VELOCITY | TUNNEL<br>TEMP | SQUARE<br>ROOT |           |        |
|----------|--------------------|----------------|----------------|-----------|--------|
| A CENTER | 0.070              | 100.300        | 0.2646         |           |        |
| B CENTER | 0.072              | 96.000         | 0.2683         |           |        |
| A1       | 0.067              | 99.500         | 0.2588         | PITOT     |        |
| A2       | 0.076              | 100.400        | 0.2757         | CONSTANT= | 0.9624 |
| A3       | 0.063              | 99.900         | 0.2510         |           |        |
| A4       | 0.054              | 73.000         | 0.2324         |           |        |
| B1       | 0.067              | 99.500         | 0.2588         |           |        |
| B2       | 0.075              | 99.900         | 0.2739         |           |        |
| В3       | 0.065              | 100.000        | 0.2550         |           |        |
| B4       | 0.051              | 85.800         | 0.2258         |           |        |
| AVERAGE  |                    | 95.43          | 0.2564         |           |        |

## **E&E FUEL LOAD DATA SHEET**



Test Load Weight:

 Lower
 Ideal
 Upper

 Firebox Volume:
 1.03
 cu. ft
 11.74
 12.36
 12.98

Load Volume: 1.0300 cu. ft Loading Density: 12.540 lbs./ft3

Number of Spacers: Load Density: 12.540 lbs./ft3

|         | Piece Size: |        | Weight | Meter Moisture Content |       |       |  |  |  |  |
|---------|-------------|--------|--------|------------------------|-------|-------|--|--|--|--|
| Thick x | Wide x      | Length | lbs    | Dry Uncorrected %      |       |       |  |  |  |  |
| 2       | 4           | 16     | 2.30   | 27.70                  | 17.20 | 14.50 |  |  |  |  |
| 2       | 4           | 16     | 2.40   | 19.20                  | 19.30 | 20.80 |  |  |  |  |
| 2       | 4           | 16     | 2.65   | 18.70                  | 18.80 | 22.50 |  |  |  |  |
| 2       | 4           | 16     | 3.55   | 16.20                  | 22.40 | 23.10 |  |  |  |  |
| 2       | 4           | 16     | 2.02   | 20.20                  | 17.10 | 20.60 |  |  |  |  |
|         |             |        |        |                        |       |       |  |  |  |  |
|         |             |        |        |                        |       |       |  |  |  |  |
|         |             |        |        |                        |       |       |  |  |  |  |
|         |             |        |        |                        |       |       |  |  |  |  |

Test Load Weigh 12.916 lbs. Dry Weigh 4.887 kg.

**Average Moisture Content: %** 

Pre-test moisture content: %

#DIV/0! Wet: #DIV/0!

Coal Bed Range: 2.6 lbs. to 3.2 lbs. 20% to 25% of test load

November 20, 2015 Adjunct to ASTM E XXXX Wood Heater Cordwood Test Method Cordwood Fuel Load Calculators - 12 lb/ft<sup>3</sup> Nominal Load Density Core 45-65% of Total Load Weight, Remainder 35-55% of Total Load Weight

THIS DOCUMENT IS NOT AN ASTM STANDARD; IT IS UNDER CONSIDERATION WITHIN AN ASTM TECHNICAL COMMITTEE BUT HAS NOT RECEIVED ALL APPROVALS REQUIRED TO BECOME AN ASTM STANDARD. IT SHALL NOT BE REPRODUCED OR CIRCULATED OR QUOTED, IN WHOLE OR IN PART, OUTSIDE OF ASTM COMMITTEE ACTIVITIES EXCEPT WITH THE APPROVAL OF THE CHAIRMAN OF THE COMMITTEE HAVING JURISDICTION AND THE PRESIDENT OF THE SOCIETY. COPYRIGHT ASTM, 100 BARR HARBOR DRIVE, WEST CONSTITUTION AND THE PRESIDENT OF THE SOCIETY.

| Values to be input manually                                |              |      |                     |          |           | JURISDICTION AND THE PRESIDENT OF THE SOCIETY. COPYRIGHT ASTM, 100 BARR HARBOR DRIVE, WEST CONSHOHOCKEN, PA 19428. ALL RIGHTS RESERVED. |
|------------------------------------------------------------|--------------|------|---------------------|----------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|
| For Usable Firebox Volumes up to 3.0 ft <sup>3</sup> - Low | and Medium   | Fire |                     |          |           |                                                                                                                                         |
| Nominal Required Load Density (wet basis)                  | <b>12</b> lb | /ft³ |                     |          |           |                                                                                                                                         |
| Usable Firebox Volume                                      | 1.03 ft      | 3    |                     |          |           |                                                                                                                                         |
| Total Nom. Load Wt. Target                                 | 12.36 lb     |      |                     |          |           |                                                                                                                                         |
| Total Load Wt. Allowable Range                             | 11.74        | to   | 12.98               | lb       |           |                                                                                                                                         |
| Core Target Wt. Allowable Range                            | 5.562        | to   | 8.03                | lb       |           |                                                                                                                                         |
| Remainder Load Wt. Allowable Range                         | 4.33         | to   | 6.80                | lb       |           |                                                                                                                                         |
|                                                            |              |      |                     |          | Mid-Point |                                                                                                                                         |
| Core Load Fuel Pc. Wt. Allowable Range                     | 1.85         | to   | 3.09                | lb       | 2.47      |                                                                                                                                         |
| Remainder Load Pc. Wt. Allowable Range                     | 1.24         | to   | 3.71                | lb       | 2.47      | Fuel Piece Moisture Reading (%-dry basis)                                                                                               |
|                                                            | Pc. #        |      | _                   |          | Ordre     | 1 2 3 Ave. Pc. Wt. Dry Basis                                                                                                            |
| Core Load Piece Wt. Actual                                 | 1            |      | <mark>30</mark> lb  | In Range |           | 27.7 17.2 14.5 19.8 In Range 1.92 lb 0.87                                                                                               |
|                                                            | 2            | 2    | <mark>40</mark> lb  | In Range |           | 19.2 19.3 20.8 19.8 In Range 2.00 lb 0.91                                                                                               |
|                                                            | 3            | 2    | <mark>65</mark> lb  | In Range |           | 18.7 18.8 22.5 20.0 In Range 2.21 lb 1.00                                                                                               |
| Core Load Total. Wt. Actual                                |              | 7.   | 35 lb               | In Range |           |                                                                                                                                         |
|                                                            | Pc. #        |      |                     |          |           |                                                                                                                                         |
| Remainder Load Piece Wt.                                   | 1            |      | <mark>55</mark> lb  | In Range |           | 16.2 22.4 23.1 20.6 In Range 2.94 lb 1.33                                                                                               |
| (2 or 3 Pcs.)                                              | 2            | 2    | <mark>02</mark> lb  | In Range |           | 20.2 17.1 20.6 19.3 In Range 1.69 lb 0.77                                                                                               |
|                                                            | 3            |      | lb                  | NA       |           | 0.00 lb 0.00                                                                                                                            |
| Remainder Load Piece Weight Ratio - Small/Larg             | ge           |      | 7%                  | In Range | ≤ 67%     | Total Load Ave. MC % (dry basis) 20.0 In Range                                                                                          |
| Remainder Load Tot. Wt. Act                                |              |      | <mark>57</mark> lb  | In Range |           | Total Load Ave. MC % (wet basis) 16.6                                                                                                   |
| Total Load Wt. Actual                                      |              |      | <mark>92</mark> lb  | In Range |           | Total Test Load Weight (dry basis) 10.77 lb 4.88                                                                                        |
| Core % of Total Wt.                                        |              |      | 7%                  | In Range | 45-65%    | Total Fuel Weight Burned During Test Run (dry basis) 10.8 lb 4.88                                                                       |
| Remainder % of Total Wt.                                   |              |      | 3%                  | In Range | 35-55%    |                                                                                                                                         |
| Actual Load % of Nominal Target                            |              |      | 4%                  | In Range | 95-105%   |                                                                                                                                         |
| Actual Fuel Load Density                                   |              | 1    | 2.5 lb/ft³          |          |           | 1.9374                                                                                                                                  |
| Allowable Charcoal Bed Wt. Range (lb)                      | 1.3          | to   | 2.5                 |          | Mid-Point | 14.80                                                                                                                                   |
| Actual Charcoal Bed Wt.                                    |              |      | <mark>2.0</mark> lb | In Range | 1.9       | 3.82 braise                                                                                                                             |
| Actual Fuel Load Ending Wt.                                |              |      | <mark>0.0</mark> lb | lb       | ≥ 90%     |                                                                                                                                         |
| Total Wt. of Fuel Burned During Test Run lb.               |              | 1    | 2.9 lb              |          |           |                                                                                                                                         |

November 20 Adjunct to ASTM E XXXX Wood Heater Cordwood Test Method Cordwood Fuel Load Calculators - 10 lb/ft <sup>3</sup> Nominal Load Density Core 45-65% of Total Load Weight, Remainder 35-55% of Total Load Weight

THIS DOCUMENT IS NOT AN ASTM STANDARD; IT IS UNDER CONSIDERATION WITHIN AN ASTM TECHNICAL COMMITTEE BUT HAS NOT RECEIVED ALL APPROVALS REQUIRED TO BECOME AN ASTM STANDARD. IT SHALL NOT BE REPRODUCED OR CIRCULATED OR QUOTED, IN WHOLE OR IN PART, OUTSIDE OF ASTM COMMITTEE ACTIVITIES EXCEPT WITH THE APPROVAL OF THE CHAIRMAN OF THE COMMITTEE HAVING JURISDICTION AND THE PRESIDENT OF THE SOCIETY. COPYRIGHT ASTM, 100 BARR HARBOR DRIVE, WEST

| Values to be input manually                        |       |                 |                         |             |           | URISDICTION AND THE PRESIDENT<br>CONSHOHOCKEN, PA 19428. ALL RIGHT |                 | CIETY. COPYRIGI  | HT ASTM, 10 | 0 BARR HARBOR | DRIVE, WEST   |      |
|----------------------------------------------------|-------|-----------------|-------------------------|-------------|-----------|--------------------------------------------------------------------|-----------------|------------------|-------------|---------------|---------------|------|
| For All Usable Firebox Volumes - High Fire Test On | ly    |                 |                         |             |           | , , , , , , , , , , , , , , , , , , ,                              |                 |                  |             |               | <u>'</u>      |      |
| Nominal Required Load Density (wet basis)          | 10    | lb/ft³          |                         |             |           |                                                                    |                 |                  |             |               |               |      |
| Usable Firebox Volume                              | 1.03  | ft <sup>3</sup> |                         |             |           |                                                                    |                 |                  |             |               |               |      |
| Total Nom. Load Wt. Target                         | 10.30 |                 |                         |             |           |                                                                    |                 |                  |             |               |               |      |
| Total Load Wt. Allowable Range                     | 9.80  |                 | 10.80                   | lb          |           |                                                                    |                 |                  |             |               |               |      |
| Core Target Wt. Allowable Range                    | 4.60  | to              | 6.70                    | lb          |           |                                                                    |                 |                  |             |               |               |      |
| Remainder Load Wt. Allowable Range                 | 3.60  | to              | 5.70                    | lb          |           |                                                                    |                 |                  |             |               |               |      |
| _                                                  |       |                 |                         |             | Mid-Point |                                                                    |                 |                  |             |               |               |      |
| Core Load Pc. Wt. Allowable Range                  | 1.50  | to              | 2.60                    | lb          | 2.05      |                                                                    |                 |                  |             |               |               |      |
| Remainder Load Pc. Wt. Allowable Range             | 1.00  | to              | 5.70                    | lb          | 3.35      | Fuel Piece N                                                       | oisture Readir  | ng (%-dry basis) | )           |               |               |      |
|                                                    | Pc. # |                 |                         |             |           | 1                                                                  | 2               | 3                | Ave.        |               | Pc. Wt. Dry B |      |
| Core Load Piece Wt. Actual                         | 1     | 2               | <mark>.13</mark> lb     | In Range    |           | 24.5                                                               | 24.9            | 19.3             | 22.9        | In Range      | 1.73 lb       | 0.79 |
|                                                    | 2     | 2               | <mark>.23</mark> lb     | In Range    |           | 29.2                                                               | 23.2            | 20.4             | 24.3        | In Range      | 1.79 lb       | 0.81 |
|                                                    | 3     | 2               | <mark>2.13</mark> lb    | In Range    |           | 19.5                                                               | 21.9            | 18.1             | 19.8        | In Range      | 1.77 lb       | 0.80 |
| Core Load Total. Wt. Actual                        |       | 6               | 6.48 lb                 | In Range    |           |                                                                    |                 |                  |             |               |               |      |
|                                                    | Pc. # |                 |                         |             |           |                                                                    |                 |                  | _           |               |               |      |
| Remainder Load Piece Wt.                           | 1     | 4               | <mark>.28</mark> lb     | In Range    |           | 17                                                                 | 20.4            | 20.9             | 19.4        | In Range      | 3.58 lb       | 1.62 |
| (1 to 3 Pcs.)                                      | 2     |                 | lb                      | NA          |           |                                                                    |                 |                  |             |               | 0.00 lb       | 0.00 |
|                                                    | 3     |                 | lb                      | NA          |           |                                                                    |                 |                  |             |               | 0.00 lb       | 0.00 |
| Remainder Load Piece Weight Ratio - Small/Large    | _     |                 | 00%                     | NA          | ≤ 67%     | Total Load A                                                       | ve. MC (%-dry   | basis)           | 21.2        | In Range      |               |      |
| Remainder Load Tot. Wt. Act                        |       | 4               | <mark>I.28</mark> lb    | In Range    |           | Total Load A                                                       | ve. MC % (wet   | : basis)         | 17.5        |               |               |      |
| Total Load Wt. Actual                              |       |                 | <mark>).76</mark> lb    | In Range    |           | Total Test Lo                                                      | oad Weight (dr  | y basis) ——      |             |               | 8.88 lb       | 4.03 |
| Core % of Total Wt.                                |       |                 | 50%                     | In Range    | 45-65%    |                                                                    |                 |                  |             |               |               |      |
| Remainder % of Total Wt.                           |       |                 | 10%                     | In Range    | 35-55%    |                                                                    | isture (%-dry b |                  | _           | _             |               |      |
| Actual Load % of Nominal Target                    |       |                 | 04%                     | In Range    | 95-105%   | 10                                                                 | 10              | 10               | 10.0        | In Range      | 1.95 lb       | 0.89 |
| Actual Fuel Load Density                           |       | 1               | .0.4 lb/ft <sup>3</sup> |             |           | Start-up Fue                                                       | el Moisture Rea | dings (%-dry b   | asis)       |               |               |      |
| Kindling and Start-up Fuel                         |       |                 |                         |             |           | 17                                                                 | 27.1            | 17.9             | 20.7        | In Range      | 2.65 lb       | 1.20 |
| Maximim Kindling Wt. (20% of Tot. Load Wt.)        |       |                 | 2.15 lb                 |             |           |                                                                    |                 |                  | <del></del> |               |               |      |
| Actual Kindling Wt.                                |       |                 | <mark>15</mark> lb      | In Range    | 20.0%     |                                                                    | l Fuel Added (d |                  |             |               | 13.49 lb      | 6.12 |
| Maximum Start-up Fuel Wt. (30% of Tot. Load Wt.)   |       |                 | 3.23 lb                 |             |           | Total Wt. Al                                                       | l Fuel Burned ( | dry basis) ——    |             |               | 12.3 lb       | 5.6  |
| Actual Start-up Fuel Wt.                           |       | 3               | <mark>3.20</mark> lb    | In Range    | 29.8%     |                                                                    |                 |                  |             |               |               |      |
| Allowable Residual Start-up Fuel Wt. Range         | 1.1   | to              | 2.2                     | lb          | Mid-Point |                                                                    |                 |                  |             |               |               |      |
| Actual Residual Start-up Fuel Wt.                  |       |                 | <mark>16</mark> lb      | In Range    | 1.6       |                                                                    |                 |                  |             |               |               |      |
| Total Wt. All Fuel Added (wet basis)               |       | 16              | 5.11 lb                 |             |           |                                                                    |                 |                  |             |               |               |      |
| High Fire Test Run End Point Range                 | Low   |                 | High                    |             | Mid-Point |                                                                    |                 |                  |             |               |               |      |
| Based on Fuel Load Wt. (w/tares)                   | 1.0   | to              | 1.2                     |             | 1.1       |                                                                    |                 |                  |             |               |               |      |
| Actual Fuel Load Ending Wt.                        |       |                 | 0.0 lb                  | Out of Rang | ge        |                                                                    |                 |                  |             |               |               |      |

ITS-ASTM cordwood-PM-2021-02-24-1st hour Raw Data 1 of 2

|      |          |          |            |          |          |          |       |        |          |       |          |          |          |          |          | co | CO2 | O2 | scale | 6.2057871 | Meter | Meter |           |            |
|------|----------|----------|------------|----------|----------|----------|-------|--------|----------|-------|----------|----------|----------|----------|----------|----|-----|----|-------|-----------|-------|-------|-----------|------------|
| Time | Flue     | Room     | Tunnel     | DGM 1    | DGM 1    | Filter 1 | DGM 2 | DGM 2  | Filter 2 | DGM 3 | Filter 3 | Meter #1 | Meter #2 | Draft    | Tunnel   | %  | %   | %  | Lbs   | Corrected | #1    | #2    | Draft     | Calculated |
| 10.0 | Temp 1   | Temp 2   | Dry Bulb 3 | In 13    | Out 14   | 15       | In 16 | Out 17 | 18       | In 19 | 20       | 21       | 22       | 23       | 24       | 25 | 25  | 27 | 28    | Scale     | Cu Ft | Cu Ft |           | Tunnel     |
| 0.0  | 287.1258 | 72.76478 | 90.76384   | 68.67039 | 68.67039 | 79.65446 |       |        |          |       |          | 102.214  |          | 0.05203  | 0.103187 |    |     |    | 12.9  | 6.71      | 3.61  | 0.00  | -0.236992 | -0.2242    |
| 10.0 | 394.4809 | 79.08143 | 95.70184   | 68.92889 | 68.92889 | 84.8483  |       |        |          |       |          | 103.463  |          | 0.076339 | 0.071443 |    |     |    | 11.6  | 5.40      | 3.65  |       | -0.230915 | -0.23214   |
| 20.0 | 341.2051 | 81.69494 | 88.91014   | 69.13229 | 69.13229 | 82.49867 |       |        |          |       |          | 104.705  |          | 0.067019 | 0.072604 |    |     |    | 10.4  | 4.15      | 3.70  |       | -0.233245 | -0.23185   |
| 30.0 | 345.9399 | 82.16703 | 94.49269   | 69.28982 | 69.28982 | 81.97738 |       |        |          |       |          | 105.946  |          | 0.067396 | 0.074632 |    |     |    | 9.2   | 3.04      | 3.74  |       | -0.233151 | -0.23134   |
| 40.0 | 346.3112 | 79.26167 | 94.84467   | 69.42637 | 69.42637 | 85.89149 |       |        |          |       |          | 107.218  |          | 0.06671  | 0.075024 |    |     |    | 8.2   | 1.99      | 3.78  |       | -0.233323 | -0.23124   |
| 50.0 | 344.7092 | 78.96106 | 96.28179   | 69.61396 | 69.61396 | 85.65681 |       |        |          |       |          | 108.495  |          | 0.067184 | 0.074942 |    |     |    | 7.1   | 0.94      | 3.83  |       | -0.233204 | -0.23126   |
| 60.0 | 334.7746 | 79.05273 | 94.17953   | 69.75857 | 69.75857 | 83.21799 |       |        |          |       |          | 109.772  |          | 0.063774 | 0.074863 |    |     |    | 6.2   | 0.00      | 3.87  |       | -0.234056 | -0.23128   |
|      |          |          |            |          |          |          |       |        |          |       |          |          |          |          |          |    |     |    |       |           |       |       | •         |            |

| interto                | <b>N</b>   | Intertek Testi       | ng Services                           |       |                |              |           |          |
|------------------------|------------|----------------------|---------------------------------------|-------|----------------|--------------|-----------|----------|
| ט וכפו ככ              | <b>-K</b>  |                      |                                       |       |                |              |           |          |
| Total Quality. Assured |            |                      |                                       |       | ļ              |              |           |          |
| Monufe                 | acturer:   | CDI                  |                                       |       | ļ              | RESULT       | 0         |          |
| Manui                  |            |                      |                                       |       | ļ              | KESULI       | S         |          |
|                        |            | 2.1 Series           |                                       |       |                |              |           | #DIV//01 |
|                        |            | 2-24-21              |                                       | AV    | erage em       | ission rai   | e:(gr/nr) | #DIV/0!  |
|                        | Run:       | ii                   |                                       |       | <br>           | (D           | 7         | 4 007    |
|                        |            | G104576994           | <u></u>                               |       | Burn Rat       | e (Dry kg/   | nr):      | 4.887    |
|                        | uration:   | 60                   |                                       |       | ļ              |              |           |          |
| (m                     | inutes)    | ļ                    |                                       |       | ļ              |              |           |          |
|                        |            |                      |                                       |       |                |              |           |          |
|                        | DDE00      | LIDE EAGTOD          |                                       |       | NACTOIO        |              |           |          |
|                        | PRESS      | URE FACTOR:          | 0.98429                               | BARC  | METRIC         |              |           |          |
|                        |            | <u> </u>             |                                       |       | <u> </u>       |              | Average:  | 29.45    |
| TEMPERA                | ATURE      | FACTORS              |                                       |       |                |              | Start:    | 29.5     |
|                        |            | DGM #1:              | 0.99762                               |       | ļ              |              | End:      | 29.4     |
|                        |            | DGM #2:              | 1.14783                               |       | <u> </u>       |              |           |          |
|                        |            |                      |                                       | DRY ( | GAS MET        | ER VALU      | ES        |          |
| VOLUMES SAMP           | LED        | Y                    |                                       |       |                | DGM #1       | Final:    | 109.772  |
|                        |            | DGM #1:              | 7.49578                               |       | Ī              |              | Initial:  | 102.214  |
|                        |            | DGM #2:              | 0.00000                               |       |                |              |           |          |
|                        |            |                      | · · · · · · · · · · · · · · · · · · · |       |                | DGM #2       | Final:    | 0.000    |
| TOTAL TUNNEL VOLU      | JME (scf): |                      | 18082                                 |       |                |              | Initial:  | 0.000    |
|                        |            |                      |                                       |       |                |              |           |          |
| SAMPLE RATIO           | )S         |                      |                                       | TEMP  | ERATUR         | ES (DEG.     | RANKIN)   |          |
|                        |            | Sample Train 1:      | 2412.294                              |       |                |              | DGM #1:   | 529.260  |
|                        |            | Sample Train 2:      | #DIV/0!                               |       | - <del> </del> |              | DGM #2:   | 460.000  |
|                        |            |                      |                                       |       |                |              |           |          |
| TOTAL EMISSIO          | NS         |                      |                                       | CALIE | RATION         | FACTOR       | S         |          |
|                        |            | Sample Train 1 (g):  | 4.583                                 |       | ·              |              | DGM #1:   | 1.0100   |
|                        |            | Sample Train 2 (g):  | #DIV/0!                               |       |                |              | DGM #2:   | 1.0110   |
|                        |            |                      |                                       |       | <u> </u>       |              |           |          |
| EMISSION RAT           | ES         | <del> </del>         |                                       | TUNN  | EL FLOW        | RATE:        |           | 301.367  |
|                        |            | nple Train 1 (g/hr): | 4.58                                  |       | <u> </u>       |              |           |          |
|                        |            | nple Train 2 (g/hr): | #DIV/0!                               | PART  | CULATE         | CATCH (      | ma)       |          |
|                        |            |                      |                                       |       |                | al Sample    |           | 1.9      |
|                        |            |                      |                                       |       |                | al Sample    |           | 0        |
|                        |            |                      |                                       | Fil   | ter and se     |              |           | 1.8      |
|                        |            | MAX Allowed          | 7.50%                                 |       | ter and se     | <del>.</del> |           |          |
|                        |            |                      |                                       |       |                | oe Sample    |           | 0.1      |
|                        | DEVIATION  |                      | #DIV/0!                               |       |                | oe Sample    |           | 0.1      |

2021-02-25-Run-4 Surface Temperature

| Time | Ambiant   | Flue        | <b>Dilution Tunnel</b> | Firebox Top | Firebox Back | Firebox Right | Firebox Left | <b>Firebox Bottom</b> |
|------|-----------|-------------|------------------------|-------------|--------------|---------------|--------------|-----------------------|
| 0    | 70.479535 | 71.24247266 | 69.03951774            | 71.32074944 | 72.61687693  | 71.80491653   | 72.09169918  | 72.55113312           |
| 10   | 72.042215 | 384.6938934 | 84.41017319            | 356.8924944 | 142.7910462  | 133.0482357   | 107.4993416  | 73.86356782           |
| 20   | 73.615488 | 350.9318016 | 84.13572555            | 434.4342388 | 222.529872   | 215.0848217   | 166.8261806  | 94.13433493           |
| 30   | 75.402968 | 386.186557  | 86.47131136            | 528.9940918 | 288.5114435  | 275.6634028   | 247.8344692  | 136.245286            |
| 40   | 76.397844 | 382.4273367 | 88.9348303             | 594.809706  | 362.1848537  | 330.8814747   | 333.748836   | 188.2448245           |
| 50   | 77.969175 | 426.745027  | 93.16586554            | 592.6070984 | 379.0406872  | 358.0888701   | 379.1019173  | 239.8699602           |
| 60   | 72.430201 | 478.8293243 | 100.0968665            | 699.6727838 | 362.4025506  | 403.6340895   | 407.861221   | 229.1122876           |
| 70   | 73.006683 | 496.340078  | 102.7548166            | 727.9169897 | 376.7416913  | 445.1170241   | 443.9596498  | 226.127318            |
| 80   | 73.24561  | 505.0733382 | 103.7572179            | 764.4377909 | 411.9467815  | 477.4697815   | 485.0258131  | 230.663535            |
| 90   | 71.908831 | 489.5085127 | 103.410917             | 767.8408222 | 451.1889561  | 505.4702981   | 517.7284616  | 242.4389846           |
| 100  | 73.149871 | 455.3586148 | 100.8641423            | 727.229934  | 477.7697109  | 524.1124508   | 537.8542796  | 260.3811677           |
| 110  | 72.256656 | 411.5667472 | 98.34277976            | 654.9918165 | 494.0379096  | 529.8929101   | 540.2679473  | 282.6836345           |
| 120  | 72.171783 | 363.8955076 | 94.96856726            | 568.9198842 | 490.8561922  | 522.156353    | 533.6238973  | 305.4879472           |
| 129  | 71.957314 | 336.3745799 | 92.83057277            | 502.4488137 | 472.0194957  | 505.4487691   | 517.3914411  | 321.5353764           |

| Time  | Flue     | Room     | Tunnel     | DGM 1    | DGM 1    | Filter 1 | DGM 2    | DGM 2    | Filter 2 | DGM 3 | Filter 3 | Meter #1 | Meter #2 | Draft    | Tunnel   | %  | %  | %  | İ | Lbs  |
|-------|----------|----------|------------|----------|----------|----------|----------|----------|----------|-------|----------|----------|----------|----------|----------|----|----|----|---|------|
| 10.0  | Temp 1   | Temp 2   | Dry Bulb 3 | In 13    | Out 14   | 15       | In 16    | Out 17   | 18       | In 19 | 20       | 21       | 22       | 23       | 24       | 25 | 25 | 27 |   | 28   |
| 0.0   | 71.24247 | 70.47953 | 69.03952   | 67.54346 | 67.61103 | 83.08249 | 67.70446 | 67.93425 | 86.55622 |       |          | 549.166  | 262.425  | 0.001265 | 0.075055 |    |    |    |   | 5.5  |
| 10.0  | 384.6939 | 72.04222 | 84.41017   | 68.26331 | 67.79751 | 84.68394 | 68.38006 | 68.13655 | 84.79972 |       |          | 550.399  | 263.673  | 0.072185 | 0.073332 |    |    |    |   | 4.1  |
| 20.0  | 350.9318 | 73.61549 | 84.13573   | 68.39026 | 67.84941 | 83.87305 | 68.46197 | 68.22722 | 84.21804 |       |          | 551.635  | 264.903  | 0.068758 | 0.07254  |    |    |    |   | 3.1  |
| 30.0  | 386.1866 | 75.40297 | 86.47131   | 68.50821 | 68.00577 | 85.04382 | 68.62745 | 68.38355 | 86.68737 |       |          | 552.859  | 266.135  | 0.071117 | 0.073392 |    |    |    |   | 2.1  |
| 40.0  | 382.4273 | 76.39784 | 88.93483   | 68.58573 | 68.08205 | 82.26179 | 68.71747 | 68.45315 | 86.94343 |       |          | 554.083  | 267.367  | 0.069297 | 0.074281 |    |    |    |   | 1.2  |
| 50.0  | 426.745  | 77.96917 | 93.16587   | 68.6754  | 68.18967 | 84.71967 | 68.80671 | 68.55492 | 84.19319 |       |          | 555.307  | 268.608  | 0.076731 | 0.07396  |    |    |    |   | 10.7 |
| 60.0  | 478.8293 | 72.4302  | 100.0969   | 68.77248 | 68.2284  | 87.52818 | 68.86419 | 68.56737 | 84.75104 |       |          | 556.534  | 269.849  | 0.080489 | 0.072623 |    |    |    |   | 9.2  |
| 70.0  | 496.3401 | 73.00668 | 102.7548   | 68.81772 | 68.36872 | 83.19337 | 68.96904 | 68.68808 | 86.98288 |       |          | 557.749  | 271.070  | 0.08245  | 0.073038 |    |    |    |   | 7.6  |
| 80.0  | 505.0733 | 73.24561 | 103.7572   | 68.95752 | 68.431   | 83.62387 | 69.09048 | 68.79745 | 85.84192 |       |          | 558.963  | 272.299  | 0.083321 | 0.070629 |    |    |    |   | 6.1  |
| 90.0  | 489.5085 | 71.90883 | 103.4109   | 69.06521 | 68.54455 | 86.00407 | 69.179   | 68.9014  | 82.27513 |       |          | 560.181  | 273.529  | 0.08148  | 0.072589 |    |    |    |   | 4.7  |
| 100.0 | 455.3586 | 73.14987 | 100.8641   | 69.15711 | 68.60729 | 85.57156 | 69.2463  | 68.95829 | 84.79766 |       |          | 561.395  | 274.754  | 0.077546 | 0.07237  |    |    |    |   | 3.7  |
| 110.0 | 411.5667 | 72.25666 | 98.34278   | 69.23097 | 68.71703 | 82.15991 | 69.30891 | 69.01299 | 87.13711 |       |          | 562.610  | 275.980  | 0.070351 | 0.071616 |    |    |    |   | 3.0  |
| 120.0 | 363.8955 | 72.17178 | 94.96857   | 69.27601 | 68.78459 | 84.45828 | 69.32436 | 69.09596 | 85.87918 |       |          | 563.825  | 277.208  | 0.065226 | 0.071515 |    |    |    |   | 2.5  |
| 129.8 | 336.3746 | 71.95731 | 92.83057   | 69.40675 | 68.9041  | 85.1367  | 69.48176 | 69.21629 | 84.49662 |       |          | 565.041  | 278.436  | 0.062395 | 0.073376 |    |    |    |   | 2.3  |

| • 1 1                      | Intertek Testi       | ng Services |               |           |             |         |
|----------------------------|----------------------|-------------|---------------|-----------|-------------|---------|
| intertek                   |                      |             |               |           |             |         |
| Total Quality. Assured.    | !                    |             |               |           |             |         |
|                            |                      |             |               |           |             |         |
| Manufacturer:              | <u> </u>             |             |               | RESULT    | S           |         |
| Model:                     | 2.1 Series           |             |               |           |             |         |
| Date:                      | 2/25/21              |             | Average em    | ission ra | te:(gr/hr)  | 2.932   |
| Run:                       |                      |             |               |           | l           |         |
|                            | G104576994           |             | Burn Rat      | e (Dry kg | /hr):       | 2.857   |
| Test Duration:             |                      |             |               |           |             |         |
| (minutes)                  | ļ                    |             |               |           | ļ           |         |
|                            | ļ                    |             |               |           |             |         |
|                            | <u> </u>             |             |               |           | <u> </u>    |         |
| PRESS                      | URE FACTOR:          | 0.98847     | BAROMETRIC    | ,         |             |         |
|                            | <u> </u>             |             |               |           | Average:    | 29.575  |
| TEMPERATURE I              |                      |             |               |           | Start:      | 29.55   |
|                            | DGM #1:              | 0.99900     |               |           | End:        | 29.6    |
|                            | DGM #2:              | 0.99858     | <u> </u>      |           | ļ           |         |
|                            |                      |             | DRY GAS MET   | ER VALU   | ES          |         |
| VOLUMES SAMPLED            | <u> </u>             |             |               | DGM #1    | Final:      | 565.041 |
|                            | DGM #1:              | 15.83305    |               |           | Initial:    | 549.166 |
| i                          | DGM #2:              | 15.97768    | İ             |           |             |         |
|                            |                      |             |               | DGM #2    | Final:      | 278.436 |
| TOTAL TUNNEL VOLUME (scf): |                      | 38082       |               |           | Initial:    | 262.425 |
|                            |                      |             |               |           |             |         |
| SAMPLE RATIOS              |                      |             | TEMPERATURI   | ES (DEG.  | RANKIN)     |         |
|                            | Sample Train 1:      | 2405.197    |               |           | DGM #1:     | 528.528 |
|                            | Sample Train 2:      | 2383.426    |               |           | DGM #2:     | 528.753 |
|                            |                      |             |               |           |             |         |
| TOTAL EMISSIONS            |                      |             | CALIBRATION   | FACTOR    |             |         |
|                            | Sample Train 1 (g):  | 6.254       |               |           | DGM #1:     | 1.0100  |
| 5                          | Sample Train 2 (g):  | 6.435       |               |           | DGM #2:     | 1.0110  |
| i                          | ļ                    |             | i             |           | ļ           |         |
| EMISSION RATES             | İİ.                  |             | TUNNEL FLOW   | RATE:     |             | 293.319 |
| Sar                        | nple Train 1 (g/hr): | 2.89        |               |           |             |         |
| Sar                        | nple Train 2 (g/hr): | 2.97        | PARTICULATE   |           |             |         |
|                            |                      |             |               | al Sample |             | 2.6     |
|                            | ļ                    |             |               | al Sampl  | <del></del> | 2.7     |
| <u> </u>                   | İ                    |             | Filter and se |           |             | 2.5     |
|                            | MAX Allowed          | 7.50%       | Filter and se |           |             | 2.5     |
|                            |                      |             |               |           | e Train 1:  | 0.1     |
| DEVIATION                  | ON:                  | 1.43%       | Prot          | oe Sampl  | e Train 2:  | 0.2     |



| . Assured. | Room Ten        | np                | Bar Pressu | re         | Relative Hu  | midity      | Air Velo | city  |
|------------|-----------------|-------------------|------------|------------|--------------|-------------|----------|-------|
|            | Before          | After             | Before     | After      | Before       | After       | Before   | After |
|            | 70              | 72                | 29.55      | 29.60      | 22.3         | 13.4        | 0        | 0     |
|            |                 |                   |            |            |              |             |          |       |
| Average Di | Lution Tunnel M | ⊥<br>1easurements | I          | <br>       |              | Sample Da   | ıta      |       |
| Burn       | Velocity        | Flow Rate         | Temp       | Total Samp | le           | Particulate | Catch    |       |
| Time       | (Ft/sec)        | (dscf/min)        | (R)        | 1          | 2            | 1           | 2        |       |
| 130        | 15.15           | 293.32            | 553.08     | 15.83      | 15.98        | 2.60        | 2.70     |       |
|            |                 |                   |            |            |              |             |          |       |
|            | Dilution Tunn   | nel Dual Train    | Precision  |            |              |             |          |       |
|            | Sample Rati     | os                | Total Emis | sions (g)  |              |             | i i      |       |
|            | Train 1         | Train 2           | Train 1    | Train 2    | Deviation (9 | 6)          |          |       |
| <br>       | 2405.20         | 2383.43           | 6.25       | 6.44       | 1.43%        |             |          |       |
|            |                 |                   | <br>       |            |              |             |          |       |
| Burn       | İ               | İ                 |            | Initial    |              | Run         | Average  |       |
| Rate       |                 | Surface           | [          | Draft      |              | Time        | Draft    |       |
| 2.437      |                 | 0.000             |            | 0.001      |              | 129.830     | 0.069    |       |
| Run        | Date            | Burn Rate         | Emission   | i<br>      | <br>         |             |          |       |
| 4          | 2/25/2021       | 2.437             | 2.932      |            |              | 1           | T        |       |



## **E&E Tunnel Traverse Worksheet**

Static Pressure: 0.121

Barometer: 29.55

|          | TUNNEL   | TUNNEL | SQUARE |           |        |
|----------|----------|--------|--------|-----------|--------|
|          | VELOCITY | TEMP   | ROOT   |           |        |
| A CENTER | 0.074    | 68.300 | 0.2720 |           |        |
| B CENTER | 0.077    | 68.300 | 0.2775 |           |        |
| A1       | 0.078    | 68.300 | 0.2793 | PITOT     |        |
| A2       | 0.078    | 68.300 | 0.2793 | CONSTANT= | 0.9653 |
| A3       | 0.066    | 68.300 | 0.2569 |           |        |
| A4       | 0.064    | 67.600 | 0.2530 |           |        |
| B1       | 0.069    | 68.300 | 0.2627 |           |        |
| B2       | 0.077    | 68.300 | 0.2775 |           |        |
| В3       | 0.072    | 68.300 | 0.2683 |           |        |
| B4       | 0.051    | 68.500 | 0.2258 |           |        |
| AVERAGE  |          | 68.25  | 0.2652 |           |        |

### **E&E FUEL LOAD DATA SHEET**



Test Load Weight:

Lower Ideal Upper Firebox Volume: 1.03 cu. ft 11.74 12.36 12.98

Load Volume: 1.0300 cu. ft Loading Density: 17.494 lbs./ft3

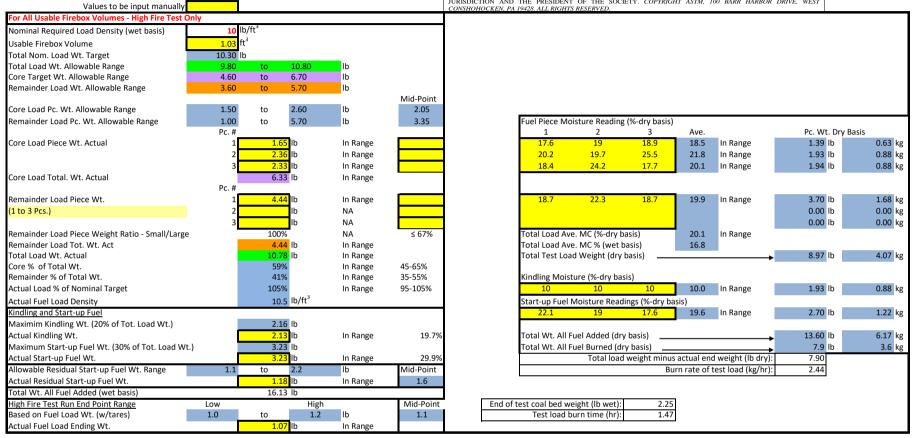
Number of Spacers: Load Density: 17.494 lbs./ft3

| Piece Size: |   |        |        | Weight | Meter             | Moisture C | ontent |
|-------------|---|--------|--------|--------|-------------------|------------|--------|
| Thick       | Х | Wide x | Length | lbs    | Dry Uncorrected % |            | ed %   |
|             | 2 | 4      | 16     | 1.65   | 17.60             | 19.00      | 18.90  |
|             | 2 | 4      | 16     | 2.36   | 20.20             | 19.70      | 25.50  |
|             | 2 | 4      | 16     | 2.33   | 18.40             | 24.20      | 17.70  |
|             | 2 | 4      | 16     | 6.33   | 18.70             | 22.30      | 18.70  |
|             | 2 | 4      | 16     | 2.13   | 10.00             | 10.00      | 10.00  |
|             | 2 | 4      | 16     | 3.23   | 22.10             | 19.00      | 17.60  |
|             |   |        |        |        |                   |            |        |
|             |   |        |        |        |                   |            |        |
|             |   |        |        |        |                   |            |        |

Test Load Weigh 18.019 lbs. Dry Weigh 6.908 kg

Average Moisture Content: %

Dry: 18.31 Wet: 15.477


Pre-test moisture content: %

#DIV/0! Wet: #DIV/0!

Coal Bed Range: 3.7 lbs. to 4.5 lbs. 20% to 25% of test load

November 20 Adjunct to ASTM E XXXX Wood Heater Cordwood Test Method Cordwood Fuel Load Calculators - 10 lb/ft<sup>3</sup> Nominal Load Density Core 45-65% of Total Load Weight, Remainder 35-55% of Total Load Weight

THIS DOCUMENT IS NOT AN ASTM STANDARD; IT IS UNDER CONSIDERATION WITHIN AN ASTM TECHNICAL COMMITTEE BUT HAS NOT RECEIVED ALL APPROVAL'S REQUIRED TO BECOME AN ASTM STANDARD. IT SHALL NOT BE REPRODUCED OR CIRCULATED OR QUOTED, IN WHOLE OR IN PART, OUTSIDE OF ASTM COMMITTEE ACTIVITIES EXCEPT WITH THE APPROVAL OF THE CHAIRMAN OF THE COMMITTEE HAVING INKIBICITION AND THE PRESIDENT OF THE SOCIETY. COPYRIGHT ASTM. 100 BARE HARBOR DRIVE, WEST



ITS-ASTM cordwood-PM-2021-02-25-1st hour Raw Data 1 of 2

|      |          |          |            |          |          |          |       |        |          |       |          |          |          |          | 1        | CO | CO2 | 02 | scale | 1.2119599 | Meter | Meter |           |            |
|------|----------|----------|------------|----------|----------|----------|-------|--------|----------|-------|----------|----------|----------|----------|----------|----|-----|----|-------|-----------|-------|-------|-----------|------------|
| Time | Flue     | Room     | Tunnel     | DGM 1    | DGM 1    | Filter 1 | DGM 2 | DGM 2  | Filter 2 | DGM 3 | Filter 3 | Meter #1 | Meter #2 | Draft    | Tunnel   | %  | %   | %  | Lbs   | Corrected | #1    | #2    | Draft     | Calculated |
| 10.0 | Temp 1   | Temp 2   | Dry Bulb 3 | In 13    | Out 14   | 15       | In 16 | Out 17 | 18       | In 19 | 20       | 21       | 22       | 23       | 24       | 25 | 25  | 27 | 28    | Scale     | Cu Ft | Cu Ft |           | Tunnel     |
| 0.0  | 71.24247 | 70.47953 | 69.03952   | 68.62141 | 68.62141 | 85.98314 |       |        |          |       |          | 109.803  |          | 0.001265 | 0.075055 |    |     |    | 5.5   | 4.25      | 3.88  | 0.00  | -0.249684 | -0.23124   |
| 10.0 | 384.6939 | 72.04222 | 84.41017   | 68.89784 | 68.89784 | 82.89505 |       |        |          |       |          | 111.039  |          | 0.072185 | 0.073332 |    |     |    | 4.1   | 2.90      | 3.92  |       | -0.231954 | -0.23167   |
| 20.0 | 350.9318 | 73.61549 | 84.13573   | 69.06476 | 69.06476 | 85.54653 |       |        |          |       |          | 112.280  |          | 0.068758 | 0.07254  |    |     |    | 3.1   | 1.91      | 3.96  |       | -0.23281  | -0.23187   |
| 30.0 | 386.1866 | 75.40297 | 86.47131   | 69.25228 | 69.25228 | 86.01888 |       |        |          |       |          | 113.498  |          | 0.071117 | 0.073392 |    |     |    | 2.1   | 0.87      | 4.01  |       | -0.232221 | -0.23165   |
| 40.0 | 382.4273 | 76.39784 | 88.93483   | 69.41604 | 69.41604 | 83.0061  |       |        |          |       |          | 114.706  |          | 0.069297 | 0.074281 |    |     |    | 1.2   | 0.00      | 4.05  |       | -0.232676 | -0.23143   |
| 50.0 | 426.745  | 77.96917 | 93.16587   | 69.59277 | 69.59277 | 82.56944 |       |        |          |       |          | 115.922  |          | 0.076731 | 0.07396  |    |     |    | 10.7  | 9.51      | 4.09  |       | -0.230817 | -0.23151   |
| 60.0 | 478.8293 | 72.4302  | 100.0969   | 69.73148 | 69.73148 | 86.69187 |       |        |          |       |          | 117.160  |          | 0.080489 | 0.072623 |    |     |    | 9.2   | 7.98      | 4.14  |       | -0.229878 | -0.23184   |
|      |          |          |            |          |          |          |       |        |          |       |          |          |          |          |          |    |     |    |       |           |       |       |           |            |

| intertek                | Intertek Test          | ing Services |               | i<br>                                 |              |         |
|-------------------------|------------------------|--------------|---------------|---------------------------------------|--------------|---------|
| U ICCI CCM              |                        |              |               |                                       |              |         |
| Total Quality. Assured. |                        |              |               | ļ<br>                                 |              |         |
| Manufactu               | ror: CDI               |              |               | RESULT                                | -0           |         |
|                         | del: 2.1 Series        |              |               | KESULI                                | 3            |         |
|                         | ate: 2-25-21           |              | Avorage em    | iccion ro                             | to:/ar/br    | #DIV/0! |
|                         | ale. 2-25-21<br>Run: 4 |              | Average em    | 1551011 Ta                            | te.(gr/iii)  | #DIV/U: |
|                         | ct #: G104576994       |              | Purn Dat      | e (Dry kg                             | /br\:        | 4.785   |
| Test Durat              |                        |              | Dulli Nat     | e (Diy kg                             | /III ).      | 4.703   |
| (minu                   |                        |              | <u>i</u>      | <u> </u>                              | <del> </del> |         |
|                         | tes)                   |              |               |                                       |              |         |
|                         |                        |              |               |                                       |              |         |
| PR                      | ESSURE FACTOR:         | 0.98847      | BAROMETRIC    | PRESSU                                |              |         |
|                         |                        |              |               |                                       | Average:     | 29.575  |
| TEMPERATU               | RE FACTORS             |              |               | İ                                     | Start:       | 29.55   |
|                         | DGM #1:                | 0.99768      |               | <br>                                  | End:         | 29.6    |
|                         | DGM #2:                | 1.14783      |               | ļ                                     | ļ            |         |
|                         |                        |              | DRY GAS MET   | ER VALU                               | ES           |         |
| VOLUMES SAMPLED         |                        |              |               | DGM #1                                | Final:       | 117.160 |
|                         | DGM #1:                | 7.32789      |               |                                       | Initial:     | 109.803 |
|                         | DGM #2:                | 0.00000      |               |                                       |              |         |
|                         |                        |              |               | DGM #2                                | Final:       | 0.000   |
| TOTAL TUNNEL VOLUME     | (scf):                 | 17791        |               | <br>                                  | Initial:     | 0.000   |
| SAMPLE RATIOS           |                        |              | TEMPERATUR    | ES (DEG                               | . RANKIN)    |         |
|                         | Sample Train 1:        | 2427.807     |               | · · · · · · · · · · · · · · · · · · · | DGM #1:      | 529.225 |
|                         | Sample Train 2:        | #DIV/0!      |               |                                       | DGM #2:      | 460.000 |
|                         |                        |              |               |                                       |              |         |
| TOTAL EMISSIONS         |                        |              | CALIBRATION   | FACTOR                                |              |         |
|                         | Sample Train 1 (g):    | 5.341        |               | <u> </u>                              | DGM #1:      | 1.0100  |
|                         | Sample Train 2 (g):    | #DIV/0!      | <br>          | <br>                                  | DGM #2:      | 1.0110  |
| EMISSION RATES          |                        |              | TUNNEL FLOW   | / RATE:                               |              | 296.512 |
|                         | Sample Train 1 (g/hr): | 5.34         |               |                                       |              |         |
|                         | Sample Train 2 (g/hr): | #DIV/0!      | PARTICULATE   | CATCH (                               | (mg)         |         |
|                         |                        |              | To            | tal Sampl                             | e Train 1:   | 2.2     |
|                         |                        |              | To            | tal Sampl                             | e Train 2:   | (       |
|                         |                        |              | Filter and se | al Sampl                              | e Train 1:   | 2.2     |
|                         | MAX Allowed            | 7.50%        | Filter and se | al Sampl                              | e Train 2:   |         |
|                         |                        |              | Prol          | be Sampl                              | e Train 1:   | (       |
| DEV                     | IATION:                | #DIV/0!      | Prol          | be Sampl                              | e Train 2:   |         |

VERSION: 24 2010-04-15 Appliance Type: Non-Cat (Cat, Non-Cat, Pellet) Manufacturer: SBI Model: 2.1 series **Default Fuel Values** F Date: 2021-02-22 Temp. Units (F or C) Run: 1 **Weight Units** lb (kg or lb) D. Fir Oak Control #: G104576994 HHV (kJ/kg) 19,810 19,887 Test Duration: 330 %C 48.73 50 **Dutput Category: Med Fuel Data** %Н 6.87 6.6 **%**O 42.9 Beech 43.9 %Ash 0.5 0.5

16.18

15.91

15.52

13.73

11.16

10.26

9.95

9.70

9.68

9.73

9.67

9.59

9.50

9.37

9.34

9.29

9.17

9.06

8 91

8.72

8.58

8.47

8 44

8.34

8 18

8.04

7.89

7.83

7.78

7.76

7.71

7.64

7.55

7.42

7.42

7.24

7.05

7.00

6.99

6.93

6.96

6.94

6.79

6.94

7.68

7.81

16.70 HHV Wood Moisture (% wet): 18,800 kJ/kg Load Weight (lb wet): 12.61 %C 48.7 Burn Rate (dry kg/h): %Н 0.87 5.8 **Total Particulate Emissions:** 7.217 g **%**O 44.9 %Ash 0.6

5.07

7.31

7.19

10.00

12.78

11.90

11.84

11.65

11.43

11.46

11.52

11.59

11.79

11.69

11.75

11.78

11.84

11.98

12.28

12.43

12.47

12.47

12.57

12.66

12.82

12.93

12.93

13.02

13.11

13.08

13.15

13.19

13.23

13.32

13.50

13.79

13.97

14.01

14.07

14.05

14.02

14.09

14 3

13.85

13.32

13.05

13.01

0.27

0.28

0.24

0.21

0.18

0.19

0.18

0.15

0.13

0.12

0.11

0.10

0.11

0.11

0.12

0.11

0.10

0.10

0.09

0.10

0.10

0.10

0.10

0.11

0.11

0.11

0.12

0.12

0.12

0.12

0.12

0.13

0.14

0.14

0.15

0.15

0.14

0.13

0.13

0.12 0.1345

0.146

0.1013

0.0843

0.0807

**Averages** 

12.18

11.93

11.80

11.69

11.58

11.45

11.25

11.08

10.93

10.77

10.62

10.46

10.34

10.23

10.10

9.97

9.83

9.66

9.54

9.37

9 22

9.06

8.92

8.76

8.60

8.29

8.16

8.00

7.85

7.70

7 55

7.39

7.08

6.96

6.80

6.64

6.51

6.37

6.23

6.08

5.95

5.77

5.50

5.35

6

8

9

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

52

53

Temp. (°F) **Fuel Weight Elapsed** Flue Gas Composition (%) Flue Room Time (min) Remaining (lb) co CO2 O<sub>2</sub> Gas Temp 12.61 0.12 1.46 19.42 281.4 74.3 12.57 0.13 1.51 19.41 260.3 76. 12.53 0.18 19.00 260. 77. 12.46 0.46 5.78 18.71 77.7 259.9 4 12.35 6.48 17.53 76.0 0.39 265.3 16.41 12 28 0.26 7.80 271 4 76.5

78.52

77.2

77.6

76.7

76.1

75.9

77.

77.9

78.2

78.6

78.8

79 (

78.2

75.8

73.2

72.9

73.8

73.1

73.4

72.8

70.7

70.0

68

68.1

67.

67.7

67.4

67.4

67.2

67.4

66.9

67.6

67.

67.9

67.9

68.

68.3

67.9

68.3

67.6

67.9

68.4

67.9

67.6

68.5357

68.6837

245.25

268.6

292.3

318.4

347.0

359.8

408.4

430.3

424.

420.0

413.8

411.6

410.8

411.3

411.1

412.3

413.

415.5

418.3

419.3

419 7

421.7

424.3

422

425.

427.8

429.

430.4

432.4

432.

433.6

435.6

435.3

436.0

437.0

437.4

437.8

438.9

439.8

441.8

442.181 68.739 442.129

441.172 68.3909

441.494 67.8395 443.14

442 519

| Note 2: In cases where the "Fuel Weight            |
|----------------------------------------------------|
| Remaining" is the same for three or more           |
| readings in a row, a "divide by zero error" will   |
| occur in the calculation sheet. In such cases,     |
| adjust the weight values by interpolation between  |
| the first occurence and the next reading showing a |
| decrease in weight.                                |

Note 1: For other fuels, use the heating value and

fuel composition determined by analysis of fuel

sample in accordance with Clause 9.2.

| 55                                            | 5.09                                                 | 0.0686                                                  | 12.2                         | 8.38                                    | 439.357                                            | 67.9561                                                                             |
|-----------------------------------------------|------------------------------------------------------|---------------------------------------------------------|------------------------------|-----------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------|
| 56                                            | 4.95                                                 | 0.0601                                                  | 11.75                        | 8.81                                    | 435.777                                            | 67.6884                                                                             |
| 57                                            | 4.84                                                 | 0.0606                                                  | 11.51                        | 9.13                                    | 432.796                                            | 67.8055                                                                             |
| 58                                            | 4.74                                                 | 0.0448                                                  | 10.93                        | 9.58                                    | 431.244                                            | 68.0432                                                                             |
| 59                                            | 4.61                                                 | 0.0279                                                  | 10.38                        | 10.08                                   | 427.133                                            | 68.475                                                                              |
| 60                                            | 4.50                                                 | 0.0219                                                  | 10.06                        | 10.43                                   | 423.004                                            | 67.7802                                                                             |
| 61                                            | 4.40                                                 | 0.0222                                                  | 9.99                         | 10.59                                   | 418.438                                            | 69.0451                                                                             |
|                                               |                                                      |                                                         |                              |                                         |                                                    |                                                                                     |
| 62                                            | 4.29                                                 | 0.023                                                   | 9.85                         | 10.8                                    | 412.963                                            | 68.5932                                                                             |
| 63                                            | 4.22                                                 | 0.0263                                                  | 9.59                         | 11.07                                   | 407.945                                            | 67.6864                                                                             |
| 64                                            | 4.12                                                 | 0.03                                                    | 9.45                         | 11.25                                   | 401.765                                            | 68.246                                                                              |
| 65                                            | 4.04                                                 | 0.0338                                                  | 9.48                         | 11.31                                   | 397.986                                            | 68.0029                                                                             |
| 66                                            | 3.93                                                 | 0.0375                                                  | 9.49                         | 11.36                                   | 394.351                                            | 67.4871                                                                             |
| 67                                            | 3.85                                                 | 0.0389                                                  | 9.39                         | 11.44                                   | 389.545                                            | 67.4029                                                                             |
| 68                                            | 3.76                                                 | 0.0378                                                  | 9.35                         | 11.54                                   | 385.72                                             | 68.758                                                                              |
| 69                                            | 3.70                                                 | 0.0403                                                  | 9.32                         | 11.53                                   | 381.706                                            | 69.5912                                                                             |
| 70                                            | 3.60                                                 | 0.0346                                                  | 9.33                         | 11.52                                   | 377.113                                            | 70.7514                                                                             |
|                                               |                                                      |                                                         |                              |                                         |                                                    |                                                                                     |
| 71                                            | 3.54                                                 | 0.0334                                                  | 9.3                          | 11.56                                   | 373.855                                            | 72.571                                                                              |
| 72                                            | 3.47                                                 | 0.0334                                                  | 9.21                         | 11.6                                    | 370.382                                            | 74.15                                                                               |
| 73                                            | 3.38                                                 | 0.0348                                                  | 8.95                         | 11.78                                   | 367.827                                            | 75.3481                                                                             |
| 74                                            | 3.32                                                 | 0.0431                                                  | 8.72                         | 12.01                                   | 365.839                                            | 76.1949                                                                             |
| 75                                            | 3.24                                                 | 0.0511                                                  | 8.34                         | 12.3                                    | 364.611                                            | 76.803                                                                              |
| 76                                            | 3.16                                                 | 0.0574                                                  | 8.03                         | 12.63                                   | 363.214                                            | 77.5037                                                                             |
| 77                                            | 3.09                                                 | 0.0657                                                  | 7.78                         | 12.89                                   | 361.572                                            | 78.1588                                                                             |
| 78                                            | 3.02                                                 | 0.0716                                                  | 7.54                         | 13.11                                   | 358.84                                             | 78.5912                                                                             |
| 79                                            | 2.95                                                 | 0.0710                                                  | 7.34                         | 13.11                                   | 356.204                                            | 79.242                                                                              |
| 80                                            | 2.88                                                 | 0.078                                                   | 7.34                         | 13.49                                   | 352.446                                            | 79.7552                                                                             |
|                                               |                                                      |                                                         |                              |                                         |                                                    |                                                                                     |
| 81                                            | 2.82                                                 | 0.0804                                                  | 7.05                         | 13.57                                   | 349.479                                            | 80.0555                                                                             |
| 82                                            | 2.77                                                 | 0.0865                                                  | 6.85                         | 13.71                                   | 346.147                                            | 80.4031                                                                             |
| 83                                            | 2.71                                                 | 0.0889                                                  | 6.7                          | 13.83                                   | 342.183                                            | 80.8059                                                                             |
| 84                                            | 2.67                                                 | 0.0987                                                  | 6.63                         | 13.91                                   | 338.342                                            | 81.1296                                                                             |
| 85                                            | 2.62                                                 | 0.1019                                                  | 6.57                         | 13.93                                   | 335.261                                            | 81.585                                                                              |
| 86                                            | 2.56                                                 | 0.1051                                                  | 6.59                         | 13.93                                   | 332.149                                            | 81.8556                                                                             |
| 87                                            | 2.52                                                 | 0.1055                                                  | 6.43                         | 13.99                                   | 327.977                                            | 82.2495                                                                             |
| 88                                            | 2.47                                                 | 0.1055                                                  | 6.38                         | 14.02                                   | 324.304                                            | 82.6216                                                                             |
| 89                                            | 2.43                                                 | 0.1071                                                  | 6.32                         | 14.05                                   | 321.229                                            | 82.7695                                                                             |
|                                               | 2.38                                                 |                                                         |                              |                                         |                                                    |                                                                                     |
| 90                                            |                                                      | 0.109                                                   | 6.23                         | 14.09                                   | 318.83                                             | 82.6913                                                                             |
| 91                                            | 2.35                                                 | 0.1039                                                  | 6.19                         | 14.11                                   | 315.609                                            | 82.866                                                                              |
| 92                                            | 2.31                                                 | 0.1031                                                  | 6.14                         | 14.15                                   | 312.651                                            | 83.126                                                                              |
| 93                                            | 2.27                                                 | 0.105                                                   | 6.04                         | 14.19                                   | 310.016                                            | 83.2873                                                                             |
| 94                                            | 2.22                                                 | 0.1079                                                  | 5.89                         | 14.26                                   | 307.534                                            | 83.4885                                                                             |
| 95                                            | 2.20                                                 | 0.1085                                                  | 5.83                         | 14.27                                   | 304.839                                            | 83.5757                                                                             |
| 96                                            | 2.15                                                 | 0.107                                                   | 5.78                         | 14.27                                   | 303.056                                            | 83.5804                                                                             |
| 97                                            | 2.11                                                 | 0.1078                                                  | 5.71                         | 14.3                                    | 301.582                                            | 83.5187                                                                             |
| 98                                            | 2.08                                                 | 0.1262                                                  | 5.5                          | 14.38                                   | 299.507                                            | 83.6027                                                                             |
| 99                                            | 2.05                                                 | 0.1754                                                  | 5.34                         | 14.44                                   | 297.18                                             | 83.8259                                                                             |
|                                               |                                                      | 0.1734                                                  |                              | 14.54                                   | 294.889                                            |                                                                                     |
| 100                                           | 2.02                                                 |                                                         | 5.17                         |                                         |                                                    | 83.808                                                                              |
| 101                                           | 1.98                                                 | 0.2212                                                  | 5.08                         | 14.59                                   | 293.3                                              | 84.0491                                                                             |
| 102                                           | 1.96                                                 | 0.2455                                                  | 4.6                          | 14.89                                   | 290.676                                            | 83.8851                                                                             |
| 103                                           | 1.94                                                 | 0.3086                                                  | 4.23                         | 15.15                                   | 288.006                                            | 84.3059                                                                             |
| 104                                           | 1.90                                                 | 0.4117                                                  | 3.98                         | 15.35                                   | 285.768                                            | 83.9933                                                                             |
| 105                                           | 1.88                                                 | 0.4615                                                  | 3.87                         | 15.4                                    | 282.974                                            | 84.0708                                                                             |
| 106                                           | 1.87                                                 | 0.4264                                                  | 3.79                         | 15.5                                    | 280.938                                            | 84.1893                                                                             |
| 107                                           | 1.86                                                 | 0.4772                                                  | 3.59                         | 15.63                                   | 277.465                                            | 84.0168                                                                             |
| 108                                           | 1.83                                                 | 0.4845                                                  | 3.56                         | 15.68                                   | 273.117                                            | 82.7546                                                                             |
| 109                                           | 1.84                                                 | 0.467                                                   | 3.52                         | 15.68                                   | 268.521                                            | 82.512                                                                              |
|                                               |                                                      |                                                         |                              |                                         |                                                    |                                                                                     |
| 110                                           | 1.83                                                 | 0.4643                                                  | 3.51                         | 15.7                                    | 263.696                                            | 82.985                                                                              |
| 111                                           | 1.82                                                 | 0.4491                                                  | 3.56                         | 15.69                                   | 258.794                                            | 83.3362                                                                             |
| 112                                           | 1.81                                                 | 0.4476                                                  | 3.53                         | 15.69                                   | 254.665                                            | 83.6409                                                                             |
| 113                                           | 1.81                                                 | 0.44                                                    | 3.56                         | 15.67                                   | 250.672                                            | 83.7327                                                                             |
| 114                                           | 1.79                                                 | 0.4412                                                  | 3.54                         | 15.68                                   | 247.51                                             | 83.7421                                                                             |
| 115                                           | 1.78                                                 | 0.4374                                                  | 3.52                         | 15.7                                    | 244.493                                            | 83.5508                                                                             |
| 116                                           | 1.77                                                 | 0.4414                                                  | 3.53                         | 15.69                                   | 241.64                                             | 83.6728                                                                             |
| 117                                           | 1.77                                                 | 0.4395                                                  | 3.51                         | 15.7                                    | 239.191                                            | 83.3799                                                                             |
| 118                                           | 1.76                                                 | 0.4423                                                  | 3.51                         | 15.7                                    | 236.679                                            | 83.6011                                                                             |
| 119                                           | 1.75                                                 | 0.4427                                                  | 3.49                         | 15.7                                    | 234.254                                            | 83.6175                                                                             |
|                                               |                                                      |                                                         |                              |                                         |                                                    |                                                                                     |
|                                               | 1.74                                                 | 0.4438                                                  | 3.45                         | 15.72                                   | 232.156                                            | 83.7162                                                                             |
| 120                                           |                                                      |                                                         | 3.48                         | 15.74                                   | 230.065                                            | 83.5085                                                                             |
| 121                                           | 1.73                                                 | 0.4471                                                  |                              |                                         |                                                    |                                                                                     |
| 121<br>122                                    | 1.72                                                 | 0.4521                                                  | 3.45                         | 15.77                                   | 228.049                                            |                                                                                     |
| 121<br>122<br>123                             | 1.72<br>1.72                                         | 0.4521<br>0.4577                                        | 3.44                         | 15.79                                   | 226.755                                            | 83.2204                                                                             |
| 121<br>122                                    | 1.72                                                 | 0.4521                                                  |                              |                                         |                                                    | 83.2204                                                                             |
| 121<br>122<br>123                             | 1.72<br>1.72                                         | 0.4521<br>0.4577                                        | 3.44                         | 15.79                                   | 226.755                                            | 83.2204<br>83.5227                                                                  |
| 121<br>122<br>123<br>124                      | 1.72<br>1.72<br>1.71                                 | 0.4521<br>0.4577<br>0.4587                              | 3.44<br>3.44                 | 15.79<br>15.8                           | 226.755<br>224.881                                 | 83.2204<br>83.5227<br>83.3816                                                       |
| 121<br>122<br>123<br>124<br>125<br>126        | 1.72<br>1.72<br>1.71<br>1.70<br>1.68                 | 0.4521<br>0.4577<br>0.4587<br>0.4562<br>0.4533          | 3.44<br>3.44<br>3.44<br>3.41 | 15.79<br>15.8<br>15.83<br>15.8          | 226.755<br>224.881<br>223.082<br>222.04            | 83.2204<br>83.5227<br>83.3816<br>83.3861                                            |
| 121<br>122<br>123<br>124<br>125<br>126<br>127 | 1.72<br>1.72<br>1.71<br>1.71<br>1.70<br>1.68<br>1.68 | 0.4521<br>0.4577<br>0.4587<br>0.4562<br>0.4533<br>0.447 | 3.44<br>3.44<br>3.41<br>3.43 | 15.79<br>15.8<br>15.83<br>15.8<br>15.83 | 226.755<br>224.881<br>223.082<br>222.04<br>220.485 | 83.2204<br>83.5227<br>83.3816<br>83.3861<br>82.9225                                 |
| 121<br>122<br>123<br>124<br>125<br>126        | 1.72<br>1.72<br>1.71<br>1.70<br>1.68                 | 0.4521<br>0.4577<br>0.4587<br>0.4562<br>0.4533          | 3.44<br>3.44<br>3.44<br>3.41 | 15.79<br>15.8<br>15.83<br>15.8          | 226.755<br>224.881<br>223.082<br>222.04            | 83.552<br>83.2204<br>83.5227<br>83.3816<br>83.3861<br>82.9225<br>82.9055<br>83.3412 |

| 131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |      |       |         |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|--------|------|-------|---------|---------|
| 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 130 | 1.66 | 0.4549 | 3.52 | 15.82 | 216.551 | 83.2411 |
| 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 131 | 1.65 | 0.4517 | 3.49 | 15.83 | 215.465 | 82.9143 |
| 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 132 | 1.63 | 0.4483 | 3.55 | 15.82 | 214.128 | 83.0502 |
| 134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 133 |      | 0.4538 | 3.56 |       |         | 83.0367 |
| 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |      |       |         |         |
| 136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |      |       |         |         |
| 137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |      |       |         |         |
| 138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |      |       |         |         |
| 139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |      |       |         | 02.4002 |
| 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |      |       |         |         |
| 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |      |       |         |         |
| 142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |      |       |         |         |
| 143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |      |       |         |         |
| 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 142 |      |        |      |       | 206.819 | 82.6679 |
| 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 143 | 1.53 | 0.4315 | 3.6  | 16.02 | 206.346 | 81.539  |
| 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 144 | 1.53 | 0.4378 | 3.67 | 16.03 | 205.922 | 82.1792 |
| 146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 145 | 1.50 | 0.4388 | 3.64 | 16.1  | 205.6   | 81.8052 |
| 147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |      |       |         |         |
| 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      | 0.4385 |      | 16 15 |         |         |
| 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |      |       |         |         |
| 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |      |       |         |         |
| 151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |      |       |         |         |
| 152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |      |       |         |         |
| 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |      |       |         |         |
| 154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |      |       |         |         |
| 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      | 0.4099 |      |       |         |         |
| 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |      |       |         | 82.3517 |
| 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 155 | 1.40 |        |      |       | 201.055 | 82.3376 |
| 157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 156 |      | 0.4253 |      | 16.45 | 200.787 | 82.0826 |
| 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 157 | 1.38 |        | 3.72 | 16.52 | 200.38  | 81.7668 |
| 159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |      |       | 199.791 | 82.1097 |
| 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |      |       |         |         |
| 161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |      |       |         |         |
| 162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |      |       |         |         |
| 163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |      |       |         |         |
| 164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |      |       |         |         |
| 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |      |       |         |         |
| 166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |      |       |         |         |
| 167         1.27         0.4217         3.71         16.9         196.889         81.918           168         1.26         0.4196         3.71         16.93         196.635         81.736           169         1.24         0.419         3.7         16.97         196.249         81.762           170         1.23         0.4107         3.73         17         196.022         82.001           171         1.22         0.4073         3.71         17.04         195.878         82.06           172         1.21         0.4052         3.7         17.09         195.828         81.918           173         1.19         0.4041         3.71         17.12         195.58         81.971           174         1.18         0.4026         3.67         17.18         195.26         81.788           175         1.18         0.4005         3.67         17.25         195.437         81.986           176         1.16         0.397         3.65         17.29         195.283         81.73           177         1.15         0.3822         3.63         17.39         195.503         81.58           178         1.14         0.3793                                                                                                        |     |      |        |      |       |         |         |
| 168         1.26         0.4196         3.71         16.93         196.635         81.736           169         1.24         0.419         3.7         16.97         196.249         81.762           170         1.23         0.4107         3.73         17         196.022         82.001           171         1.22         0.4073         3.71         17.04         195.878         82.06           172         1.21         0.4052         3.7         17.09         195.828         81.918           173         1.19         0.4041         3.71         17.12         195.58         81.971           174         1.18         0.4026         3.67         17.18         195.26         81.788           175         1.18         0.4005         3.67         17.25         195.437         81.986           176         1.16         0.397         3.65         17.29         195.283         81.73           177         1.15         0.3822         3.63         17.39         195.503         81.58           178         1.14         0.3793         3.49         17.53         195.117         81.533           179         1.12         0.371                                                                                                        |     |      |        |      |       |         |         |
| 169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 167 |      | 0.4217 | 3.71 | 16.9  | 196.889 | 81.9188 |
| 170         1.23         0.4107         3.73         17         196.022         82.001           171         1.22         0.4073         3.71         17.04         195.878         82.06           172         1.21         0.4052         3.7         17.09         195.828         81.918           173         1.19         0.4041         3.71         17.12         195.58         81.971           174         1.18         0.4026         3.67         17.25         195.237         81.986           175         1.18         0.4005         3.67         17.25         195.437         81.986           176         1.16         0.397         3.65         17.29         195.253         81.73           177         1.15         0.3822         3.63         17.39         195.503         81.58           178         1.14         0.3793         3.49         17.53         195.511         81.553           179         1.12         0.371         3.5         17.58         195.117         81.63           180         1.11         0.3673         3.37         17.73         194.84         81.630           181         1.0         0.3673                                                                                                         | 168 |      | 0.4196 | 3.71 | 16.93 | 196.635 | 81.7368 |
| 170         1.23         0.4107         3.73         17         196.022         82.001           171         1.22         0.4073         3.71         17.04         195.878         82.06           172         1.21         0.4052         3.7         17.09         195.828         81.918           173         1.19         0.4041         3.71         17.12         195.58         81.971           174         1.18         0.4026         3.67         17.25         195.237         81.986           175         1.18         0.4005         3.67         17.25         195.437         81.986           176         1.16         0.397         3.65         17.29         195.253         81.73           177         1.15         0.3822         3.63         17.39         195.503         81.58           178         1.14         0.3793         3.49         17.53         195.511         81.553           179         1.12         0.371         3.5         17.58         195.117         81.63           180         1.11         0.3673         3.37         17.73         194.84         81.630           181         1.0         0.3673                                                                                                         | 169 | 1.24 | 0.419  | 3.7  | 16.97 | 196.249 | 81.7626 |
| 172         1.21         0.4052         3.7         17.09         195.828         81.918           173         1.19         0.4041         3.71         17.12         195.58         81.978           174         1.18         0.4026         3.67         17.25         195.26         81.788           175         1.18         0.4005         3.67         17.25         195.283         81.73           176         1.16         0.397         3.65         17.29         195.283         81.73           177         1.15         0.3822         3.63         17.39         195.503         81.58           178         1.14         0.3793         3.49         17.53         195.311         81.553           179         1.12         0.371         3.5         17.58         195.117         81.60           180         1.11         0.3673         3.37         17.73         194.814         81.630           181         1.10         0.3673         3.37         17.73         194.814         81.630           182         1.10         0.3663         3.37         17.81         194.65         81.437           183         1.09         0.3663                                                                                                      | 170 |      | 0.4107 | 3.73 | 17    | 196.022 | 82.0011 |
| 172         1.21         0.4052         3.7         17.09         195.828         81.918           173         1.19         0.4041         3.71         17.12         195.58         81.978           174         1.18         0.4026         3.67         17.25         195.26         81.788           175         1.18         0.4005         3.67         17.25         195.283         81.73           176         1.16         0.397         3.65         17.29         195.283         81.73           177         1.15         0.3822         3.63         17.39         195.503         81.58           178         1.14         0.3793         3.49         17.53         195.311         81.553           179         1.12         0.371         3.5         17.58         195.117         81.60           180         1.11         0.3673         3.37         17.73         194.814         81.630           181         1.10         0.3673         3.37         17.73         194.814         81.630           182         1.10         0.3663         3.37         17.81         194.65         81.437           183         1.09         0.3663                                                                                                      | 171 | 1.22 | 0.4073 | 3.71 | 17.04 | 195.878 | 82.069  |
| 173         1.19         0.4041         3.71         17.12         195.58         81.971:           174         1.18         0.4026         3.67         17.18         195.26         81.788:           175         1.18         0.4005         3.67         17.25         195.437         81.986:           176         1.16         0.397         3.65         17.29         195.203         81.73           177         1.15         0.3822         3.63         17.39         195.503         81.58:           178         1.14         0.3793         3.49         17.53         195.311         81.553           179         1.12         0.371         3.5         17.58         195.117         81.63           180         1.11         0.3717         3.47         17.65         194.943         81.640           181         1.10         0.3673         3.37         17.73         194.65         81.437           182         1.10         0.36673         3.37         17.78         194.65         81.437           183         1.09         0.3663         3.37         17.81         194.65         81.432           184         1.08         0.3645                                                                                                 |     |      |        |      | 17.09 |         |         |
| 174         1.18         0.4026         3.67         17.18         195.26         81.788           175         1.18         0.4005         3.67         17.25         195.437         81.986           176         1.16         0.397         3.65         17.29         195.283         81.73           177         1.15         0.3822         3.63         17.53         195.311         81.58           178         1.14         0.3793         3.49         17.53         195.311         81.58           179         1.12         0.371         3.5         17.58         195.117         81.63           180         1.11         0.3717         3.47         17.65         194.943         81.640           181         1.10         0.3673         3.37         17.73         194.814         81.535           182         1.10         0.36679         3.39         17.78         194.65         81.437           183         1.09         0.36645         3.41         17.84         193.532         81.549           184         1.08         0.3645         3.41         17.84         193.532         81.549           185         1.07         0.3642<                                                                                                 |     |      |        |      |       |         |         |
| 175         1.18         0.4005         3.67         17.25         195.437         81.986           176         1.16         0.397         3.65         17.29         195.283         81.73           177         1.15         0.3822         3.63         17.39         195.503         81.58           178         1.14         0.3793         3.49         17.53         195.311         81.55           179         1.12         0.3717         3.47         17.65         194.943         81.640           180         1.11         0.3673         3.37         17.73         194.814         81.630           181         1.10         0.3673         3.37         17.73         194.814         81.535           182         1.10         0.3679         3.39         17.78         194.65         81.437           183         1.09         0.3663         3.37         17.81         194.08         81.442           184         1.08         0.3645         3.41         17.84         193.532         81.549           185         1.07         0.3642         3.35         17.88         193.208         81.491           186         1.06         0.3631                                                                                                 |     |      |        |      |       |         | 91 7990 |
| 176         1.16         0.397         3.65         17.29         195.283         81.73           177         1.15         0.3822         3.63         17.39         195.503         81.58           178         1.14         0.3793         3.49         17.53         195.311         81.58           179         1.12         0.371         3.5         17.58         195.117         81.63           180         1.11         0.3673         3.37         17.65         194.943         81.640           181         1.10         0.3673         3.37         17.73         194.814         81.535           182         1.10         0.3679         3.39         17.78         194.65         81.437           183         1.09         0.3663         3.37         17.81         194.08         81.442           184         1.08         0.3645         3.41         17.84         193.532         81.549           185         1.07         0.3642         3.35         17.88         193.208         81.491           186         1.06         0.3631         3.37         17.93         192.661         81.473           187         1.04         0.3617 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                              |     |      |        |      |       |         |         |
| 177         1.15         0.3822         3.63         17.39         195.503         81.58           178         1.14         0.3793         3.49         17.53         195.311         81.533           179         1.12         0.371         3.5         17.58         195.117         81.630           180         1.11         0.3717         3.47         17.65         194.943         81.640           181         1.10         0.3679         3.39         17.78         194.65         81.437           183         1.09         0.3663         3.37         17.81         194.08         81.442           184         1.08         0.3645         3.41         17.84         193.532         81.549           185         1.07         0.3642         3.35         17.88         193.502         81.491           186         1.06         0.3631         3.37         17.93         192.661         81.475           187         1.04         0.3617         3.39         17.96         191.899         81.431           187         1.04         0.3617         3.39         17.96         191.72         81.600           188         1.03         0.364<                                                                                                 |     |      |        |      |       |         |         |
| 178         1.14         0.3793         3.49         17.53         195.311         81.553           179         1.12         0.371         3.5         17.58         195.117         81.63           180         1.11         0.3717         3.47         17.65         194.943         81.640           181         1.10         0.3673         3.37         17.73         194.814         81.535           182         1.10         0.3663         3.37         17.81         194.08         81.437           183         1.09         0.3663         3.37         17.81         194.08         81.442           184         1.08         0.3645         3.41         17.84         193.532         81.549           185         1.07         0.3642         3.35         17.88         193.208         81.491           186         1.06         0.3631         3.37         17.93         192.661         81.475           187         1.04         0.3617         3.39         17.96         191.899         81.431           188         1.03         0.36         3.39         17.96         191.89         81.217         81.501           189         1.02 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                        |     |      |        |      |       |         |         |
| 179         1.12         0.371         3.5         17.58         195.117         81.63           180         1.11         0.3717         3.47         17.65         194.943         81.640           181         1.10         0.3673         3.37         17.73         194.814         81.535           182         1.10         0.36679         3.39         17.78         194.65         81.437           183         1.09         0.3663         3.37         17.81         194.08         81.442           184         1.08         0.3645         3.41         17.84         193.532         81.549           185         1.07         0.3642         3.35         17.88         193.208         81.491           186         1.06         0.3631         3.37         17.93         192.661         81.475           187         1.04         0.3617         3.39         17.96         191.899         81.431           188         1.03         0.36         3.39         17.96         191.72         81.601           189         1.02         0.364         3.39         17.96         191.27         81.601           189         1.02         0.3641 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                              |     |      |        |      |       |         |         |
| 180         1.11         0.3717         3.47         17.65         194.943         81.640           181         1.10         0.3673         3.37         17.73         194.814         81.535           182         1.10         0.3679         3.39         17.78         194.65         81.437           183         1.09         0.3663         3.37         17.81         194.08         81.442           184         1.08         0.3665         3.41         17.84         193.532         81.549           185         1.07         0.3642         3.35         17.88         193.208         81.491           186         1.06         0.3631         3.37         17.93         192.661         81.475           187         1.04         0.3617         3.39         17.96         191.899         81.431           188         1.03         0.364         3.39         17.96         191.27         81.501           189         1.02         0.3641         3.36         18.03         19.084         81.531           190         1.01         0.3641         3.36         18.04         190.308         81.254           192         0.99         0.363                                                                                                 |     |      |        |      |       |         |         |
| 181         1.10         0.3673         3.37         17.73         194.814         81.535           182         1.10         0.3679         3.39         17.78         194.65         81.437           183         1.09         0.3663         3.37         17.81         194.08         81.442           184         1.08         0.3645         3.41         17.84         193.532         81.549           185         1.07         0.3642         3.35         17.88         193.208         81.491           186         1.06         0.3631         3.37         17.93         192.661         81.475           187         1.04         0.3617         3.39         17.96         191.899         81.431           188         1.03         0.36         3.39         17.96         191.27         81.501           189         1.02         0.364         3.39         17.98         191.27         81.501           190         1.01         0.3641         3.36         18.03         190.84         81.531           191         1.00         0.3659         3.39         18.04         190.308         81.254           192         0.99         0.3635 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>81.638</td>                  |     |      |        |      |       |         | 81.638  |
| 181         1.10         0.3673         3.37         17.73         194.814         81.535           182         1.10         0.3679         3.39         17.78         194.65         81.437           183         1.09         0.3663         3.37         17.81         194.08         81.442           184         1.08         0.3645         3.41         17.84         193.532         81.549           185         1.07         0.3642         3.35         17.88         193.208         81.491           186         1.06         0.3631         3.37         17.93         192.661         81.475           187         1.04         0.3617         3.39         17.96         191.899         81.431           188         1.03         0.36         3.39         17.96         191.27         81.501           189         1.02         0.364         3.39         17.98         191.27         81.501           190         1.01         0.3641         3.36         18.03         190.84         81.531           191         1.00         0.3659         3.39         18.04         190.308         81.254           192         0.99         0.3635 </td <td>180</td> <td>1.11</td> <td></td> <td>3.47</td> <td>17.65</td> <td></td> <td>81.6405</td> | 180 | 1.11 |        | 3.47 | 17.65 |         | 81.6405 |
| 182         1.10         0.3679         3.39         17.78         194.65         81.437           183         1.09         0.3663         3.37         17.81         194.08         81.442           184         1.08         0.3645         3.41         17.84         193.532         81.549           185         1.07         0.3642         3.35         17.88         193.208         81.491           186         1.06         0.3631         3.37         17.93         193.208         81.491           187         1.04         0.3617         3.39         17.96         191.899         81.431           188         1.03         0.36         3.39         17.96         191.72         81.600           189         1.02         0.364         3.39         17.98         191.217         81.501           190         1.01         0.3641         3.36         18.03         190.844         81.531           191         1.00         0.3659         3.39         18.04         190.308         81.254           192         0.99         0.3635         3.35         18.1         189.966         80.939           193         0.98         0.3583<                                                                                                 | 181 | 1.10 | 0.3673 | 3.37 | 17.73 | 194.814 | 81.5351 |
| 183         1.09         0.3663         3.37         17.81         194.08         81.442           184         1.08         0.3645         3.41         17.84         193.532         81.549           185         1.07         0.3642         3.35         17.88         193.208         81.491           186         1.06         0.3631         3.37         17.93         192.661         81.475           187         1.04         0.3617         3.39         17.96         191.899         81.431           188         1.03         0.36         3.39         17.96         191.72         81.600           189         1.02         0.364         3.39         17.98         191.217         81.501           190         1.01         0.3641         3.36         18.03         190.884         81.531           191         1.00         0.3659         3.39         18.04         190.308         81.254           192         0.99         0.3635         3.35         18.1         189.966         80.939           193         0.98         0.3583         3.35         18.13         189.511         81.321           194         0.98         0.3589                                                                                                 | 182 | 1.10 | 0.3679 |      | 17.78 | 194.65  | 81.4371 |
| 184         1.08         0.3645         3.41         17.84         193.532         81.549           185         1.07         0.3642         3.35         17.88         193.208         81.491           186         1.06         0.3631         3.37         17.93         192.661         81.475           187         1.04         0.3617         3.39         17.96         191.899         81.431           188         1.03         0.364         3.39         17.98         191.27         81.600           189         1.02         0.364         3.39         17.98         191.217         81.501           190         1.01         0.3641         3.36         18.03         190.884         81.531           191         1.00         0.3659         3.39         18.04         190.308         81.254           192         0.99         0.3635         3.35         18.1         189.966         80.939           193         0.98         0.3583         3.35         18.13         189.569         81.212           194         0.98         0.3589         3.34         18.14         189.518         13.321           195         0.96         0.35                                                                                                 | 183 | 1.09 | 0.3663 | 3.37 | 17.81 | 194.08  | 81.4426 |
| 185         1.07         0.3642         3.35         17.88         193.208         81.491           186         1.06         0.3631         3.37         17.93         192.661         81.475           187         1.04         0.3617         3.39         17.96         191.899         81.431           188         1.03         0.36         3.39         17.96         191.72         81.6001           189         1.02         0.364         3.39         17.96         191.217         81.501           190         1.01         0.3641         3.36         18.03         190.884         81.531           191         1.00         0.3659         3.39         18.04         190.308         81.254           192         0.99         0.3635         3.35         18.11         189.966         80.939           193         0.98         0.3583         3.35         18.13         189.569         81.212           194         0.98         0.3589         3.34         18.14         189.511         81.331           195         0.96         0.3521         3.22         18.24         188.81         81.336           196         0.94         0.34                                                                                                 |     |      |        |      |       |         | 81.5497 |
| 186         1.06         0.3631         3.37         17.93         192.661         81.475           187         1.04         0.3617         3.39         17.96         191.899         81.431           188         1.03         0.36         3.39         17.96         191.72         81.600           189         1.02         0.364         3.39         17.98         191.217         81.501           190         1.01         0.3641         3.36         18.03         190.884         81.531           191         1.00         0.3659         3.39         18.04         190.308         81.254           192         0.99         0.3635         3.35         18.13         189.966         80.939           193         0.98         0.3583         3.35         18.13         189.569         81.212           194         0.98         0.3589         3.34         18.14         189.511         81.326           195         0.96         0.3521         3.18         18.31         188.682         81.250           196         0.94         0.3425         3.18         18.31         188.682         81.259           197         0.93         0.34                                                                                                 |     |      |        |      |       |         | 81.4917 |
| 187         1.04         0.3617         3.39         17.96         191.899         81.431           188         1.03         0.36         3.39         17.96         191.72         81.600           189         1.02         0.364         3.39         17.98         191.217         81.501           190         1.01         0.3641         3.36         18.03         190.844         81.531           191         1.00         0.3659         3.39         18.04         190.308         81.254           192         0.99         0.3635         3.35         18.1         189.966         80.939           193         0.98         0.3583         3.35         18.13         189.569         81.212           194         0.98         0.3589         3.34         18.14         189.511         81.321           195         0.96         0.3521         3.22         18.24         188.81         81.336           196         0.94         0.3425         3.18         18.31         188.682         81.250           197         0.93         0.3401         3.13         18.37         188.258         81.239           198         0.92         0.3395                                                                                                 |     |      |        |      |       |         | 81.4759 |
| 188         1.03         0.36         3.39         17.96         191.72         81.600           189         1.02         0.364         3.39         17.98         191.217         81.501           190         1.01         0.3641         3.36         18.03         190.884         81.531           191         1.00         0.3659         3.39         18.04         190.308         81.254           192         0.99         0.3635         3.35         18.11         189.966         80.939           193         0.98         0.3583         3.35         18.13         189.569         81.212           194         0.98         0.3589         3.34         18.14         189.511         81.321           195         0.96         0.3521         3.22         18.24         188.81         81.336           196         0.94         0.3425         3.18         18.31         188.682         81.250           197         0.93         0.3401         3.13         18.37         188.258         81.239           198         0.92         0.3395         3.14         18.41         188.073         81.99           199         0.92         0.3391                                                                                                 |     |      |        |      |       |         |         |
| 189         1.02         0.364         3.39         17.98         191.217         81.501           190         1.01         0.3641         3.36         18.03         190.884         81.531           191         1.00         0.3659         3.39         18.04         190.308         81.254           192         0.99         0.3635         3.35         18.1         189.966         80.938           193         0.98         0.3583         3.35         18.13         189.969         81.212           194         0.98         0.3589         3.34         18.14         189.511         81.321           195         0.96         0.3521         3.22         18.24         188.81         81.336           196         0.94         0.3425         3.18         18.31         188.682         81.250           197         0.93         0.3401         3.13         18.37         188.258         81.239           198         0.92         0.3395         3.14         18.41         188.073         81.90           199         0.92         0.3391         3.14         18.51         187.274         80.844           200         0.91         0.33                                                                                                 |     |      |        |      |       |         |         |
| 190         1.01         0.3641         3.36         18.03         190.884         81.531           191         1.00         0.3659         3.39         18.04         190.308         81.254           192         0.99         0.3635         3.35         18.1         189.966         80.939           193         0.98         0.3583         3.35         18.13         189.569         81.212           194         0.98         0.3589         3.34         18.14         189.511         81.321           195         0.96         0.3521         3.22         18.24         188.81         81.336           196         0.94         0.3425         3.18         18.31         188.682         81.250           197         0.93         0.3401         3.13         18.37         188.258         81.239           198         0.92         0.3395         3.14         18.41         188.073         81.190           199         0.92         0.3391         3.14         18.51         187.274         80.834           200         0.91         0.3373         3.11         18.51         187.246         80.934           201         0.90         0.                                                                                                 |     |      |        |      |       |         |         |
| 191         1.00         0.3659         3.39         18.04         190.308         81.254           192         0.99         0.3635         3.35         18.1         189.966         80.939           193         0.98         0.3583         3.35         18.13         189.569         81.212           194         0.98         0.3589         3.34         18.14         189.511         81.321           195         0.96         0.3521         3.22         18.24         18.88         18.336           196         0.94         0.3425         3.18         18.31         188.682         81.250           197         0.93         0.3401         3.13         18.37         188.258         81.239           198         0.92         0.3395         3.14         18.41         188.073         81.190           199         0.92         0.3391         3.14         18.52         187.774         80.884           200         0.91         0.3373         3.11         18.51         187.248         80.934           201         0.90         0.338         3.13         18.49         187.004         81.125           202         0.89         0.33                                                                                                 |     |      |        |      |       |         |         |
| 192         0.99         0.3635         3.35         18.1         189.966         80.939           193         0.98         0.3583         3.35         18.13         189.569         81.212           194         0.98         0.3589         3.34         18.14         189.511         81.321           195         0.96         0.3521         3.22         18.24         188.81         81.336           196         0.94         0.3425         3.18         18.31         188.682         81.250           197         0.93         0.3401         3.13         18.37         188.258         81.239           198         0.92         0.3395         3.14         18.41         188.073         81.190           199         0.92         0.3391         3.14         18.52         187.774         80.884           200         0.91         0.3373         3.11         18.51         187.246         80.934           201         0.90         0.338         3.13         18.49         187.004         81.259           202         0.89         0.3399         3.15         18.49         186.706         81.080           203         0.88         0.3                                                                                                 |     |      |        |      |       |         |         |
| 193         0.98         0.3583         3.35         18.13         189.569         81.212           194         0.98         0.3589         3.34         18.14         189.511         81.321           195         0.96         0.3521         3.22         18.24         188.81         81.336           196         0.94         0.3425         3.18         18.31         188.682         81.250           197         0.93         0.3401         3.13         18.37         188.258         81.239           198         0.92         0.3395         3.14         18.41         188.073         81.190           199         0.92         0.3391         3.14         18.52         187.774         80.884           200         0.91         0.3373         3.11         18.51         187.246         80.934           201         0.90         0.338         3.13         18.49         187.004         81.125           202         0.89         0.3399         3.15         18.49         186.706         81.080           203         0.88         0.3366         3.12         18.54         186.32         80.920                                                                                                                                        |     |      |        |      |       |         |         |
| 194         0.98         0.3589         3.34         18.14         189.511         81.321           195         0.96         0.3521         3.22         18.24         188.81         81.336           196         0.94         0.3425         3.18         18.31         188.682         81.250           197         0.93         0.3401         3.13         18.37         188.258         81.239           198         0.92         0.3395         3.14         18.41         188.073         81.190           199         0.92         0.3391         3.14         18.52         187.774         80.884           200         0.91         0.3373         3.11         18.51         187.246         80.934           201         0.90         0.338         3.13         18.49         187.004         81.125           202         0.89         0.3399         3.15         18.49         186.706         81.080           203         0.88         0.3366         3.12         18.54         186.32         80.920                                                                                                                                                                                                                                            |     |      |        |      |       |         |         |
| 195         0.96         0.3521         3.22         18.24         188.81         81.336           196         0.94         0.3425         3.18         18.31         188.682         81.250           197         0.93         0.3401         3.13         18.37         188.258         81.239           198         0.92         0.3395         3.14         18.41         188.073         81.190           199         0.92         0.3391         3.14         18.52         187.774         80.884           200         0.91         0.3373         3.11         18.51         187.264         80.934           201         0.90         0.338         3.13         18.49         187.004         81.125           202         0.89         0.3399         3.15         18.49         186.706         81.080           203         0.88         0.3366         3.12         18.54         186.32         80.920                                                                                                                                                                                                                                                                                                                                                |     |      |        |      |       |         | 81.2121 |
| 196         0.94         0.3425         3.18         18.31         188.682         81.250           197         0.93         0.3401         3.13         18.37         188.258         81.239           198         0.92         0.3395         3.14         18.41         188.073         81.190           199         0.92         0.3391         3.14         18.52         187.774         80.884           200         0.91         0.3373         3.11         18.51         187.246         80.934           201         0.90         0.338         3.13         18.49         187.004         81.125           202         0.89         0.3399         3.15         18.49         186.706         81.080           203         0.88         0.3366         3.12         18.54         186.32         80.920                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |      |       |         | 81.3215 |
| 197     0.93     0.3401     3.13     18.37     188.258     81.239       198     0.92     0.3395     3.14     18.41     188.073     81.190       199     0.92     0.3391     3.14     18.52     187.774     80.884       200     0.91     0.3373     3.11     18.51     187.246     80.934       201     0.90     0.338     3.13     18.49     187.004     81.125       202     0.89     0.3399     3.15     18.49     186.706     81.080       203     0.88     0.3366     3.12     18.54     186.32     80.920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 195 | 0.96 | 0.3521 | 3.22 | 18.24 | 188.81  | 81.3362 |
| 197     0.93     0.3401     3.13     18.37     188.258     81.239       198     0.92     0.3395     3.14     18.41     188.073     81.190       199     0.92     0.3391     3.14     18.52     187.774     80.884       200     0.91     0.3373     3.11     18.51     187.246     80.934       201     0.90     0.338     3.13     18.49     187.004     81.125       202     0.89     0.3399     3.15     18.49     186.706     81.080       203     0.88     0.3366     3.12     18.54     186.32     80.920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 196 | 0.94 | 0.3425 | 3.18 | 18.31 |         | 81.2508 |
| 198     0.92     0.3395     3.14     18.41     188.073     81.190       199     0.92     0.3391     3.14     18.52     187.774     80.884       200     0.91     0.3373     3.11     18.51     187.246     80.934       201     0.90     0.338     3.13     18.49     187.004     81.125       202     0.89     0.3399     3.15     18.49     186.706     81.080       203     0.88     0.3366     3.12     18.54     186.32     80.920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 197 | 0.93 |        |      |       |         | 81.2396 |
| 199     0.92     0.3391     3.14     18.52     187.774     80.884       200     0.91     0.3373     3.11     18.51     187.246     80.934       201     0.90     0.338     3.13     18.49     187.004     81.125       202     0.89     0.3399     3.15     18.49     186.706     81.080       203     0.88     0.3366     3.12     18.54     186.32     80.920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |      |        |      |       |         | 81.1904 |
| 200     0.91     0.3373     3.11     18.51     187.246     80.934       201     0.90     0.338     3.13     18.49     187.004     81.125       202     0.89     0.3399     3.15     18.49     186.706     81.080       203     0.88     0.3366     3.12     18.54     186.32     80.920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |        |      |       |         |         |
| 201     0.90     0.338     3.13     18.49     187.004     81.125       202     0.89     0.3399     3.15     18.49     186.706     81.080       203     0.88     0.3366     3.12     18.54     186.32     80.920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |      |        |      |       |         | 80.9345 |
| 202         0.89         0.3399         3.15         18.49         186.706         81.080           203         0.88         0.3366         3.12         18.54         186.32         80.920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |      |        |      |       |         |         |
| 203 0.88 0.3366 3.12 18.54 186.32 80.920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |        |      |       |         |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |      |        |      |       |         |         |
| 204 0.87 0.3339 3.1 18.51 185.602 80.948                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |        |      |       |         |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 204 | 0.87 | 0.3339 | 3.1  | 16.51 | 100.002 | ou.9484 |

| 206 0.84 0.3202 2.94 18,73 1865 185.117 81.0088 207 0.85 0.3172 2.94 18.73 18.74 184.768 80.8393 208 0.82 0.3149 2.96 18.83 184.268 80.853 209 0.82 0.3135 2.95 18.86 183.72 80.3382 210 0.80 0.3010 2.91 18.86 183.72 80.3382 211 0.80 0.3006 2.94 18.86 183.73 80.3382 211 0.80 0.3006 2.94 18.86 183.73 80.3455 212 0.79 0.3091 2.95 18.89 183.313 80.5455 212 0.79 0.3091 2.95 18.89 183.474 80.5455 212 0.77 0.3099 2.96 18.91 181.94 80.7146 214 0.77 0.3099 2.96 18.91 181.94 80.7146 215 0.77 0.3099 2.96 18.91 181.93 80.7146 216 0.75 0.3077 2.9 19 18.90 180.918 80.5265 217 0.74 0.3085 2.92 19.01 180.497 80.526 218 0.74 0.3082 2.95 19 18.91 181.948 80.724 219 0.72 0.3091 2.95 19 19 80.918 80.8362 218 0.74 0.3082 2.95 19 180.417 80.526 218 0.74 0.3082 2.95 19 19 80.918 80.3782 220 0.71 0.3190 2.93 19 17 179.622 80.74 221 0.70 0.3115 2.95 19.04 179.622 80.3782 222 0.68 0.3185 2.97 19.06 178.855 80.8099 224 0.68 0.3186 2.97 19.06 178.855 80.8092 224 0.68 0.3186 2.97 19.06 178.855 80.8092 225 0.66 0.317 2.46 19.06 177.856 80.3362 226 0.66 0.317 2.46 19.06 177.856 80.3362 227 0.64 0.3299 2.29 19.07 177.566 80.3352 230 0.62 0.3191 2.95 19.07 177.566 80.3352 231 0.62 0.3217 2.91 19.15 175.636 80.3562 232 0.66 0.3186 2.92 19.07 177.566 80.3352 233 0.56 0.3214 2.96 19.17 177.566 80.3352 234 0.58 0.3214 2.96 19.17 177.566 80.3352 235 0.60 0.3217 2.91 19.15 176.366 80.3562 236 0.66 0.316 2.94 19.25 177.566 80.3352 237 0.56 0.3034 2.8 19.17 177.567 80.03582 239 0.60 0.3217 2.91 19.15 176.366 80.3562 230 0.60 0.3107 2.92 19.15 177.567 80.03582 230 0.60 0.3107 2.92 19.17 177.567 80.03582 230 0.60 0.3207 2.92 19.17 177.567 80.03582 230 0.60 0.3207 2.92 19.17 177.568 80.3352 230 0.60 0.3207 2.92 19.19 177.766 80.3352 230 0.60 0.3108 2.93 19.17 19.15 176.366 80.3562 231 0.60 0.3207 2.92 19.17 177.568 80.3378 233 0.56 0.3188 2.94 19.25 177.588 80.3582 234 0.58 0.3244 2.96 19.92 177.588 80.3582 235 0.60 0.3207 2.92 19.17 177.768 80.3587 246 0.40 0.3008 2.78 19.18 19.18 176.97 80.0008 237 0.40 0.3008 2.93 19.19 19.18 176.98 80.89 80.378 246 0. | 205 | 0.05 | 0.0074 | 0.04 | 40.05 | 105 115 | 04.0000 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|--------|------|-------|---------|---------|
| 207 0.85 0.3172 2.94 18.76 184.778 80.8393 208 0.82 0.3149 2.95 18.83 184.258 80.8593 209 0.82 0.3135 2.95 18.86 183.72 80.9382 210 0.06 0.3106 2.91 18.86 183.72 80.9382 211 0.06 0.3006 2.94 18.86 183.73 80.9382 212 0.79 0.3001 2.95 18.86 182.494 80.617 213 0.78 0.3005 2.97 18.91 181.948 80.7146 214 0.77 0.3009 2.96 18.91 181.743 80.617 215 0.77 0.3009 2.96 18.97 181.755 80.80092 216 0.77 0.3009 2.96 18.97 181.755 80.80092 216 0.75 0.3077 2.9 19 18.90.918 80.3626 217 0.74 0.3008 2.22 19.01 180.947 80.526 218 0.74 0.3002 2.35 19.02 179.68 80.3782 220 0.71 0.3109 2.93 19.02 179.68 80.3782 221 0.70 0.3115 2.93 19.02 179.86 80.3782 222 0.69 0.3115 2.95 19.04 178.852 80.5412 222 0.69 0.3115 2.95 19.04 178.852 80.5412 223 0.68 0.3186 2.97 19.06 178.851 80.5412 224 0.68 0.3184 2.96 19.05 177.868 80.3826 225 0.66 0.317 2.94 19.00 177.58 80.3542 226 0.65 0.3188 2.92 19.91 177.58 80.8332 229 0.63 0.3224 2.92 19.91 177.58 80.8333 220 0.63 0.3224 2.92 19.91 177.58 80.8333 230 0.62 0.3271 2.91 19.91 177.58 80.8333 231 0.62 0.3271 2.91 19.91 177.58 80.8333 233 0.69 0.3224 2.92 19.91 177.58 80.8333 234 0.69 0.3271 2.91 19.91 177.58 80.8333 235 0.69 0.3197 2.99 19.11 177.68 80.3333 240 0.60 0.3070 2.92 19.91 177.58 80.8333 241 0.60 0.3070 2.92 19.91 177.58 80.8333 242 0.68 0.3186 2.97 19.96 177.58 80.8343 244 0.50 0.80 0.318 2.97 19.96 177.58 80.8343 245 0.68 0.3197 2.99 19.11 177.68 80.3333 250 0.60 0.3070 2.92 19.91 177.58 80.8333 250 0.60 0.3070 2.92 19.91 177.58 80.8333 250 0.60 0.3070 2.92 19.91 177.58 80.8333 250 0.60 0.3070 2.92 19.91 177.58 80.8333 250 0.60 0.3070 2.92 19.91 177.58 80.8333 250 0.60 0.3070 2.92 19.91 177.58 80.8333 250 0.60 0.3070 2.92 19.91 177.58 80.8333 250 0.60 0.3070 2.92 19.91 177.58 80.8333 250 0.60 0.3070 2.92 19.91 177.58 80.8333 250 0.60 0.3070 2.92 19.91 177.58 80.8333 250 0.60 0.3070 2.92 19.91 177.58 80.8333 250 0.60 0.3070 2.92 19.91 177.58 80.8333 250 0.60 0.3070 2.92 19.91 177.58 80.8333 250 0.60 0.3070 2.92 19.92 177.58 80.8333 250 0.60 0.3070 2.92 19.92 177.58 80.8333 250 0.60 0.3070 2 | 205 | 0.85 | 0.3271 | 3.01 | 18.65 | 185.117 | 81.0088 |
| 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 206 |      | 0.3202 | 2.94 | 18.74 | 184.969 | 80.883  |
| 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 207 | 0.85 | 0.3172 | 2.94 | 18.79 | 184,778 | 80.8393 |
| 209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      |        |      |       |         |         |
| 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      |        |      |       |         |         |
| 211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      |        |      |       |         |         |
| 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 210 |      |        |      |       |         |         |
| 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 211 | 0.80 | 0.3086 | 2.94 | 18.89 | 183.117 | 80.5455 |
| 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      |        | 2.05 | 18 80 |         |         |
| 214 0.77 0.3099 2.96 18.91 18.17 18.1 25.9 0.809 215 0.77 0.3099 2.9 18.87 18.125.9 0.809 216 0.75 0.3077 2.9 19 18.01 180.497 60.526 217 0.74 0.3085 2.95 19 18.04 18.0819 218 0.74 0.3082 2.95 19 180.411 80.821 219 0.72 0.3091 2.93 19.02 179.68 80.374 221 0.70 0.3109 2.93 19.02 179.68 80.374 222 0.071 0.3109 2.93 19.04 179.022 80.3952 222 0.071 0.3109 2.93 19.04 178.022 80.3952 222 1 0.70 0.3115 2.93 19.04 178.022 80.3952 222 0.68 0.3115 2.95 19.04 178.022 80.3952 222 0.69 0.3115 2.95 19.04 178.022 80.3952 222 0.69 0.3115 2.93 19.05 178.283 80.4512 233 0.68 0.3186 2.97 19.06 178.512 80.5907 2244 0.68 0.3194 2.96 19.05 178.263 80.463 225 0.66 0.317 2.94 19.08 177.755 80.531 226 0.65 0.3193 2.92 19.09 177.758 80.531 227 0.64 0.3209 2.92 19.07 177.558 80.531 228 0.63 0.3223 2.93 19.99 177.564 80.6358 228 0.63 0.3224 2.92 19.17 177.586 80.532 229 0.63 0.3224 2.92 19.17 177.586 80.532 229 0.63 0.3224 2.92 19.17 177.586 80.532 230 0.62 0.3197 2.89 19.12 176.704 80.3999 231 0.62 0.3217 2.91 19.15 176.57 80.024 232 0.60 0.3207 2.92 19.17 176.68 80.2569 233 0.59 0.321 2.91 19.16 176.176 80.2937 234 0.58 0.3214 2.86 19.23 178.585 80.2569 235 0.58 0.3189 2.84 19.25 175.506 80.198 236 0.56 0.3116 2.84 19.26 175.197 89.81 237 0.56 0.3034 2.8 19.31 175.326 79.8814 238 0.54 0.3056 2.81 19.31 175.326 79.8814 238 0.54 0.3056 2.81 19.29 174.77 80.208 244 0.58 0.3214 2.86 19.23 173.632 79.316 245 0.56 0.3034 2.8 19.31 173.532 79.9814 246 0.48 0.2967 2.86 19.32 173.632 79.316 247 0.49 0.3056 2.81 19.31 175.306 79.7964 244 0.51 0.2812 2.87 19.46 173.83 78.7967 245 0.50 0.2907 2.88 19.32 173.632 79.316 246 0.48 0.2967 2.86 19.32 173.632 79.316 247 0.49 0.3056 2.81 19.31 175.306 79.7964 248 0.49 0.306 2.77 19.4 173.313 78.206 79.9814 249 0.47 0.311 2.76 19.43 173.933 79.7964 240 0.49 0.3056 2.77 19.4 173.936 79.5964 241 0.49 0.3058 2.77 19.4 173.937 79.964 242 0.49 0.306 2.70 19.4 177.986 79.7964 243 0.52 0.2646 2.83 19.7 174.77 80.208 255 0.44 0.3162 2.79 19.46 177.937 79.967 266 0.33 0.3286 2.33 19.7 174.77 80.208 267 0.34 0.3286 2 |     |      |        |      |       |         |         |
| 216 0.77 0.3099 2.9 18.87 181.258 80.8099 216 0.75 0.3077 2.9 19 180.918 0.326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |      |        | 2.97 |       |         |         |
| 216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 214 | 0.77 | 0.3099 | 2.96 | 18.91 | 181.743 | 80.9343 |
| 216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 215 | 0.77 |        |      | 18 97 | 181 255 | 80 8099 |
| 218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      |        | 2.0  |       |         |         |
| 218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      |        |      |       |         |         |
| 219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      |        |      |       |         |         |
| 219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 218 | 0.74 | 0.3082 | 2.95 | 19    | 180.411 | 80.821  |
| 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 219 | 0.72 |        | 2 93 | 19.02 | 179 68  | 80.378  |
| 221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      |        |      |       |         |         |
| 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      | 0.3109 | 2.93 |       | 179.522 | 00.74   |
| 223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      |        |      |       |         |         |
| 223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 222 | 0.69 | 0.3115 | 2.95 | 19.04 | 178.852 | 80.5412 |
| 224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 223 |      |        | 2 97 | 19.06 | 178 512 |         |
| 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      | 0.0100 | 2.00 |       |         |         |
| 226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      | 0.3194 | 2.90 |       |         |         |
| 227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      |        | 2.94 |       | 177.951 |         |
| 227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 226 | 0.65 | 0.3188 | 2.92 | 19.09 | 177.758 | 80.53   |
| 228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      |        |      |       | 177 58  |         |
| 229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      | 0.0203 | 2.02 |       |         |         |
| 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      | 0.3223 |      | 19.09 | 177.504 | 00.0358 |
| 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      |        |      | 19.11 |         |         |
| 231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 230 | 0.62 | 0.3197 | 2.89 | 19.12 | 176.704 | 80.3999 |
| 232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      |        |      |       |         |         |
| 233   0.59   0.321   2.91   19.16   176.176   80.2937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 201 | 0.02 |        | 2.01 |       |         |         |
| 234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      |        |      |       |         |         |
| 235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      |        |      |       |         |         |
| 235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 234 | 0.58 | 0.3214 | 2.86 | 19.23 | 175.895 | 80.3178 |
| 236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      |        | 2.84 |       |         |         |
| 237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      |        |      |       | 175.500 |         |
| 238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      | 0.3116 | 2.84 |       | 1/5.149 |         |
| 239         0.54         0.3056         2.81         19.29         174.77         80.208           243         0.52         0.2648         2.83         19.7         174.091         79.7964           244         0.51         0.2812         2.87         19.42         173.933         78.9647           245         0.50         0.2907         2.85         19.32         173.632         79.316           246         0.48         0.2957         2.86         19.32         173.573         79.3726           247         0.49         0.3035         2.77         19.4         173.133         78.277           248         0.48         0.308         2.78         19.41         172.891         79.1415           249         0.47         0.3116         2.76         19.43         172.721         79.1881           250         0.44         0.3182         2.79         19.46         171.2403         79.3962           251         0.44         0.3182         2.79         19.49         171.385         79.5936           253         0.43         0.3265         2.76         19.51         170.887         79.4706           254         0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 237 | 0.56 | 0.3034 | 2.8  | 19.3  | 175.326 | 79.9814 |
| 239         0.54         0.3056         2.81         19.29         174.77         80.208           243         0.52         0.2648         2.83         19.7         174.091         79.7964           244         0.51         0.2812         2.87         19.42         173.933         78.9647           245         0.50         0.2907         2.85         19.32         173.632         79.316           246         0.48         0.2957         2.86         19.32         173.573         79.3726           247         0.49         0.3035         2.77         19.4         173.133         78.277           248         0.48         0.308         2.78         19.41         172.891         79.1415           249         0.47         0.3116         2.76         19.43         172.721         79.1881           250         0.44         0.3182         2.79         19.46         171.2403         79.3962           251         0.44         0.3182         2.79         19.49         171.385         79.5936           253         0.43         0.3265         2.76         19.51         170.887         79.4706           254         0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 238 | 0.54 | 0.3042 | 2 81 | 19 31 | 174 933 | 80 131  |
| 243         0.52         0.2648         2.83         19.7         174.091         79.7964           244         0.51         0.2812         2.87         19.42         173.963         78.9647           245         0.50         0.2907         2.85         19.32         173.573         79.3726           246         0.48         0.2957         2.86         19.32         173.573         79.3726           247         0.49         0.3035         2.77         19.4         173.133         78.2707           248         0.48         0.308         2.78         19.41         172.891         79.1415           249         0.47         0.3111         2.76         19.43         172.721         79.1881           250         0.45         0.3156         2.78         19.45         172.403         79.3962           251         0.44         0.3182         2.79         19.46         171.387         79.5936           252         0.44         0.3232         2.79         19.46         171.287         79.5936           253         0.43         0.3285         2.81         19.48         171.069         79.1307           254         0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      | 0.3056 | 2.01 |       |         |         |
| 244         0.51         0.2812         2.87         19.42         173.963         78.9647           245         0.50         0.2907         2.85         19.32         173.632         79.3726           247         0.48         0.2967         2.86         19.32         173.573         79.3726           247         0.49         0.3035         2.77         19.4         173.33         78.2707           248         0.48         0.308         2.78         19.41         172.891         79.1415           249         0.47         0.3111         2.76         19.43         172.721         79.1881           250         0.45         0.3156         2.78         19.45         172.403         79.360           251         0.44         0.3182         2.79         19.46         171.921         79.3501           252         0.44         0.3232         2.79         19.49         171.385         79.5936           253         0.43         0.3285         2.81         19.48         171.069         79.307           254         0.43         0.3266         2.76         19.51         170.087         79.472           255         0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |        | 2.01 | 19.29 |         |         |
| 245         0.50         0.2907         2.85         19.32         173.632         79.316           246         0.48         0.2957         2.86         19.32         173.573         79.3726           247         0.49         0.3035         2.77         19.4         173.133         78.2707           248         0.48         0.308         2.78         19.41         172.891         79.1415           249         0.47         0.3111         2.76         19.43         172.721         79.3862           250         0.45         0.3156         2.78         19.46         171.2403         79.3962           251         0.44         0.3182         2.79         19.46         171.935         79.3501           252         0.44         0.3232         2.79         19.46         171.935         79.5361           253         0.43         0.3265         2.61         19.51         170.887         79.4706           255         0.40         0.3266         2.76         19.54         170.712         79.3934           256         0.40         0.3196         2.59         19.68         170.282         79.3343           257         0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |      |        |      |       |         |         |
| 245         0.50         0.2907         2.85         19.32         173.632         79.316           246         0.48         0.2957         2.86         19.32         173.573         79.3726           247         0.49         0.3035         2.77         19.4         173.133         78.2707           248         0.48         0.308         2.78         19.41         172.891         79.1415           249         0.47         0.3111         2.76         19.43         172.721         79.3862           250         0.45         0.3156         2.78         19.46         171.2403         79.3962           251         0.44         0.3182         2.79         19.46         171.935         79.3501           252         0.44         0.3232         2.79         19.46         171.935         79.5361           253         0.43         0.3265         2.61         19.51         170.887         79.4706           255         0.40         0.3266         2.76         19.54         170.712         79.3934           256         0.40         0.3196         2.59         19.68         170.282         79.3343           257         0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 244 | 0.51 | 0.2812 | 2.87 | 19.42 | 173.963 | 78.9647 |
| 246         0.48         0.2957         2.86         19.32         173.573         79.3726           247         0.49         0.3035         2.77         19.4         173.133         78.2707           248         0.48         0.308         2.78         19.41         172.891         79.1415           249         0.47         0.3111         2.76         19.43         172.721         79.1881           250         0.45         0.3156         2.78         19.45         172.403         79.3962           251         0.44         0.3182         2.79         19.46         171.921         79.3501           252         0.44         0.3285         2.81         19.48         171.069         79.1307           254         0.43         0.3265         2.76         19.51         170.887         79.4706           255         0.40         0.3266         2.76         19.51         170.887         79.4706           255         0.40         0.3266         2.76         19.54         170.712         79.3939           256         0.40         0.3206         2.76         19.54         170.712         79.3343           257         0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 245 |      | 0.2907 | 2 85 |       | 173 632 |         |
| 247         0.49         0.3035         2.77         19.4         173.133         78.2707           248         0.48         0.308         2.78         19.41         172.891         79.1415           249         0.47         0.3111         2.76         19.43         172.721         79.1881           250         0.45         0.3156         2.78         19.45         172.403         79.3962           251         0.44         0.3182         2.79         19.46         171.921         79.3501           252         0.44         0.3232         2.79         19.49         171.385         79.5936           253         0.43         0.3285         2.81         19.48         171.069         79.1307           254         0.43         0.3266         2.76         19.54         170.712         79.3939           255         0.40         0.3266         2.76         19.54         170.712         79.3939           256         0.40         0.3196         2.59         19.68         170.275         79.2407           258         0.39         0.3083         2.57         19.76         170.275         79.2407           258         0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |      |        |      |       |         |         |
| 248         0.48         0.308         2.78         19.41         172.891         79.1415           249         0.47         0.3111         2.76         19.43         172.721         79.1881           250         0.45         0.3156         2.78         19.45         172.403         79.3962           251         0.44         0.3182         2.79         19.49         171.385         79.5936           252         0.44         0.3232         2.79         19.49         171.385         79.5936           253         0.43         0.3265         2.76         19.51         170.687         79.4706           255         0.40         0.3266         2.76         19.54         170.712         79.3939           256         0.40         0.3196         2.59         19.68         170.225         79.3343           257         0.38         0.3083         2.57         19.76         170.275         79.2407           258         0.39         0.3024         2.53         19.81         170.07         79.6421           259         0.38         0.2983         2.37         19.94         169.56         79.5748           260         0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      | 0.2957 | 2.86 | 19.32 | 1/3.5/3 |         |
| 249         0.47         0.3111         2.76         19.43         172.721         79.1881           250         0.45         0.3156         2.78         19.45         172.403         79.3962           251         0.44         0.3182         2.79         19.46         171.921         79.5936           252         0.44         0.3232         2.79         19.48         171.069         79.1307           253         0.43         0.3265         2.76         19.51         170.887         79.4706           254         0.43         0.3266         2.76         19.54         170.72         79.3939           255         0.40         0.3196         2.59         19.68         170.282         79.3343           257         0.38         0.3083         2.57         19.76         170.275         79.2407           258         0.39         0.3024         2.53         19.81         170.07         79.6421           259         0.38         0.2983         2.37         19.94         169.56         79.5748           260         0.37         0.2983         2.32         20.02         169.324         79.2414           261         0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 247 | 0.49 |        | 2.77 | 19.4  |         |         |
| 249         0.47         0.3111         2.76         19.43         172.721         79.1881           250         0.45         0.3156         2.78         19.45         172.403         79.3962           251         0.44         0.3182         2.79         19.46         171.921         79.5936           252         0.44         0.3232         2.79         19.48         171.069         79.1307           253         0.43         0.3265         2.76         19.51         170.887         79.4706           254         0.43         0.3266         2.76         19.54         170.72         79.3939           255         0.40         0.3196         2.59         19.68         170.282         79.3343           257         0.38         0.3083         2.57         19.76         170.275         79.2407           258         0.39         0.3024         2.53         19.81         170.07         79.6421           259         0.38         0.2983         2.37         19.94         169.56         79.5748           260         0.37         0.2983         2.32         20.02         169.324         79.2414           261         0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 248 | 0.48 | 0.308  | 2.78 | 19.41 | 172.891 | 79.1415 |
| 250         0.45         0.3156         2.78         19.45         172.403         79.3962           251         0.44         0.3182         2.79         19.46         171.921         79.3961           252         0.44         0.3232         2.79         19.49         171.385         79.5936           253         0.43         0.3285         2.81         19.48         171.069         79.1307           254         0.43         0.3265         2.76         19.51         170.787         79.4706           255         0.40         0.3266         2.76         19.54         170.712         79.3939           256         0.40         0.3196         2.59         19.68         170.282         79.3343           257         0.38         0.3083         2.57         19.76         170.27         79.2421           258         0.39         0.3024         2.53         19.81         170.07         79.6421           259         0.38         0.2983         2.37         19.94         169.56         79.5748           260         0.37         0.2983         2.32         20.02         169.324         79.2418           261         0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      | 0.3111 | 2.76 | 10./3 | 172 721 |         |
| 251         0.44         0.3182         2.79         19.46         171.921         79.3501           252         0.44         0.3232         2.79         19.49         171.385         79.5936           253         0.43         0.3265         2.76         19.51         170.887         79.4706           255         0.40         0.3266         2.76         19.54         170.712         79.3939           256         0.40         0.3196         2.59         19.68         170.282         79.343           257         0.38         0.3083         2.57         19.76         170.275         79.2407           258         0.39         0.3024         2.53         19.81         170.07         79.6421           259         0.38         0.2983         2.37         19.94         169.56         79.5748           260         0.37         0.2983         2.32         20.02         169.324         79.2414           261         0.36         0.2937         2.35         20.05         168.784         79.4021           262         0.35         0.29         2.33         20.08         168.381         79.4889           263         0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |      |        |      |       |         |         |
| 252         0.44         0.3232         2.79         19.49         171.385         79.5936           253         0.43         0.3285         2.81         19.48         171.069         79.1307           254         0.43         0.3266         2.76         19.51         170.887         79.4706           255         0.40         0.3266         2.76         19.54         170.712         79.3939           256         0.40         0.3196         2.59         19.68         170.227         79.343           257         0.38         0.3083         2.57         19.76         170.275         79.2407           258         0.39         0.3024         2.53         19.81         170.07         79.6421           259         0.38         0.2983         2.37         19.94         169.56         79.5748           260         0.37         0.2983         2.32         20.02         169.324         79.2418           261         0.36         0.2937         2.35         20.05         168.784         79.4021           262         0.35         0.29         2.33         20.02         168.784         79.4891           263         0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 0.45 |        | 2.78 |       |         |         |
| 252         0.44         0.3232         2.79         19.49         171.385         79.5936           253         0.43         0.3285         2.81         19.48         171.069         79.1307           254         0.43         0.3266         2.76         19.51         170.887         79.4706           255         0.40         0.3196         2.59         19.68         170.282         79.3343           256         0.40         0.3196         2.59         19.68         170.282         79.3343           257         0.38         0.3083         2.57         19.76         170.275         79.2407           258         0.39         0.3024         2.53         19.81         170.07         79.6421           259         0.38         0.2983         2.37         19.94         169.56         79.5748           260         0.37         0.2983         2.32         20.02         169.324         79.2418           261         0.36         0.2937         2.35         20.05         168.784         79.4021           262         0.35         0.29         2.33         20.08         168.381         79.4889           263         0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 251 | 0.44 | 0.3182 | 2.79 | 19.46 | 171.921 | 79.3501 |
| 253         0.43         0.3285         2.81         19.48         171.069         79.1307           254         0.43         0.3265         2.76         19.51         170.887         79.4706           255         0.40         0.3266         2.76         19.54         170.712         79.3939           256         0.40         0.3196         2.59         19.68         170.282         79.343           257         0.38         0.3083         2.57         19.76         170.275         79.2407           258         0.39         0.3024         2.53         19.81         170.07         79.6421           259         0.38         0.2983         2.37         19.94         169.56         79.5748           260         0.37         0.2983         2.32         20.02         169.324         79.2418           261         0.36         0.2937         2.35         20.05         168.784         79.4021           262         0.35         0.29         2.33         20.08         163.381         79.4889           263         0.34         0.2873         2.33         20.1         167.693         79.4729           264         0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 252 | 0.44 | 0.3232 | 2.79 | 19.49 | 171.385 | 79.5936 |
| 254         0.43         0.3265         2.76         19.51         170.887         79.4706           255         0.40         0.3266         2.76         19.54         170.712         79.3939           256         0.40         0.3196         2.59         19.68         170.282         79.3343           257         0.38         0.3083         2.57         19.76         170.275         79.2407           258         0.39         0.3024         2.53         19.81         170.07         79.6421           259         0.38         0.2983         2.37         19.94         169.56         79.5748           260         0.37         0.2983         2.32         20.02         169.324         79.2418           261         0.36         0.2937         2.35         20.05         168.784         79.4021           262         0.35         0.29         2.33         20.08         168.381         79.4889           263         0.34         0.2873         2.33         20.1         167.025         79.3571           264         0.34         0.2876         2.35         20.09         167.025         79.4585           265         0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |      |        | 2.91 |       |         |         |
| 255         0.40         0.3266         2.76         19.54         170.712         79.3939           256         0.40         0.3196         2.59         19.68         170.282         79.3343           257         0.38         0.3083         2.57         19.76         170.275         79.2407           258         0.39         0.3024         2.53         19.81         170.07         79.6421           259         0.38         0.2983         2.37         19.94         169.56         79.5748           260         0.37         0.2983         2.32         20.02         169.324         79.2418           261         0.36         0.2937         2.35         20.05         168.784         79.4021           262         0.35         0.29         2.33         20.08         168.381         79.4889           263         0.34         0.2873         2.33         20.1         167.693         79.4729           264         0.34         0.2876         2.35         20.09         167.025         79.3071           265         0.33         0.2876         2.35         20.09         167.025         79.3071           266         0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |      |        |      |       |         |         |
| 256         0.40         0.3196         2.59         19.68         170.282         79.3343           257         0.38         0.3083         2.57         19.76         170.275         79.2407           258         0.39         0.3024         2.53         19.81         170.07         79.6421           259         0.38         0.2983         2.37         19.94         169.56         79.5748           260         0.37         0.2983         2.32         20.02         169.524         79.2418           261         0.36         0.2937         2.35         20.05         168.784         79.4021           262         0.35         0.29         2.33         20.08         168.381         79.4889           263         0.34         0.2873         2.33         20.1         167.693         79.4729           264         0.34         0.2876         2.35         20.09         167.025         79.3071           265         0.33         0.2852         2.33         20.12         166.552         79.4585           266         0.33         0.2878         2.32         20.13         165.715         79.3271           267         0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 254 |      |        |      |       |         |         |
| 256         0.40         0.3196         2.59         19.68         170.282         79.3343           257         0.38         0.3083         2.57         19.76         170.275         79.2407           258         0.39         0.3024         2.53         19.81         170.07         79.6421           259         0.38         0.2983         2.37         19.94         169.56         79.5748           260         0.37         0.2983         2.32         20.02         169.524         79.2418           261         0.36         0.2937         2.35         20.05         168.784         79.4021           262         0.35         0.29         2.33         20.08         168.381         79.4889           263         0.34         0.2873         2.33         20.1         167.693         79.4729           264         0.34         0.2876         2.35         20.09         167.025         79.3071           265         0.33         0.2852         2.33         20.12         166.552         79.4585           266         0.33         0.2878         2.32         20.13         165.715         79.3271           267         0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 255 | 0.40 | 0.3266 | 2.76 | 19.54 | 170.712 | 79.3939 |
| 257         0.38         0.3083         2.57         19.76         170.275         79.2407           258         0.39         0.3024         2.53         19.81         170.07         79.6421           259         0.38         0.2983         2.37         19.94         169.56         79.5748           260         0.37         0.2983         2.32         20.02         169.324         79.2418           261         0.36         0.2937         2.35         20.05         168.784         79.4021           262         0.35         0.29         2.33         20.08         168.381         79.4889           263         0.34         0.2873         2.35         20.09         167.025         79.3071           264         0.34         0.2876         2.35         20.09         167.025         79.3071           265         0.33         0.2852         2.33         20.12         166.552         79.4585           266         0.33         0.2878         2.32         20.13         165.715         79.3271           267         0.32         0.2871         2.32         20.16         164.713         79.5653           269         0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | 0.40 | 0.3196 | 2 59 | 19.68 | 170.282 |         |
| 258         0.39         0.3024         2.53         19.81         170.07         79.6421           259         0.38         0.2983         2.37         19.94         169.56         79.5748           260         0.37         0.2983         2.32         20.02         169.324         79.2418           261         0.36         0.2937         2.35         20.05         168.784         79.4021           262         0.35         0.29         2.33         20.08         168.381         79.489           263         0.34         0.2873         2.33         20.1         167.693         79.4729           264         0.34         0.2876         2.35         20.09         167.025         79.3071           265         0.33         0.2852         2.33         20.12         166.552         79.4885           266         0.33         0.2878         2.32         20.13         165.715         79.3271           267         0.32         0.2871         2.32         20.16         164.713         79.5653           268         0.31         0.2848         2.29         20.16         164.713         79.5653           269         0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |        |      |       |         |         |
| 259         0.38         0.2983         2.37         19.94         169.56         79.5748           260         0.37         0.2983         2.32         20.02         169.324         79.2418           261         0.36         0.2937         2.35         20.05         168.784         79.4021           262         0.35         0.29         2.33         20.08         166.381         79.4889           263         0.34         0.2876         2.35         20.09         167.693         79.4729           264         0.34         0.2876         2.35         20.09         167.693         79.4729           265         0.33         0.2852         2.33         20.12         166.552         79.4885           266         0.33         0.2876         2.32         20.13         165.715         79.3271           267         0.32         0.2871         2.32         20.16         165.198         79.4875           268         0.31         0.2848         2.29         20.16         164.713         79.5653           269         0.30         0.2846         2.31         20.17         163.504         78.9799           271         0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |        |      |       |         |         |
| 260         0.37         0.2983         2.32         20.02         169.324         79.2418           261         0.36         0.2937         2.35         20.05         168.784         79.4021           262         0.35         0.29         2.33         20.08         168.381         79.4889           263         0.34         0.2876         2.35         20.09         167.693         79.4729           264         0.34         0.2876         2.35         20.09         166.7025         79.3071           265         0.33         0.2852         2.33         20.12         166.552         79.4585           266         0.33         0.2878         2.32         20.13         165.715         79.3271           267         0.32         0.2871         2.32         20.16         165.198         79.4875           268         0.31         0.2848         2.29         20.16         164.713         79.5653           269         0.30         0.2845         2.31         20.17         163.598         79.4466           270         0.30         0.2846         2.31         20.17         163.504         78.9799           271         0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |      |        |      |       |         |         |
| 260         0.37         0.2983         2.32         20.02         169.324         79.2418           261         0.36         0.2937         2.35         20.05         168.784         79.4021           262         0.35         0.29         2.33         20.08         168.381         79.4889           263         0.34         0.2876         2.35         20.09         167.025         79.3071           264         0.34         0.2876         2.35         20.09         167.025         79.3071           265         0.33         0.2872         2.33         20.12         166.552         79.4885           266         0.33         0.2878         2.32         20.13         165.715         79.3271           267         0.32         0.2871         2.32         20.16         165.198         79.4871           268         0.31         0.2848         2.29         20.16         164.713         79.5653           269         0.30         0.2845         2.31         20.17         163.594         78.7979           271         0.29         0.2823         2.28         20.18         162.876         79.2537           272         0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 259 | 0.38 | 0.2983 | 2.37 | 19.94 | 169.56  | 79.5748 |
| 261         0.36         0.2937         2.35         20.05         168.784         79.4021           262         0.35         0.29         2.33         20.08         168.381         79.4889           263         0.34         0.2873         2.33         20.1         167.693         79.4729           264         0.34         0.2876         2.35         20.09         167.025         79.3071           265         0.33         0.2852         2.33         20.12         166.552         79.4585           266         0.33         0.2878         2.32         20.13         165.715         79.3271           267         0.32         0.2871         2.32         20.16         165.198         79.4871           268         0.31         0.2848         2.29         20.16         164.713         79.5653           269         0.30         0.2845         2.31         20.17         163.978         79.4466           270         0.30         0.2846         2.31         20.17         163.504         78.9799           271         0.29         0.2823         2.28         20.18         162.876         79.2537           272         0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 260 |      |        |      |       |         |         |
| 262         0.35         0.29         2.33         20.08         168.381         79.4889           263         0.34         0.2873         2.33         20.1         167.693         79.4729           264         0.34         0.2876         2.35         20.09         167.025         79.3071           265         0.33         0.2852         2.33         20.12         166.552         79.4585           266         0.33         0.2878         2.32         20.13         165.715         79.3271           267         0.32         0.2871         2.32         20.16         165.715         79.3271           268         0.31         0.2848         2.29         20.16         164.713         79.5653           269         0.30         0.2845         2.31         20.17         163.978         79.4466           270         0.30         0.2846         2.31         20.17         163.978         79.4466           271         0.29         0.2823         2.28         20.18         162.876         79.2537           272         0.29         0.2806         2.25         20.23         161.703         78.6897           273         0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |        |      |       |         |         |
| 263         0.34         0.2873         2.33         20.1         167.693         79.4729           264         0.34         0.2876         2.35         20.09         167.025         79.3071           265         0.33         0.2852         2.33         20.12         166.552         79.4585           266         0.33         0.2878         2.32         20.13         165.715         79.3271           267         0.32         0.2871         2.32         20.16         165.715         79.3271           268         0.31         0.2848         2.29         20.16         164.713         79.5653           269         0.30         0.2845         2.31         20.17         163.978         79.4466           270         0.30         0.2846         2.31         20.17         163.978         79.4466           270         0.30         0.2846         2.31         20.17         163.978         79.4466           270         0.30         0.2846         2.31         20.17         163.978         79.4466           271         0.29         0.2803         2.28         20.18         162.876         79.2537           272         0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |      |        |      |       |         |         |
| 264         0.34         0.2876         2.35         20.09         167.025         79.3071           265         0.33         0.2852         2.33         20.12         166.552         79.4585           266         0.33         0.2878         2.32         20.13         165.715         79.3271           267         0.32         0.2871         2.32         20.16         165.715         79.3271           268         0.31         0.2848         2.29         20.16         164.713         79.5653           269         0.30         0.2845         2.31         20.17         163.978         79.4466           270         0.30         0.2846         2.31         20.17         163.504         78.9799           271         0.29         0.2823         2.28         20.18         162.876         79.2537           272         0.29         0.2806         2.25         20.23         162.154         79.265           273         0.28         0.2647         2.19         20.32         161.703         78.6897           274         0.28         0.2601         2.16         20.36         161.703         78.86897           275         0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |      |        |      |       |         |         |
| 264         0.34         0.2876         2.35         20.09         167.025         79.3071           265         0.33         0.2852         2.33         20.12         166.552         79.4585           266         0.33         0.2878         2.32         20.13         165.715         79.3271           267         0.32         0.2871         2.32         20.16         165.715         79.3271           268         0.31         0.2848         2.29         20.16         164.713         79.5653           269         0.30         0.2845         2.31         20.17         163.978         79.4466           270         0.30         0.2846         2.31         20.17         163.504         78.9799           271         0.29         0.2823         2.28         20.18         162.876         79.2537           272         0.29         0.2806         2.25         20.23         162.154         79.265           273         0.28         0.2647         2.19         20.32         161.703         78.6897           274         0.28         0.2601         2.16         20.36         161.703         78.86897           275         0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 263 | 0.34 | 0.2873 | 2.33 | 20.1  | 167.693 |         |
| 265         0.33         0.2852         2.33         20.12         166.552         79.4585           266         0.33         0.2878         2.32         20.13         165.715         79.3271           267         0.32         0.2871         2.32         20.16         165.198         79.4871           268         0.31         0.2848         2.29         20.16         164.713         79.5653           269         0.30         0.2845         2.31         20.17         163.978         79.4466           270         0.30         0.2846         2.31         20.17         163.504         78.9799           271         0.29         0.2823         2.28         20.18         162.504         78.9799           272         0.29         0.2806         2.25         20.23         162.154         79.265           273         0.28         0.2647         2.19         20.32         161.703         78.6897           274         0.28         0.2601         2.16         20.36         161.365         78.7796           275         0.27         0.2553         2.14         20.37         160.907         78.8355           276         0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 264 | 0.34 | 0.2876 | 2.35 | 20.09 | 167.025 |         |
| 266         0.33         0.2878         2.32         20.13         165.715         79.3271           267         0.32         0.2871         2.32         20.16         165.198         79.4871           268         0.31         0.2848         2.29         20.16         164.713         79.5653           269         0.30         0.2845         2.31         20.17         163.978         79.4466           270         0.30         0.2846         2.31         20.17         163.504         78.9799           271         0.29         0.2823         2.28         20.18         162.876         79.2537           272         0.29         0.2806         2.25         20.23         162.154         79.265           273         0.28         0.2647         2.19         20.32         161.703         78.6897           274         0.28         0.2601         2.16         20.36         161.365         78.7796           275         0.27         0.2553         2.14         20.37         160.907         78.8355           276         0.26         0.2537         2.16         20.37         160.429         79.0101           277         0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |      |        |      |       |         |         |
| 267         0.32         0.2871         2.32         20.16         165.198         79.4871           268         0.31         0.2848         2.29         20.16         164.713         79.5653           269         0.30         0.2845         2.31         20.17         163.978         79.4466           270         0.30         0.2846         2.31         20.17         163.504         78.9799           271         0.29         0.2823         2.28         20.18         162.876         79.2537           272         0.29         0.2806         2.25         20.23         162.154         79.265           273         0.28         0.2647         2.19         20.32         161.703         78.6897           274         0.28         0.2601         2.16         20.36         161.365         78.7796           275         0.27         0.2553         2.14         20.37         160.907         78.8355           276         0.26         0.2537         2.16         20.37         160.429         79.0101           277         0.26         0.2484         2.09         20.42         159.739         78.9244           278         0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |      |        |      |       |         |         |
| 268         0.31         0.2848         2.29         20.16         164.713         79.5653           269         0.30         0.2845         2.31         20.17         163.978         79.4466           270         0.30         0.2846         2.31         20.17         163.504         78.9799           271         0.29         0.2823         2.28         20.18         162.876         79.2537           272         0.29         0.2806         2.25         20.23         162.154         79.265           273         0.28         0.2647         2.19         20.32         161.703         78.6897           274         0.28         0.2601         2.16         20.36         161.365         78.7796           275         0.27         0.2553         2.14         20.37         160.907         78.8355           276         0.26         0.2537         2.16         20.37         160.429         79.0101           277         0.26         0.2484         2.09         20.42         159.739         78.9244           278         0.24         0.2443         2.07         20.45         158.784         78.8752           279         0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |      |        |      |       |         |         |
| 268         0.31         0.2848         2.29         20.16         164.713         79.5653           269         0.30         0.2845         2.31         20.17         163.978         79.4466           270         0.30         0.2846         2.31         20.17         163.504         78.9799           271         0.29         0.2823         2.28         20.18         162.876         79.2537           272         0.29         0.2806         2.25         20.23         162.154         79.265           273         0.28         0.2647         2.19         20.32         161.703         78.6897           274         0.28         0.2601         2.16         20.36         161.365         78.7796           275         0.27         0.2553         2.14         20.37         160.907         78.8355           276         0.26         0.2537         2.16         20.37         160.429         79.0101           277         0.26         0.2484         2.09         20.42         159.739         78.9244           278         0.24         0.2443         2.07         20.45         158.784         78.8752           279         0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 267 | 0.32 | 0.2871 |      |       |         | 79.4871 |
| 269         0.30         0.2845         2.31         20.17         163.978         79.4466           270         0.30         0.2846         2.31         20.17         163.504         78.9799           271         0.29         0.2823         2.28         20.18         162.876         79.2537           272         0.29         0.2806         2.25         20.23         162.154         79.265           273         0.28         0.2607         2.19         20.32         161.703         78.6897           274         0.28         0.2601         2.16         20.36         161.365         78.7796           275         0.27         0.2553         2.14         20.37         160.907         78.8355           276         0.26         0.2537         2.16         20.37         160.429         79.0101           277         0.26         0.2484         2.09         20.42         159.739         78.9244           278         0.24         0.2443         2.07         20.46         159.158         78.7352           279         0.25         0.2421         2.07         20.45         158.158         78.8098           281         0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 268 | 0.31 |        |      | 20.16 | 164,713 | 79.5653 |
| 270         0.30         0.2846         2.31         20.17         163.504         78.9799           271         0.29         0.2823         2.28         20.18         162.876         79.2537           272         0.29         0.2806         2.25         20.23         162.154         79.265           273         0.28         0.2647         2.19         20.32         161.703         78.6897           274         0.28         0.2601         2.16         20.36         161.365         78.7796           275         0.27         0.2553         2.14         20.37         160.907         78.8355           276         0.26         0.2537         2.16         20.37         160.429         79.0101           277         0.26         0.2484         2.09         20.42         159.739         78.9244           278         0.24         0.2443         2.07         20.46         159.158         78.7378           280         0.23         0.2446         2.07         20.46         158.213         78.8098           281         0.23         0.242         2.07         20.47         157.816         78.9231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |      |        |      |       |         |         |
| 271         0.29         0.2823         2.28         20.18         162.876         79.2537           272         0.29         0.2806         2.25         20.23         162.154         79.265           273         0.28         0.2647         2.19         20.32         161.703         78.6897           274         0.28         0.2601         2.16         20.36         161.365         78.7796           275         0.27         0.2553         2.14         20.37         160.907         78.8355           276         0.26         0.2537         2.16         20.37         160.429         79.0101           277         0.26         0.2484         2.09         20.42         159.739         78.9244           278         0.24         0.2443         2.07         20.46         159.758         78.7525           279         0.25         0.2421         2.07         20.45         158.784         78.8778           280         0.23         0.2446         2.07         20.46         158.213         78.8098           281         0.23         0.242         2.07         20.47         157.816         78.9231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |      |        |      |       |         |         |
| 272         0.29         0.2806         2.25         20.23         162.154         79.265           273         0.28         0.2647         2.19         20.32         161.703         78.6897           274         0.28         0.2601         2.16         20.36         161.365         78.7796           275         0.27         0.2553         2.14         20.37         160.907         78.8355           276         0.26         0.2537         2.16         20.37         160.429         79.0101           277         0.26         0.2484         2.09         20.42         159.739         78.9244           278         0.24         0.2443         2.07         20.46         159.739         78.7378           279         0.25         0.2421         2.07         20.45         158.784         78.8778           280         0.23         0.2446         2.07         20.46         158.213         78.8098           281         0.23         0.242         2.07         20.47         157.816         78.9231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |      |        |      |       |         |         |
| 272         0.29         0.2806         2.25         20.23         162.154         79.265           273         0.28         0.2647         2.19         20.32         161.703         78.6897           274         0.28         0.2601         2.16         20.36         161.365         78.7796           275         0.27         0.2553         2.14         20.37         160.907         78.8355           276         0.26         0.2537         2.16         20.37         160.429         79.0101           277         0.26         0.2484         2.09         20.42         159.739         78.9244           278         0.24         0.2443         2.07         20.46         159.739         78.7378           279         0.25         0.2421         2.07         20.45         158.784         78.8778           280         0.23         0.2446         2.07         20.46         158.213         78.8098           281         0.23         0.242         2.07         20.47         157.816         78.9231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | 0.29 | 0.2823 | 2.28 | 20.18 |         | 79.2537 |
| 273         0.28         0.2647         2.19         20.32         161.703         78.6897           274         0.28         0.2601         2.16         20.36         161.365         78.7796           275         0.27         0.2553         2.14         20.37         160.907         78.8355           276         0.26         0.2537         2.16         20.37         160.429         79.0101           277         0.26         0.2484         2.09         20.42         159.739         78.9244           278         0.24         0.2443         2.07         20.46         159.158         78.7352           279         0.25         0.2421         2.07         20.45         158.784         78.8798           280         0.23         0.2446         2.07         20.46         158.213         78.8098           281         0.23         0.242         2.07         20.47         157.816         78.9231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 272 | 0.29 | 0.2806 | 2.25 | 20.23 |         | 79.265  |
| 274         0.28         0.2601         2.16         20.36         161.365         78.7796           275         0.27         0.2553         2.14         20.37         160.907         78.8355           276         0.26         0.2537         2.16         20.37         160.429         79.0101           277         0.26         0.2484         2.09         20.42         159.739         78.9244           278         0.24         0.2443         2.07         20.46         159.158         78.7352           279         0.25         0.2421         2.07         20.45         158.784         78.8787           280         0.23         0.2446         2.07         20.46         158.213         78.8098           281         0.23         0.242         2.07         20.47         157.816         78.9231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |      |       |         |         |
| 275         0.27         0.2553         2.14         20.37         160.907         78.8355           276         0.26         0.2537         2.16         20.37         160.429         79.0101           277         0.26         0.2484         2.09         20.42         159.739         78.9244           278         0.24         0.2443         2.07         20.46         159.158         78.7352           279         0.25         0.2421         2.07         20.45         158.784         78.8778           280         0.23         0.2446         2.07         20.46         158.213         78.8098           281         0.23         0.242         2.07         20.47         157.816         78.9231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |      |        |      |       |         |         |
| 276         0.26         0.2537         2.16         20.37         160.429         79.0101           277         0.26         0.2484         2.09         20.42         159.739         78.9244           278         0.24         0.2443         2.07         20.46         159.158         78.7352           279         0.25         0.2421         2.07         20.45         158.784         78.8778           280         0.23         0.2446         2.07         20.46         158.213         78.8098           281         0.23         0.242         2.07         20.47         157.816         78.9231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |      |        |      |       |         |         |
| 276         0.26         0.2537         2.16         20.37         160.429         79.0101           277         0.26         0.2484         2.09         20.42         159.739         78.9244           278         0.24         0.2443         2.07         20.46         159.158         78.7352           279         0.25         0.2421         2.07         20.45         158.784         78.8778           280         0.23         0.2446         2.07         20.46         158.213         78.8098           281         0.23         0.242         2.07         20.47         157.816         78.9231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 0.27 | 0.2553 |      | 20.37 | 160.907 | 78.8355 |
| 277         0.26         0.2484         2.09         20.42         159.739         78.9244           278         0.24         0.2443         2.07         20.46         159.158         78.7352           279         0.25         0.2421         2.07         20.45         158.784         78.8778           280         0.23         0.2446         2.07         20.46         158.213         78.8098           281         0.23         0.242         2.07         20.47         157.816         78.9231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 276 | 0.26 |        |      |       | 160.429 |         |
| 278         0.24         0.2443         2.07         20.46         159.158         78.7352           279         0.25         0.2421         2.07         20.45         158.784         78.8778           280         0.23         0.2446         2.07         20.46         158.213         78.8098           281         0.23         0.242         2.07         20.47         157.816         78.9231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |      |        |      |       |         |         |
| 279         0.25         0.2421         2.07         20.45         158.784         78.8778           280         0.23         0.2446         2.07         20.46         158.213         78.8098           281         0.23         0.242         2.07         20.47         157.816         78.9231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      |        |      |       |         |         |
| 280         0.23         0.2446         2.07         20.46         158.213         78.8098           281         0.23         0.242         2.07         20.47         157.816         78.9231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |      |        |      |       |         |         |
| 281         0.23         0.242         2.07         20.47         157.816         78.9231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 279 |      | 0.2421 | 2.07 | 20.45 | 158.784 | 78.8778 |
| 281         0.23         0.242         2.07         20.47         157.816         78.9231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 280 | 0.23 | 0.2446 | 2.07 | 20.46 | 158.213 | 78.8098 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |        |      |       |         |         |
| 202 0.23 0.2424 2.00 20.49 157.304 78.9791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |      |        |      |       |         |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 282 | 0.23 | 0.2424 | 2.06 | 20.49 | 157.304 | 78.9791 |

| 283 | 0.22 | 0.2421 | 2.05 | 20.5  | 156.958 | 78.782  |
|-----|------|--------|------|-------|---------|---------|
| 284 | 0.22 | 0.2427 | 2    | 20.53 | 156.298 | 78.7159 |
| 285 | 0.20 | 0.2426 | 2.03 | 20.54 | 155.848 | 78.6407 |
| 286 | 0.20 | 0.2412 | 2.01 | 20.55 | 155.284 | 78.7382 |
| 287 | 0.19 | 0.2403 | 2.04 | 20.54 | 154.978 | 78.3463 |
| 288 | 0.19 | 0.2445 | 2.06 | 20.52 | 154.441 | 78.7732 |
| 289 | 0.19 | 0.2419 | 2.02 | 20.53 | 153.802 | 78.6145 |
| 290 | 0.17 | 0.2401 | 2.03 | 20.55 | 153.263 | 78.7055 |
| 291 | 0.17 | 0.2404 | 2.06 | 20.54 | 152.963 | 78.6997 |
| 292 | 0.16 | 0.243  | 2.04 | 20.56 | 152.824 | 78.5347 |
| 293 | 0.16 | 0.2409 | 2.05 | 20.55 | 152.543 | 78.3352 |
| 294 | 0.15 | 0.243  | 2.06 | 20.54 | 151.772 | 78.5252 |
| 295 | 0.14 | 0.2412 | 2.06 | 20.54 | 151.778 | 78.3984 |
| 296 | 0.14 | 0.2409 | 2.06 | 20.55 | 151.323 | 78.4732 |
| 297 | 0.13 | 0.2425 | 2.03 | 20.58 | 151.169 | 78.6139 |
| 298 | 0.12 | 0.2397 | 2.03 | 20.58 | 150.701 | 78.3537 |
| 299 | 0.12 | 0.241  | 2.01 | 20.58 | 150.434 | 78.3851 |
| 300 | 0.11 | 0.2346 | 1.84 | 20.73 | 149.926 | 78.5681 |
| 301 | 0.11 | 0.2119 | 1.69 | 20.9  | 149.687 | 78.5833 |
| 302 | 0.11 | 0.2047 | 1.66 | 20.97 | 149.242 | 78.0837 |
| 303 | 0.10 | 0.1995 | 1.66 | 21    | 149.032 | 78.535  |
| 304 | 0.10 | 0.1978 | 1.64 | 21.02 | 148.647 | 78.2235 |
| 305 | 0.10 | 0.1961 | 1.63 | 21.04 | 147.963 | 78.044  |
| 306 | 0.09 | 0.1944 | 1.62 | 21.06 | 147.228 | 78.4189 |
| 307 | 0.09 | 0.1943 | 1.61 | 21.07 | 146.422 | 78.2123 |
| 308 | 0.09 | 0.1933 | 1.61 | 21.08 | 145.808 | 78.1402 |
| 309 | 0.09 | 0.1908 | 1.59 | 21.1  | 145.357 | 78.0437 |
| 310 | 0.07 | 0.189  | 1.59 | 21.11 | 144.583 | 78.0128 |
| 311 | 0.07 | 0.1874 | 1.58 | 21.11 | 143.865 | 77.9279 |
| 312 | 0.07 | 0.1875 | 1.58 | 21.1  | 143.22  | 78.0101 |
| 313 | 0.06 | 0.2236 | 1.68 | 20.98 | 142.345 | 77.9958 |
| 314 | 0.06 | 0.2517 | 1.71 | 20.93 | 141.821 | 77.9438 |
| 315 | 0.06 | 0.2584 | 1.71 | 20.92 | 141.355 | 78.0142 |
| 316 | 0.05 | 0.2622 | 1.7  | 20.93 | 140.807 | 77.732  |
| 317 | 0.05 | 0.2686 | 1.71 | 20.93 | 140.215 | 77.7498 |
| 318 | 0.04 | 0.2761 | 1.71 | 20.93 | 139.737 | 77.638  |
| 319 | 0.04 | 0.2786 | 1.72 | 20.95 | 139.174 | 77.5391 |
| 320 | 0.03 | 0.277  | 1.7  | 20.96 | 138.896 | 77.5761 |
| 321 | 0.04 | 0.2788 | 1.72 | 20.98 | 138.438 | 77.5793 |
| 322 | 0.03 | 0.2801 | 1.71 | 20.99 | 137.92  | 77.5386 |
| 323 | 0.02 | 0.2784 | 1.71 | 21    | 137.477 | 77.4749 |
| 324 | 0.02 | 0.2781 | 1.71 | 20.99 | 136.886 | 77.37   |
| 325 | 0.02 | 0.28   | 1.72 | 20.98 | 136.53  | 77.4226 |
| 326 | 0.02 | 0.2827 | 1.77 | 20.97 | 136.185 | 77.3408 |
| 327 | 0.01 | 0.2822 | 1.76 | 20.97 | 135.655 | 77.3301 |
| 328 | 0.01 | 0.2834 | 1.77 | 20.95 | 135.399 | 77.331  |
| 329 | 0.00 | 0.2844 | 1.76 | 20.95 | 135.033 | 77.2923 |
| 330 | 0.00 | 0.2813 | 1.75 | 20.93 | 134.574 | 77.1998 |
| 000 | 0.00 | 0.2010 | 0    | _0.00 | .001 1  |         |

# Stove Builder International Inc.

 Manufacturer:
 SBI
 Technicians:
 Claude Pelland

 Model:
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series
 2.1 series

Test Duration: 330
Output Category: Med

#### Test Results in Accordance with CSA B415.1-10

|                          | HHV Basis | LHV Basis |
|--------------------------|-----------|-----------|
| Overall Efficiency       | 76.3%     | 81.7%     |
| Combustion Efficiency    | 98.1%     | 98.1%     |
| Heat Transfer Efficiency | 78%       | 83.3%     |

| Output Rate (kJ/h) | 12,430 | 11,792 | (Btu/h) |
|--------------------|--------|--------|---------|
| Burn Rate (kg/h)   | 0.87   | 1.91   | (lb/h)  |
| Input (kJ/h)       | 16,292 | 15,455 | (Btu/h) |

| Test Load Weight (dry kg) | 4.77  | 10.50 | dry lb |
|---------------------------|-------|-------|--------|
| MC wet (%)                | 16.7  |       |        |
| MC dry (%)                | 20.05 |       |        |
| Particulate (g )          | 7.217 |       |        |
| CO (g)                    | 152   |       |        |
| Test Duration (h)         | 5.50  |       |        |

| Emissions        | Particulate | CO    |
|------------------|-------------|-------|
| g/MJ Output      | 0.11        | 2.22  |
| g/kg Dry Fuel    | 1.51        | 31.91 |
| g/h              | 1.31        | 27.65 |
| lb/MM Btu Output | 0.25        | 5.17  |

| Air/Fuel Ratio (A/F) | 18.27 |
|----------------------|-------|

VERSION: 2.4 2010-04-15

202 30

76.00

VERSION: 24 2010-04-15 Appliance Type: Non-Cat (Cat, Non-Cat, Pellet) Manufacturer: SBI Model: 2.1 series **Default Fuel Values** F Date: 2021-02-23 Temp. Units (F or C) Run: 2 **Weight Units** lb (kg or lb) D. Fir Oak Control #: G104576994 HHV (kJ/kg) 19,810 19,887 Test Duration: 406 %C 48.73 50 **Dutput Category: Low Fuel Data** %Н 6.87 6.6 **%O** 42.9 Beech 43.9 17.10 HHV Wood Moisture (% wet): 18,800 kJ/kg %Ash 0.5 0.5

16 00

Load Weight (lb wet): 12.75 %C 48.7

Burn Rate (dry kg/h): 0.71 %H 5.8

Total Particulate Emissions: 6.508 g %O 44.9

%Ash 0.6

4 88

0.45

0.19

0.16

0.32

0.44

0.56

0.19

0.14

0.16

0.16

0.15

0.13

0.13

0.14

0.18

0.19

0.22

0.24

0.23

0.28

0.31

0.37

0.38

0.40

0.52

0.53

0.51

0.50

0.51

0.52

0.58

0.59

0.62

0.63

0.6

0.6491

0.6798

0.6905

0.6998

0.7286

Average

11.17

10.97

10.73

10.55

10.41

10.28

10.15

10.02

9.91

9.82

9.73

9.61

9.50

9.36

9.26

9.12

9.02

8.86

8.74

8 61

8.47

8.19

8.07

7.95

7.81

7.67

7.50

7.35

7.08

6.92

6.80

6.68

6.54

6.43

6.28

6.17

6.05

5.92

5.80

5.66

5.54

5.40

11 12

13

14

16

17

18

19

20

21

22

23

24

25

26 27

28

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

52

53

|                       | Avelages                      | 0.40    | 4.00                          | 10.00                     | Temp        | (°F)         |                             |    |
|-----------------------|-------------------------------|---------|-------------------------------|---------------------------|-------------|--------------|-----------------------------|----|
| Elapsed<br>Time (min) | Fuel Weight<br>Remaining (lb) | Flue Ga | s Composit<br>CO <sub>2</sub> | ion (%)<br>O <sub>2</sub> | Flue<br>Gas | Room<br>Temp | Note 2<br>Remain<br>reading | ni |
| 0                     | 12.75                         | 0.18    | 3.05                          | 22.46                     | 301.3       | 83.2         | occur i                     | n  |
| 1                     | 12.70                         | 0.14    | 1.16                          | 19.89                     | 279.6       | 83.7         | adjust                      |    |
| 2                     | 12.66                         | 0.12    | 1.29                          | 19.83                     | 279.1       | 83.3         | the firs                    |    |
| 3                     | 12.56                         | 0.12    | 1.74                          | 19.92                     | 295.0       | 83.4         | decrea                      | Se |
| 4                     | 12.41                         | 0.12    | 2.03                          | 20.08                     | 319.3       | 83.6         |                             |    |
| 5                     | 12.26                         | 0.13    | 2.38                          | 19.31                     | 349.9       | 84.0         |                             |    |
| 6                     | 12.09                         | 0.21    | 2.49                          | 20.01                     | 369.2       | 83.1         |                             |    |
| 7                     | 11.88                         | 0.35    | 10.09                         | 19.91                     | 383.5       | 83.1         |                             |    |
| 8                     | 11.73                         | 0.16    | 10.70                         | 16.47                     | 406.5       | 82.3         |                             |    |
| 9                     | 11.54                         | 0.16    | 12.18                         | 14.68                     | 432.7       | 82.7         |                             |    |
| 10                    | 11.35                         | 0.14    | 12.79                         | 12.42                     | 456.0       | 83.4         |                             |    |

13.30

14.45

15.52

15.17

14.88

12.85

12.14

11.85

11.61

11.64

11.79

11.97

12.14

12.54

12.55

12.53

12.75

12.83

12.91

13.03

12.98

13.19

13.23

13.51

13.78

13.91

13.99

14.00

14.22

14.30

14.30

14.33

14.33

14.35

14.33

14.45

14.35

14 43

14.38

14.32

14.43

14.39

10.35

8.72

6.57

6.68

8.17

8.90

9.27

9.51

9.61

9.51

9.31

9.07

8.76

8.60

8.52

8 34

8.20

8.09

7.96

7.77

7.70

7.55

7.21

7.01

6.95

6.78

6.75

6.67

6.71

6.73

6.72

6.68

6.72

6.65

6.63

6.66

6.7

475.7

493.5

495.5

457.0

428.1

410.4

398.

390.1

384.8

377.8

375.8

374.6

373.8

372.5

372 3

371.7

370.9

370.7

369.6

368.

369.2

369.

370.1

370.3

370.7

370.3

370.0

369.8

369.

368.7

368.5

368 296

368.159

367.001

367.327 68.8535

366.166 69.2958 366.111 69.3261

83.9

84.3

84.5

84.3

83.5

84.7

84.2

84.9

80.7

78.7

75.9

76.5

76.6

75.8

74.9

74.3

73.5

73.5

72.7

74.3

71.8

71.7

71.5

71.7

71.8

70.4

70.3

69.8

69.5

69.9

69.8

69.5

69.4

68.7

69.1

69.2

68.7478

68.7415

68.703°

Note 2: In cases where the "Fuel Weight Remaining" is the same for three or more readings in a row, a "divide by zero error" will occur in the calculation sheet. In such cases, adjust the weight values by interpolation between the first occurence and the next reading showing a decrease in weight.

Note 1: For other fuels, use the heating value and

fuel composition determined by analysis of fuel

| 55  | 5.28 | 0.7615 | 14.34 | 6.73  | 365.798 | 69.8957 |
|-----|------|--------|-------|-------|---------|---------|
| 56  | 5.17 | 0.8227 | 14.31 | 6.72  | 364.803 | 70.2595 |
| 57  | 5.02 | 1.6828 | 14.82 | 6     | 365.092 | 70.1186 |
| 58  | 4.91 | 1.8805 | 14.89 | 5.88  | 363.945 | 70.2784 |
| 59  | 4.78 | 1.1725 | 14.44 | 6.33  | 362.594 | 70.495  |
| 60  | 4.69 | 0.739  | 13.68 | 7.02  | 358.704 | 69.6668 |
| 61  | 4.58 | 0.3972 | 12.84 | 7.9   | 353.424 | 68.6809 |
| 62  | 4.48 | 0.2312 | 12.41 | 8.46  | 347.871 | 68.4671 |
| 63  | 4.39 | 0.1052 | 12.14 | 8.99  | 342.164 | 68.353  |
| 64  | 4.30 | 0.0653 | 11.57 | 9.5   | 336.012 | 68.5886 |
| 65  | 4.21 | 0.0532 | 11.15 | 10.04 | 330.919 | 69.3785 |
| 66  |      |        |       |       |         |         |
|     | 4.17 | 0.0396 | 10.66 | 10.51 | 326.022 | 68.7116 |
| 67  | 4.11 | 0.0394 | 10.37 | 10.88 | 321.677 | 68.1998 |
| 68  | 4.00 | 0.0346 | 10.07 | 11.23 | 318.291 | 68.2518 |
| 69  | 3.94 | 0.0291 | 9.61  | 11.7  | 313.161 | 67.7732 |
| 70  | 3.87 | 0.0344 | 9.17  | 12.13 | 308.121 | 68.2223 |
| 71  | 3.81 | 0.0491 | 8.89  | 12.44 | 304.701 | 67.7893 |
| 72  | 3.77 | 0.0836 | 8.57  | 12.71 | 300.342 | 67.3685 |
| 73  | 3.70 | 0.1155 | 8.27  | 13.07 | 296.559 | 67.1964 |
| 74  | 3.65 | 0.1322 | 8.08  | 13.36 | 292.583 | 67.1972 |
| 75  | 3.57 | 0.1425 | 7.83  | 13.61 | 288.923 | 67.0493 |
| 76  | 3.55 | 0.1591 | 7.69  | 13.83 | 285.189 | 67.1801 |
| 77  | 3.48 | 0.1632 | 7.44  | 14.07 | 281.809 | 67.2127 |
| 78  | 3.46 | 0.1458 | 7.33  | 14.26 | 279.076 | 66.5095 |
| 79  | 3.40 | 0.1456 | 6.96  | 14.20 | 275.687 | 66.94   |
|     | 3.41 | 0.1317 | 6.65  |       | 271.974 | 67.1853 |
| 80  |      |        |       | 14.87 |         |         |
| 81  | 3.34 | 0.1568 | 6.44  | 15.15 | 268.41  | 66.9568 |
| 82  | 3.28 | 0.1492 | 6.36  | 15.35 | 265.813 | 66.8493 |
| 83  | 3.25 | 0.1489 | 6.17  | 15.54 | 263.015 | 66.669  |
| 84  | 3.21 | 0.1524 | 6.03  | 15.75 | 260.183 | 66.4485 |
| 85  | 3.17 | 0.2061 | 5.47  | 16.18 | 256.196 | 66.6712 |
| 86  | 3.18 | 0.267  | 5.01  | 16.62 | 251.412 | 68.6553 |
| 87  | 3.16 | 0.3912 | 4.15  | 17.34 | 245.26  | 69.4835 |
| 88  | 3.15 | 0.615  | 4.11  | 17.58 | 239.555 | 70.3975 |
| 89  | 3.13 | 0.5835 | 4.33  | 17.51 | 234.747 | 71.5313 |
| 90  | 3.10 | 0.5664 | 4.41  | 17.48 | 230.832 | 72.5708 |
| 91  | 3.07 | 0.5587 | 4.43  | 17.45 | 227.749 | 73.6434 |
| 92  | 3.06 | 0.5557 | 4.51  | 17.41 | 225.053 | 74.4919 |
| 93  | 3.03 | 0.5509 | 4.47  | 17.41 | 222.592 | 75.1332 |
| 94  | 2.99 | 0.5605 | 4.56  | 17.38 | 220.339 | 75.4243 |
| 95  | 2.99 | 0.5629 | 4.50  | 17.38 | 218.294 | 76.0207 |
|     |      |        |       |       |         |         |
| 96  | 2.95 | 0.5623 | 4.61  | 17.38 | 216.641 | 76.4518 |
| 97  | 2.91 | 0.5582 | 4.67  | 17.34 | 215.337 | 76.9028 |
| 98  | 2.87 | 0.5552 | 4.73  | 17.32 | 213.852 | 77.3275 |
| 99  | 2.86 | 0.5514 | 4.69  | 17.32 | 212.63  | 77.52   |
| 100 | 2.82 | 0.5508 | 4.75  | 17.27 | 211.795 | 77.6976 |
| 101 | 2.80 | 0.5543 | 4.84  | 17.2  | 211.063 | 78.0885 |
| 102 | 2.77 | 0.5486 | 4.85  | 17.16 | 210.313 | 78.331  |
| 103 | 2.75 | 0.5517 | 4.84  | 17.12 | 209.48  | 78.6228 |
| 104 | 2.72 | 0.5509 | 4.9   | 17.06 | 208.927 | 78.8717 |
| 105 | 2.67 | 0.5535 | 4.98  | 16.99 | 208.769 | 78.9516 |
| 106 | 2.64 | 0.5491 | 5.01  |       | 208.045 |         |
| 107 | 2.62 | 0.5359 | 5.02  | 16.89 | 207.79  | 79.2828 |
| 108 | 2.58 | 0.5272 | 5.1   | 16.82 | 207.437 | 79.5393 |
| 109 | 2.56 | 0.5185 | 5.17  |       | 207.369 | 79.6141 |
| 110 | 2.53 | 0.4674 | 5.38  | 16.53 | 207.721 | 79.9697 |
| 110 | 2.50 | 0.4075 | 5.51  | 16.35 | 207.973 | 79.8727 |
| 112 | 2.47 | 0.4075 | 5.73  | 16.33 | 207.973 | 80.0268 |
| 113 | 2.47 |        |       |       | 210.367 |         |
|     |      | 0.3437 | 5.97  | 15.94 |         | 80.1836 |
| 114 | 2.40 | 0.3303 | 6.05  | 15.75 | 211.759 | 80.111  |
| 115 | 2.36 | 0.3186 | 6.22  | 15.56 | 213.295 | 80.4641 |
| 116 | 2.33 | 0.3331 | 6.28  | 15.43 | 214.626 | 80.2058 |
| 117 | 2.28 | 0.3278 | 6.09  |       | 215.21  | 80.4891 |
| 118 | 2.27 | 0.3216 | 5.64  | 15.71 | 214.217 | 80.7117 |
| 119 | 2.24 | 0.3447 | 4.97  | 16.15 | 213.001 | 80.6917 |
| 120 | 2.23 | 0.361  | 4.56  | 16.57 | 211.579 | 80.7652 |
| 121 | 2.20 | 0.3792 | 4.19  | 16.91 | 210.026 | 80.8388 |
| 122 | 2.20 | 0.4052 | 3.99  | 17.19 | 207.724 | 80.9814 |
| 123 | 2.18 | 0.5946 | 3.65  | 17.48 | 205.546 | 80.7491 |
| 124 | 2.17 | 0.6107 | 3.63  | 17.51 | 203.951 | 81.0855 |
| 125 | 2.15 | 0.5905 | 3.63  | 17.53 | 201.755 | 81.1222 |
| 126 | 2.15 | 0.5794 | 3.68  |       | 200.213 | 80.8332 |
| 127 | 2.13 | 0.5732 | 3.65  | 17.45 | 198.478 | 80.8186 |
| 128 | 2.11 | 0.5599 | 3.6   |       | 196.733 | 80.7564 |
| 129 | 2.10 |        | 3.67  | 17.38 | 195.35  | 80.7634 |
| 123 | 2.10 | 0.0000 | 0.01  | 17.00 | 100.00  | 55.7004 |

| 131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |        |      |       |         |         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|--------|------|-------|---------|---------|
| 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 130 | 2.10 | 0.5487 | 3.67 | 17.36 | 193.622 | 80.627  |
| 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 131 | 2.09 | 0.5453 | 3.64 | 17.34 | 192.186 | 80.9901 |
| 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      | 0.5438 |      |       |         |         |
| 134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |        |      |       |         |         |
| 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |        |      |       |         |         |
| 136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |        |      |       |         |         |
| 137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |        |      |       |         |         |
| 138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |        |      |       |         |         |
| 139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 137 | 2.03 |        |      |       | 185.86  | 80.9656 |
| 139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 138 | 2.04 | 0.5293 | 3.66 | 17.25 | 185.16  | 79.8424 |
| 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 139 | 2.02 | 0.5371 | 3.67 |       | 183,807 | 79.6848 |
| 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |        |      |       |         |         |
| 142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |        |      |       |         |         |
| 143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |        |      |       |         |         |
| 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |        |      |       |         |         |
| 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |        |      |       |         |         |
| 146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |        |      |       |         |         |
| 147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 145 | 1.95 |        | 3.71 | 17.15 | 179.659 | 80.6205 |
| 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 146 | 1.94 | 0.5416 | 3.64 | 17.2  | 179.329 |         |
| 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 147 | 1.94 | 0.5306 | 3.6  | 17.27 | 178.759 | 78.622  |
| 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 148 |      |        |      |       |         |         |
| 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |        |      |       |         |         |
| 151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |        |      |       |         |         |
| 152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |        |      |       |         |         |
| 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |        |      |       | 175.89  |         |
| 154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |        |      |       |         |         |
| 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |        |      |       |         |         |
| 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |        |      |       |         | 76.5662 |
| 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 155 | 1.95 |        |      |       | 173.679 | 76.6611 |
| 157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 156 | 1.94 |        |      |       | 172.764 | 76.3942 |
| 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |        |      |       |         |         |
| 159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |        |      |       |         |         |
| 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |        |      |       |         |         |
| 161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |        |      |       |         |         |
| 162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      | 0.5507 |      |       |         |         |
| 163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |        |      |       |         |         |
| 164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |        |      | 17.89 |         |         |
| 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |        |      |       |         |         |
| 166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | 1.91 |        |      | 18.04 | 168.872 | 75.7179 |
| 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 165 | 1.90 |        | 3.67 | 18.13 | 168.351 | 76.0073 |
| 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 166 | 1.91 | 0.5619 | 3.7  | 18.18 | 167.868 | 76.014  |
| 168         1.88         0.5622         3.63         18.36         167.123         75.6285           169         1.88         0.5573         3.64         18.45         166.528         75.792           170         1.87         0.5587         3.62         18.55         166.102         75.618           171         1.86         0.5504         3.62         18.55         165.78         75.7117           172         1.85         0.5383         3.54         18.75         165.399         75.4988           173         1.85         0.5314         3.55         18.83         165.254         75.6917           174         1.84         0.5431         3.59         18.87         164.803         75.2389           175         1.81         0.556         3.61         18.91         164.292         75.6178           176         1.81         0.556         3.61         18.91         164.292         75.618           177         1.81         0.5436         3.55         19.07         164.04         75.511           178         1.80         0.54         3.57         19.12         163.818         75.3768           179         1.78 <td< td=""><td>167</td><td>1.90</td><td>0.562</td><td>3.67</td><td>18.27</td><td>167.58</td><td>75.7677</td></td<> | 167 | 1.90 | 0.562  | 3.67 | 18.27 | 167.58  | 75.7677 |
| 169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |        |      |       |         |         |
| 170         1.87         0.5587         3.62         18.55         166.102         75.618           171         1.86         0.5504         3.62         18.64         165.78         75.7117           172         1.85         0.5383         3.54         18.75         165.399         75.4988           173         1.85         0.5314         3.55         18.83         165.254         75.6917           174         1.84         0.5431         3.59         18.87         164.803         75.2389           175         1.81         0.556         3.61         18.91         164.529         75.4508           176         1.81         0.556         3.59         18.97         164.292         75.6173           177         1.81         0.5436         3.55         19.07         164.04         75.56173           177         1.881         0.544         3.57         19.12         163.818         75.3678           179         1.78         0.5346         3.54         19.19         163.51         75.1795           180         1.78         0.5269         3.53         19.33         162.797         75.0364           181         1.78                                                                                                               |     |      |        |      |       |         |         |
| 171         1.86         0.5504         3.62         18.64         165.78         75.7117           172         1.85         0.5383         3.54         18.75         165.399         75.4988           173         1.85         0.5314         3.55         18.83         165.254         75.6917           174         1.84         0.5431         3.55         18.87         164.803         75.238           175         1.81         0.556         3.61         18.91         164.529         75.4508           176         1.81         0.5565         3.59         18.97         164.292         75.6173           177         1.81         0.5436         3.55         19.07         164.04         75.5511           178         1.80         0.544         3.57         19.12         163.818         75.3752           180         1.78         0.5289         3.54         19.28         162.79         75.3168           181         1.78         0.5265         3.53         19.33         162.397         75.0602           182         1.77         0.5274         3.52         19.39         162.279         75.0168           183         1.77                                                                                                                |     |      |        |      |       |         |         |
| 172         1.85         0.5383         3.54         18.75         165.399         75.4988           173         1.85         0.5314         3.55         18.83         165.254         75.6917           174         1.84         0.5431         3.59         18.87         164.803         75.2388           175         1.81         0.556         3.61         18.91         164.529         75.4508           176         1.81         0.555         3.59         18.97         164.292         75.6173           177         1.81         0.5436         3.55         19.07         164.04         75.5511           178         1.80         0.54         3.57         19.12         163.818         75.378           179         1.78         0.5289         3.54         19.19         163.51         75.178           180         1.78         0.5265         3.53         19.33         162.397         75.0602           181         1.78         0.5265         3.53         19.33         162.297         75.0602           182         1.77         0.5274         3.52         19.39         162.279         75.0602           183         1.77         <                                                                                                        |     |      |        |      |       |         |         |
| 173         1.85         0.5314         3.55         18.83         165.254         75.6917           174         1.84         0.5431         3.59         18.87         164.803         75.2389           175         1.81         0.556         3.61         18.91         164.529         75.4508           176         1.81         0.555         3.59         18.97         164.292         75.6173           177         1.81         0.5436         3.55         19.07         164.04         75.5511           178         1.80         0.54         3.57         19.12         163.818         75.3678           179         1.78         0.5346         3.54         19.19         163.51         75.1795           180         1.78         0.5289         3.54         19.28         162.79         75.3168           181         1.78         0.5265         3.53         19.33         162.397         75.0602           182         1.77         0.5274         3.52         19.39         162.279         75.3168           183         1.75         0.513         3.48         19.5         161.821         74.9116           184         1.75 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                    |     |      |        |      |       |         |         |
| 174         1.84         0.5431         3.59         18.87         164.803         75.2389           175         1.81         0.556         3.61         18.91         164.529         75.4508           176         1.81         0.5555         3.59         18.97         164.292         75.6173           177         1.81         0.5436         3.55         19.07         164.04         75.5511           178         1.80         0.544         3.57         19.12         163.818         75.3678           179         1.78         0.5346         3.54         19.19         163.51         75.1795           180         1.78         0.5289         3.54         19.28         162.79         75.3168           181         1.78         0.5265         3.53         19.33         162.397         75.0602           182         1.77         0.5208         3.53         19.39         162.279         75.0162           183         1.77         0.5208         3.53         19.31         162.199         75.2016           184         1.75         0.513         3.48         19.55         161.821         74.916           185         1.75                                                                                                                 |     |      |        |      |       |         |         |
| 175         1.81         0.556         3.61         18.91         164.529         75.4508           176         1.81         0.555         3.59         18.97         164.292         75.6173           177         1.81         0.5436         3.55         19.07         164.04         75.5511           178         1.80         0.54         3.57         19.12         163.818         75.368           179         1.78         0.5289         3.54         19.19         163.51         75.1795           180         1.78         0.5289         3.54         19.28         162.79         75.3168           181         1.78         0.5265         3.53         19.33         162.397         75.0602           182         1.77         0.5274         3.52         19.39         162.279         75.0394           183         1.77         0.5208         3.53         19.43         162.199         75.2016           184         1.75         0.5153         3.48         19.55         161.821         74.9116           185         1.75         0.513         3.48         19.55         161.782         74.8863           187         1.73 <t< td=""><td></td><td></td><td></td><td>3.55</td><td></td><td></td><td></td></t<>                                |     |      |        | 3.55 |       |         |         |
| 176         1.81         0.555         3.59         18.97         164.292         75.6173           177         1.81         0.5436         3.55         19.07         164.04         75.5511           178         1.80         0.54         3.57         19.12         163.818         75.3678           179         1.78         0.5346         3.54         19.19         163.51         75.1795           180         1.78         0.5289         3.54         19.28         162.79         75.3168           181         1.78         0.5265         3.53         19.33         162.397         75.0694           182         1.77         0.5274         3.52         19.39         162.279         75.0394           183         1.77         0.5208         3.53         19.43         162.199         75.2016           184         1.75         0.5154         3.45         19.5         161.821         74.9116           185         1.75         0.513         3.48         19.55         161.768         75.0988           186         1.74         0.5076         3.42         19.62         161.429         74.8863           187         1.73         <                                                                                                        |     |      |        |      |       |         |         |
| 177         1.81         0.5436         3.55         19.07         164.04         75.5511           178         1.80         0.54         3.57         19.12         163.818         75.3678           179         1.78         0.5346         3.54         19.19         163.51         75.1795           180         1.78         0.5265         3.53         19.28         162.79         75.3168           181         1.78         0.5265         3.53         19.33         162.397         75.0602           182         1.77         0.5274         3.52         19.39         162.279         75.0394           183         1.77         0.5208         3.53         19.43         162.199         75.2016           184         1.75         0.5154         3.45         19.5         161.821         74.9116           185         1.75         0.513         3.48         19.55         161.768         75.098           186         1.74         0.5076         3.42         19.62         161.429         74.8863           187         1.73         0.5031         3.46         19.66         160.936         75.0136           188         1.73         <                                                                                                        | 175 | 1.81 |        |      | 18.91 | 164.529 | 75.4508 |
| 178         1.80         0.54         3.57         19.12         163.818         75.3678           179         1.78         0.5346         3.54         19.19         163.51         75.1795           180         1.78         0.5289         3.54         19.28         162.79         75.3168           181         1.78         0.5265         3.53         19.33         162.397         75.0602           182         1.77         0.5208         3.53         19.43         162.279         75.0394           183         1.77         0.5208         3.53         19.43         162.279         75.0394           184         1.75         0.5154         3.45         19.5         161.821         74.9116           185         1.75         0.513         3.48         19.55         161.768         75.0998           186         1.74         0.5076         3.42         19.62         161.429         74.8863           187         1.73         0.5031         3.46         19.66         160.936         75.0136           188         1.73         0.5066         3.45         19.71         16.0404         74.777           189         1.71                                                                                                                 | 176 | 1.81 | 0.555  | 3.59 | 18.97 | 164.292 | 75.6173 |
| 178         1.80         0.54         3.57         19.12         163.818         75.3678           179         1.78         0.5346         3.54         19.19         163.51         75.1795           180         1.78         0.5289         3.54         19.28         162.79         75.3168           181         1.78         0.5265         3.53         19.33         162.397         75.0602           182         1.77         0.5208         3.53         19.43         162.279         75.0394           183         1.77         0.5208         3.53         19.43         162.279         75.0394           184         1.75         0.5154         3.45         19.5         161.821         74.9116           185         1.75         0.513         3.48         19.55         161.768         75.0998           186         1.74         0.5076         3.42         19.62         161.429         74.8863           187         1.73         0.5031         3.46         19.66         160.936         75.0136           188         1.73         0.5066         3.45         19.71         16.0404         74.777           189         1.71                                                                                                                 | 177 | 1.81 | 0.5436 | 3.55 | 19.07 | 164.04  | 75.5511 |
| 179         1.78         0.5346         3.54         19.19         163.51         75.1795           180         1.78         0.5289         3.54         19.28         162.79         75.3168           181         1.78         0.5265         3.53         19.33         162.397         75.0602           182         1.77         0.5274         3.52         19.39         162.279         75.0394           183         1.77         0.5208         3.53         19.43         162.199         75.2016           184         1.75         0.5154         3.45         19.5         161.821         74.9116           185         1.75         0.513         3.48         19.55         161.768         75.0998           186         1.74         0.5076         3.42         19.62         161.429         74.8863           187         1.73         0.5031         3.46         19.66         160.936         75.0136           188         1.73         0.5066         3.45         19.71         160.804         74.777           189         1.71         0.4993         3.44         19.76         160.447         74.948           190         1.71                                                                                                                |     |      |        |      |       |         |         |
| 180         1.78         0.5289         3.54         19.28         162.79         75.3168           181         1.78         0.5265         3.53         19.33         162.397         75.0602           182         1.77         0.5274         3.52         19.39         162.279         75.0394           183         1.77         0.5208         3.53         19.43         162.199         75.2016           184         1.75         0.5154         3.45         19.5         161.768         75.0998           185         1.75         0.513         3.48         19.55         161.768         75.0998           186         1.74         0.5076         3.42         19.62         161.429         74.8863           187         1.73         0.5031         3.46         19.66         160.936         75.0136           188         1.73         0.5066         3.45         19.71         160.804         74.777           189         1.71         0.4993         3.44         19.76         160.447         74.777           189         1.71         0.4981         3.37         19.81         160.447         74.797           190         1.71                                                                                                                |     |      |        |      |       |         |         |
| 181         1.78         0.5265         3.53         19.33         162.397         75.0602           182         1.77         0.5274         3.52         19.39         162.279         75.0394           183         1.77         0.5208         3.53         19.43         162.199         75.2016           184         1.75         0.5154         3.45         19.5         161.821         74.916           185         1.75         0.513         3.48         19.55         161.768         75.0998           186         1.74         0.5076         3.42         19.62         161.429         74.8863           187         1.73         0.5031         3.46         19.66         160.936         75.0136           188         1.73         0.5066         3.45         19.71         160.804         74.777           189         1.71         0.4993         3.44         19.76         160.447         74.948           190         1.71         0.4981         3.37         19.81         160.144         74.7926           191         1.70         0.4931         3.4         19.83         159.898         74.907           192         1.69                                                                                                                 |     |      |        |      |       |         |         |
| 182         1.77         0.5274         3.52         19.39         162.279         75.0394           183         1.77         0.5208         3.53         19.43         162.199         75.2016           184         1.75         0.5154         3.45         19.5         161.821         74.9116           185         1.75         0.513         3.48         19.55         161.768         75.0998           186         1.73         0.5076         3.42         19.66         160.429         74.8863           187         1.73         0.5031         3.46         19.66         160.429         74.8863           188         1.73         0.5066         3.45         19.71         160.804         74.777           189         1.71         0.4993         3.44         19.76         160.447         74.948           190         1.71         0.4981         3.37         19.81         160.144         74.7926           191         1.70         0.4931         3.4         19.83         159.898         74.907           192         1.69         0.4928         3.37         19.86         159.631         75.1157           193         1.69                                                                                                                |     |      |        |      |       |         |         |
| 183         1.77         0.5208         3.53         19.43         162.199         75.2016           184         1.75         0.5154         3.45         19.5         161.821         74.9116           185         1.75         0.513         3.48         19.55         161.768         75.098           186         1.74         0.5076         3.42         19.62         161.429         74.8863           187         1.73         0.5031         3.46         19.60         160.936         75.0136           188         1.73         0.5066         3.45         19.71         160.804         74.777           189         1.71         0.4993         3.44         19.76         160.447         74.948           190         1.71         0.4981         3.37         19.81         160.144         74.7926           191         1.70         0.4931         3.4         19.83         159.898         74.9077           192         1.69         0.4928         3.37         19.86         159.631         75.157           193         1.69         0.4938         3.39         19.88         159.254         74.707           194         1.68         <                                                                                                        |     |      |        |      |       |         |         |
| 184         1.75         0.5154         3.45         19.5         161.821         74.9116           185         1.75         0.513         3.48         19.55         161.768         75.0998           186         1.74         0.5076         3.42         19.62         161.429         74.8863           187         1.73         0.5031         3.46         19.66         160.936         75.0136           188         1.73         0.5066         3.45         19.71         160.804         74.777           189         1.71         0.4993         3.44         19.76         160.804         74.777           190         1.71         0.4981         3.37         19.81         160.144         74.7926           191         1.70         0.4931         3.4         19.83         159.898         74.9077           192         1.69         0.4928         3.37         19.86         159.631         75.1157           193         1.69         0.4938         3.39         19.88         159.254         74.707           194         1.68         0.4963         3.39         19.86         158.859         74.8948           195         1.67                                                                                                                |     |      |        |      |       |         |         |
| 185         1.75         0.513         3.48         19.55         161.768         75.0998           186         1.74         0.5076         3.42         19.62         161.429         74.8863           187         1.73         0.5031         3.46         19.66         160.936         75.0136           188         1.73         0.5066         3.45         19.71         160.804         74.7777           189         1.71         0.4993         3.44         19.76         160.447         74.948           190         1.71         0.4981         3.37         19.81         160.144         74.7948           191         1.70         0.4931         3.4         19.83         159.898         74.9077           192         1.69         0.4928         3.37         19.86         159.631         75.1157           193         1.69         0.4938         3.39         19.88         159.254         74.707           194         1.68         0.4963         3.39         19.9         158.859         74.8481           195         1.67         0.4999         3.42         19.86         158.841         74.9689           196         1.65                                                                                                               |     |      |        |      |       |         |         |
| 186         1.74         0.5076         3.42         19.62         161.429         74.8863           187         1.73         0.5031         3.46         19.66         160.936         75.0136           188         1.73         0.5066         3.45         19.71         160.804         74.7777           189         1.71         0.4993         3.44         19.76         160.447         74.948           190         1.71         0.4981         3.37         19.81         160.144         74.7926           191         1.70         0.4931         3.4         19.83         159.898         74.9077           192         1.69         0.4928         3.37         19.86         159.631         75.1157           193         1.69         0.4928         3.37         19.86         159.631         75.1157           193         1.69         0.4938         3.39         19.8         159.254         74.707           194         1.68         0.4963         3.39         19.9         158.859         74.8481           195         1.67         0.4999         3.42         19.86         158.848         74.6985           196         1.65                                                                                                               |     |      |        |      |       |         |         |
| 187         1.73         0.5031         3.46         19.66         160.936         75.0136           188         1.73         0.5066         3.45         19.71         160.804         74.7777           189         1.71         0.4993         3.44         19.76         160.447         74.948           190         1.71         0.4981         3.37         19.81         160.144         74.7926           191         1.70         0.4931         3.4         19.83         159.898         74.9077           192         1.69         0.4928         3.37         19.86         159.631         75.1157           193         1.69         0.4928         3.37         19.86         159.631         75.1157           193         1.69         0.4928         3.39         19.8         159.254         74.707           194         1.63         0.4963         3.39         19.9         158.859         74.8481           195         1.67         0.4999         3.42         19.86         158.848         74.6985           196         1.65         0.504         3.42         19.86         158.43         74.9844           198         1.64                                                                                                                 | 185 |      |        | 3.48 | 19.55 |         | 75.0998 |
| 187         1.73         0.5031         3.46         19.66         160.936         75.0136           188         1.73         0.5066         3.45         19.71         160.804         74.7777           189         1.71         0.4993         3.44         19.76         160.447         74.948           190         1.71         0.4981         3.37         19.81         160.144         74.7926           191         1.70         0.4931         3.4         19.83         159.898         74.9077           192         1.69         0.4928         3.37         19.86         159.631         75.1157           193         1.69         0.4928         3.37         19.86         159.631         75.1157           193         1.69         0.4928         3.39         19.8         159.254         74.707           194         1.68         0.4963         3.39         19.9         158.859         74.8481           195         1.67         0.4999         3.42         19.86         158.848         74.6985           196         1.65         0.504         3.42         19.86         158.811         74.9689           197         1.65                                                                                                                | 186 | 1.74 | 0.5076 | 3.42 | 19.62 | 161.429 | 74.8863 |
| 188         1.73         0.5066         3.45         19.71         160.804         74.7777           189         1.71         0.4993         3.44         19.76         160.447         74.948           190         1.71         0.4981         3.37         19.81         160.144         74.7926           191         1.70         0.4931         3.4         19.83         159.898         74.907           192         1.69         0.4928         3.37         19.86         159.631         75.1157           193         1.69         0.4938         3.39         19.88         159.254         74.707           194         1.68         0.4963         3.39         19.9         158.859         74.8481           195         1.67         0.4999         3.42         19.86         158.848         74.6985           196         1.65         0.504         3.42         19.86         158.811         74.9689           197         1.65         0.5014         3.44         19.86         158.43         74.9844           198         1.64         0.4991         3.4         19.88         158.476         74.8946           199         1.63         <                                                                                                        | 187 | 1.73 |        |      | 19.66 | 160.936 | 75.0136 |
| 189         1.71         0.4993         3.44         19.76         160.447         74.948           190         1.71         0.4981         3.37         19.81         160.144         74.7926           191         1.70         0.4931         3.4         19.83         159.898         74.9077           192         1.69         0.4928         3.37         19.86         159.251         75.1157           193         1.69         0.4938         3.39         19.81         159.254         74.707           194         1.68         0.4963         3.39         19.9         158.859         74.8481           195         1.67         0.4999         3.42         19.86         158.841         74.6985           196         1.65         0.504         3.42         19.86         158.811         74.9689           197         1.65         0.5014         3.44         19.86         158.43         74.9844           198         1.64         0.4991         3.4         19.88         158.476         74.8946           199         1.63         0.4947         3.38         19.91         158.055         74.6584           200         1.63                                                                                                                 |     |      |        |      |       |         |         |
| 190         1.71         0.4981         3.37         19.81         160.144         74.7926           191         1.70         0.4931         3.4         19.83         159.898         74.9077           192         1.69         0.4928         3.37         19.86         159.631         75.1157           193         1.69         0.4938         3.39         19.88         159.254         74.707           194         1.68         0.4963         3.39         19.86         158.859         74.8481           195         1.67         0.4999         3.42         19.86         158.841         74.6968           196         1.65         0.504         3.42         19.86         158.811         74.9689           197         1.65         0.5014         3.44         19.86         158.43         74.9844           198         1.64         0.4991         3.4         19.88         158.476         74.8946           199         1.63         0.4947         3.38         19.91         158.055         74.6584           200         1.63         0.4915         3.37         19.95         157.85         74.7285           201         1.61                                                                                                                |     |      |        |      |       |         |         |
| 191         1.70         0.4931         3.4         19.83         159.898         74.9077           192         1.69         0.4928         3.37         19.86         159.631         75.1157           193         1.69         0.4938         3.39         19.88         159.254         74.707           194         1.68         0.4963         3.39         19.9         158.859         74.8481           195         1.67         0.4999         3.42         19.86         158.848         74.6985           196         1.65         0.504         3.42         19.86         158.811         74.9689           197         1.65         0.5014         3.44         19.86         158.43         74.9844           198         1.64         0.4991         3.4         19.88         158.476         74.8946           199         1.63         0.4947         3.38         19.91         158.055         74.6584           200         1.63         0.4947         3.38         19.95         157.95         74.7285           201         1.61         0.4893         3.34         19.95         157.818         74.6261           202         1.60                                                                                                                 |     |      |        |      |       |         |         |
| 192     1.69     0.4928     3.37     19.86     159.631     75.1157       193     1.69     0.4938     3.39     19.88     159.254     74.707       194     1.68     0.4963     3.39     19.9     158.859     74.8481       195     1.67     0.4999     3.42     19.86     158.848     74.6985       196     1.65     0.504     3.42     19.86     158.43     74.9684       197     1.65     0.5014     3.44     19.86     158.43     74.9844       198     1.64     0.4991     3.4     19.88     158.476     74.8946       199     1.63     0.4947     3.38     19.91     158.055     74.6284       200     1.63     0.4915     3.37     19.95     157.95     74.7285       201     1.61     0.4893     3.34     19.95     157.818     74.6261       202     1.60     0.4894     3.38     19.95     157.204     74.6506       203     1.58     0.4839     3.28     20.02     157.204     74.6506                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |      |       |         |         |
| 193     1.69     0.4938     3.39     19.88     159.254     74.707       194     1.68     0.4963     3.39     19.9     158.859     74.8481       195     1.67     0.4999     3.42     19.86     158.848     74.6985       196     1.65     0.504     3.42     19.86     158.811     74.9689       197     1.65     0.5014     3.44     19.86     158.43     74.9844       198     1.64     0.4991     3.4     19.88     158.476     74.8946       199     1.63     0.4947     3.38     19.91     158.055     74.6284       200     1.63     0.4915     3.37     19.95     157.95     74.7285       201     1.61     0.4893     3.34     19.95     157.818     74.6261       202     1.60     0.4894     3.38     19.95     157.204     74.6261       203     1.58     0.4839     3.28     20.02     157.204     74.6506                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |        |      |       |         |         |
| 194         1.68         0.4963         3.39         19.9         158.859         74.8481           195         1.67         0.4999         3.42         19.86         158.848         74.6985           196         1.65         0.504         3.42         19.86         158.811         74.9689           197         1.65         0.5014         3.44         19.86         158.43         74.9844           198         1.64         0.4991         3.4         19.88         158.476         74.8946           199         1.63         0.4947         3.38         19.91         158.055         74.6584           200         1.63         0.4915         3.37         19.95         157.95         74.7265           201         1.61         0.4893         3.34         19.95         157.818         74.644           202         1.60         0.4894         3.38         19.95         157.697         74.6261           203         1.58         0.4839         3.28         20.02         157.204         74.6506                                                                                                                                                                                                                                                |     |      |        |      |       |         |         |
| 195         1.67         0.4999         3.42         19.86         158.848         74.6985           196         1.65         0.504         3.42         19.86         158.811         74.9689           197         1.65         0.5014         3.44         19.86         158.43         74.9844           198         1.64         0.4991         3.4         19.88         158.476         74.8946           199         1.63         0.4947         3.38         19.91         158.055         74.6584           200         1.63         0.4915         3.37         19.95         157.95         74.7285           201         1.61         0.4893         3.34         19.95         157.818         74.6261           202         1.60         0.4894         3.38         19.95         157.697         74.6261           203         1.58         0.4839         3.28         20.02         157.204         74.6506                                                                                                                                                                                                                                                                                                                                                   |     |      |        |      |       |         |         |
| 196         1.65         0.504         3.42         19.86         158.811         74.9689           197         1.65         0.5014         3.44         19.86         158.43         74.9844           198         1.64         0.4991         3.4         19.88         158.476         74.8946           199         1.63         0.4947         3.38         19.91         158.055         74.6584           200         1.63         0.4915         3.37         19.95         157.95         74.7285           201         1.61         0.4893         3.34         19.95         157.818         74.6261           202         1.60         0.4894         3.38         19.95         157.697         74.6261           203         1.58         0.4839         3.28         20.02         157.204         74.6506                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |      |        |      |       |         |         |
| 197     1.65     0.5014     3.44     19.86     158.43     74.9844       198     1.64     0.4991     3.4     19.88     158.476     74.8946       199     1.63     0.4947     3.38     19.91     158.055     74.6584       200     1.63     0.4915     3.37     19.95     157.95     74.7285       201     1.61     0.4893     3.34     19.95     157.818     74.6261       202     1.60     0.4894     3.38     19.95     157.697     74.6261       203     1.58     0.4839     3.28     20.02     157.204     74.6506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      |        |      |       |         |         |
| 198     1.64     0.4991     3.4     19.88     158.476     74.8946       199     1.63     0.4947     3.38     19.91     158.055     74.6584       200     1.63     0.4915     3.37     19.95     157.95     74.7285       201     1.61     0.4893     3.34     19.95     157.818     74.644       202     1.60     0.4894     3.38     19.95     157.697     74.6261       203     1.58     0.4839     3.28     20.02     157.204     74.6506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 196 | 1.65 | 0.504  | 3.42 | 19.86 | 158.811 | 74.9689 |
| 198     1.64     0.4991     3.4     19.88     158.476     74.8946       199     1.63     0.4947     3.38     19.91     158.055     74.6584       200     1.63     0.4915     3.37     19.95     157.95     74.7285       201     1.61     0.4893     3.34     19.95     157.818     74.644       202     1.60     0.4894     3.38     19.95     157.697     74.6261       203     1.58     0.4839     3.28     20.02     157.204     74.6506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 197 | 1.65 | 0.5014 | 3.44 | 19.86 | 158.43  | 74.9844 |
| 199     1.63     0.4947     3.38     19.91     158.055     74.6584       200     1.63     0.4915     3.37     19.95     157.95     74.7285       201     1.61     0.4893     3.34     19.95     157.818     74.644       202     1.60     0.4894     3.38     19.95     157.697     74.6261       203     1.58     0.4839     3.28     20.02     157.204     74.6506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |      |        | 3.4  |       |         | 74.8946 |
| 200     1.63     0.4915     3.37     19.95     157.95     74.7285       201     1.61     0.4893     3.34     19.95     157.818     74.644       202     1.60     0.4894     3.38     19.95     157.697     74.6261       203     1.58     0.4839     3.28     20.02     157.204     74.6506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |      |        |      |       |         |         |
| 201     1.61     0.4893     3.34     19.95     157.818     74.644       202     1.60     0.4894     3.38     19.95     157.697     74.6261       203     1.58     0.4839     3.28     20.02     157.204     74.6506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |        |      |       |         |         |
| 202     1.60     0.4894     3.38     19.95     157.697     74.6261       203     1.58     0.4839     3.28     20.02     157.204     74.6506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |      |        |      |       |         |         |
| 203 1.58 0.4839 3.28 20.02 157.204 74.6506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |      |        |      |       |         |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |      |        |      |       |         |         |
| 204 1.60 0.4839 3.3 20.03 157.145 74.6765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |      |        |      |       |         |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 204 | 1.60 | 0.4839 | 3.3  | 20.03 | 157.145 | 74.0765 |

| 205        | 1.58         | 0.481           | 3.27         | 20.05          | 156.778            | 74.6195           |
|------------|--------------|-----------------|--------------|----------------|--------------------|-------------------|
| 206        | 1.58         | 0.4815          | 3.27         | 20.04          | 156.729            | 74.5789           |
| 207        | 1.57         | 0.481           | 3.27         | 20.05          | 156.453            | 74.3903           |
| 208        | 1.57         | 0.4829          | 3.28         | 20.06          | 156.207            | 74.5086           |
| 209        | 1.56         | 0.4817          | 3.28         | 20.05          | 156.075            | 74.6316           |
| 210        |              |                 |              |                | 155.903            |                   |
|            | 1.55         | 0.4808          | 3.27         | 20.04          |                    | 74.6097           |
| 211        | 1.54         | 0.4861          | 3.26         | 20.02          | 155.598            | 74.9231           |
| 212        | 1.53         | 0.4977          | 3.33         | 19.96          | 155.451            | 74.3713           |
| 213        | 1.50         | 0.5             | 3.35         | 19.93          | 155.387            | 74.3697           |
| 214        | 1.50         | 0.513           | 3.32         | 19.92          | 155.372            | 74.7545           |
| 215        | 1.50         | 0.5275          | 3.35         | 19.88          | 155.511            | 74.4853           |
| 216        | 1.49         | 0.5172          | 3.36         | 19.87          | 155.123            | 74.4977           |
| 217        | 1.47         | 0.5138          | 3.37         | 19.85          | 155.215            | 74.4127           |
|            |              |                 |              |                |                    |                   |
| 218        | 1.47         | 0.5096          | 3.36         | 19.81          | 155.297            | 74.6118           |
| 219        | 1.45         | 0.5097          | 3.35         | 19.8           | 155.179            | 74.5567           |
| 220        | 1.44         | 0.5069          | 3.32         | 19.82          | 155.058            | 74.6448           |
| 221        | 1.43         | 0.5089          | 3.32         | 19.79          | 155.124            | 74.4282           |
| 222        | 1.44         | 0.5177          | 3.28         | 19.83          | 154.997            | 74.3276           |
| 223        | 1.41         | 0.5157          | 3.21         | 19.89          | 154.785            | 74.5514           |
| 224        | 1.40         | 0.5084          | 3.24         | 19.88          | 154.833            | 74.6164           |
| 225        | 1.40         | 0.5041          |              | 19.00          | 154.753            | 74.0104           |
|            |              |                 | 3.22         |                |                    |                   |
| 226        | 1.39         | 0.4971          | 3.23         | 19.88          | 154.674            | 74.6083           |
| 227        | 1.38         | 0.4967          | 3.2          | 19.89          | 154.638            | 74.323            |
| 228        | 1.36         | 0.4941          | 3.19         | 19.89          | 154.448            | 74.3397           |
| 229        | 1.35         | 0.4906          | 3.19         | 19.93          | 154.228            | 74.3869           |
| 230        | 1.35         | 0.4855          | 3.16         | 19.93          | 154.155            | 74.4051           |
| 231        | 1.34         | 0.4792          | 3.09         | 19.95          | 154.134            | 74.2884           |
| 232        | 1.34         | 0.4789          | 3.12         | 19.96          | 153.926            | 74.2783           |
| 233        | 1.32         | 0.4796          | 3.11         | 19.97          | 153.748            | 74.2801           |
| 234        | 1.32         | 0.4790          | 3.11         | 19.97          | 153.748            | 74.2001           |
|            |              |                 |              |                |                    |                   |
| 235        | 1.31         | 0.4664          | 3.08         | 19.96          | 153.407            | 74.4212           |
| 236        | 1.29         | 0.4592          | 3.05         | 19.99          | 153.084            | 74.1369           |
| 245        | 1.21         | 0.4229          | 3.02         | 17.45          | 151.74             | 73.8642           |
| 246        | 1.20         | 0.4302          | 3.03         | 17.4           | 151.568            | 73.9475           |
| 247        | 1.20         | 0.4356          | 2.97         | 17.35          | 151.337            | 73.8194           |
| 248        | 1.19         | 0.4369          | 2.96         | 17.4           | 151.014            | 74.2119           |
| 249        | 1.19         | 0.4388          | 2.96         | 17.34          | 151.089            | 74.1996           |
| 250        | 1.18         | 0.4465          | 2.98         | 17.35          | 150.846            | 74.0433           |
| 251        | 1.18         | 0.4449          | 2.97         | 17.33          | 150.635            | 73.878            |
|            |              |                 |              |                |                    |                   |
| 252        | 1.16         | 0.4481          | 2.97         | 17.35          | 150.322            | 73.7057           |
| 253        | 1.16         | 0.449           | 2.95         | 17.31          | 150.155            | 73.8494           |
| 254        | 1.15         | 0.4474          | 2.91         | 17.36          | 150.189            | 73.8805           |
| 255        | 1.14         | 0.4534          | 2.96         | 17.32          | 149.675            | 74.2214           |
| 256        | 1.12         | 0.4652          | 3.01         | 17.29          | 149.515            | 74.7251           |
| 257        | 1.10         | 0.4659          | 3            | 17.29          | 149.205            | 75.0627           |
| 258        | 1.08         | 0.4677          | 2.99         | 17.25          | 149.167            | 75.3476           |
| 259        | 1.05         | 0.4661          | 2.98         | 17.24          | 148.942            | 75.4816           |
|            |              |                 |              |                |                    |                   |
| 260        | 1.03         | 0.4684          | 2.96         | 17.12          | 149.063            | 75.6655           |
| 261        | 1.02         | 0.467           | 2.92         | 17.22          | 148.929            | 75.8405           |
| 262        | 1.00         | 0.4735          | 2.96         | 17.22          | 148.946            | 75.981            |
| 263        | 0.98         | 0.4712          | 2.94         | 17.16          | 148.93             | 76.0504           |
| 264        | 0.96         | 0.4699          | 2.9          | 17.15          |                    | 76.181            |
| 265        | 0.95         | 0.4733          | 2.93         | 17.14          | 148.789            | 76.331            |
| 266        | 0.92         | 0.4773          | 2.92         | 17.08          | 148.819            | 76.4243           |
| 267        | 0.92         | 0.4768          | 2.91         | 17.09          | 148.631            | 76.5206           |
| 268        | 0.91         | 0.4757          | 2.9          | 17.02          | 148.556            | 76.6104           |
| 269        | 0.89         | 0.4768          | 2.92         | 17.02          | 148.501            | 76.6968           |
|            |              |                 |              |                |                    |                   |
| 270        | 0.88         | 0.4746          | 2.9          | 16.95          | 148.509            | 76.6537           |
| 271        | 0.86         | 0.4776          | 2.88         | 16.92          | 148.179            | 76.8161           |
| 272        | 0.85         | 0.4763          | 2.88         | 16.88          | 148.42             | 76.8946           |
| 273        | 0.83         | 0.4748          | 2.89         | 16.84          | 148.333            | 76.8785           |
| 274        | 0.82         | 0.4741          | 2.86         | 16.79          | 148.314            | 77.0637           |
| 275        | 0.81         | 0.4695          | 2.85         | 16.73          | 147.921            | 77.1146           |
| 276        | 0.80         | 0.4695          | 2.88         | 16.66          | 148.15             | 77.2007           |
| 277        | 0.78         | 0.4684          | 2.85         | 16.66          | 147.829            | 77.1528           |
| 278        | 0.78         | 0.4667          | 2.84         |                | 147.754            | 77.1526           |
|            |              |                 |              | 16.6           |                    |                   |
| 279        | 0.77         | 0.4666          | 2.83         | 16.55          | 147.64             | 77.2059           |
| 280        | 0.78         | 0.4681          | 2.82         | 16.54          | 147.623            | 77.3049           |
| 281        | 0.76         | 0.4679          | 2.79         | 16.53          | 147.636            | 77.2858           |
| 282        | 0.75         | 0.4728          | 2.76         | 16.5           | 147.258            | 77.3542           |
| 283        | 0.74         | 0.4716          | 2.74         | 16.46          | 147.47             | 77.4329           |
| 284        | 0.72         | 0.4767          | 2.76         | 16.44          | 147.317            | 77.5892           |
| 285        | 0.72         | 0.476           | 2.73         | 16.4           | 147.279            | 77.4561           |
| 200        |              |                 |              |                |                    |                   |
|            | 0.70         | 0.476           | 2 74         | 16.36          | 147 189            | 77 485            |
| 286<br>287 | 0.70<br>0.70 | 0.476<br>0.4754 | 2.74<br>2.74 | 16.36<br>16.32 | 147.189<br>147.146 | 77.485<br>77.5043 |

| 288 | 0.69         | 0.4761 | 2.71 | 16.32 | 146.934 | 77.5009 |
|-----|--------------|--------|------|-------|---------|---------|
| 289 | 0.69         | 0.4882 | 2.71 | 16.3  | 146.636 | 77.4435 |
| 290 | 0.67         | 0.4813 | 2.68 | 16.27 | 146.568 | 77.5274 |
| 291 | 0.67         | 0.4788 | 2.64 | 16.26 | 146.641 | 77.5585 |
| 292 | 0.67         | 0.4794 | 2.66 | 16.24 | 146.448 | 77.5095 |
| 293 | 0.66         | 0.479  | 2.62 | 16.22 | 146.318 | 77.5686 |
| 294 | 0.64         | 0.4763 | 2.65 | 16.21 | 146.356 | 77.4145 |
| 295 | 0.64         | 0.4723 | 2.59 | 16.21 | 146.153 | 77.6403 |
| 296 | 0.63         | 0.4736 | 2.61 | 16.22 | 146.003 | 77.422  |
| 297 | 0.63         | 0.469  | 2.6  | 16.18 | 145.799 | 77.698  |
| 298 | 0.61         | 0.47   | 2.56 | 16.2  | 145.657 | 77.6989 |
| 299 | 0.61         | 0.4647 | 2.59 | 16.19 | 145.488 | 77.5811 |
| 300 | 0.60         | 0.4655 | 2.59 | 16.19 | 145.415 | 77.3147 |
| 301 | 0.60         | 0.4662 | 2.57 | 16.19 | 145.242 | 77.5555 |
| 302 | 0.58         | 0.4671 | 2.54 | 16.2  | 144.989 | 77.5286 |
| 303 | 0.58         | 0.4618 | 2.53 | 16.2  | 145.044 | 77.5652 |
|     |              |        |      |       |         |         |
| 304 | 0.57         | 0.4608 | 2.51 | 16.19 | 145.125 | 77.5029 |
| 305 | 0.57         | 0.461  | 2.53 | 16.19 | 144.785 | 77.6043 |
| 306 | 0.56         | 0.462  | 2.52 | 16.18 | 144.647 | 77.5305 |
| 307 | 0.56         | 0.4576 | 2.53 | 16.19 | 144.503 | 77.362  |
| 308 | 0.54         | 0.4577 | 2.52 | 16.19 | 144.096 | 77.6833 |
| 309 | 0.55         | 0.4589 | 2.52 | 16.18 | 144.153 | 77.5146 |
| 310 | 0.54         | 0.4644 | 2.54 | 16.18 | 144.063 | 77.3596 |
| 311 | 0.53         | 0.4645 | 2.53 | 16.17 | 143.903 | 77.4571 |
| 312 | 0.52         | 0.4596 | 2.51 | 16.19 | 143.643 | 77.6089 |
| 313 | 0.50         | 0.4562 | 2.5  | 16.2  | 143.574 | 77.4371 |
| 314 | 0.51         | 0.4557 | 2.5  | 16.19 | 143.365 | 77.3498 |
| 315 | 0.50         | 0.4589 | 2.49 | 16.19 | 143.293 | 77.1898 |
| 316 | 0.48         | 0.4624 | 2.5  | 16.17 | 143.237 | 77.3408 |
| 317 | 0.48         | 0.4591 | 2.49 | 16.23 | 143.035 | 77.456  |
| 318 | 0.48         | 0.4571 | 2.5  | 16.22 | 142.947 | 77.3799 |
| 319 | 0.47         | 0.4583 | 2.52 | 16.23 | 142.975 | 77.3323 |
| 320 | 0.46         | 0.454  | 2.51 | 16.24 | 142.592 | 77.3937 |
| 321 | 0.46         | 0.4519 | 2.49 | 16.26 | 142.619 | 77.3802 |
| 322 | 0.45         | 0.4519 | 2.49 | 16.27 | 142.308 | 77.4277 |
|     |              |        |      |       |         |         |
| 323 | 0.45<br>0.44 | 0.5586 | 2.49 | 16.3  | 142.207 | 77.4811 |
| 324 |              | 0.4506 | 2.49 | 16.31 | 142.039 | 77.4654 |
| 325 | 0.43         | 0.4493 | 2.48 | 16.34 | 141.863 | 77.3185 |
| 326 | 0.43         | 0.4476 | 2.48 | 16.34 | 141.708 | 77.5294 |
| 327 | 0.42         | 0.4481 | 2.47 | 16.36 | 141.705 | 77.4176 |
| 328 | 0.42         | 0.4475 | 2.45 | 16.4  | 141.703 | 77.5698 |
| 329 | 0.40         | 0.4467 | 2.45 | 16.4  | 141.434 | 77.5042 |
| 330 | 0.40         | 0.4451 | 2.43 | 16.41 | 141.545 | 77.3572 |
| 331 | 0.40         | 0.447  | 2.41 | 16.41 | 141.324 | 77.4776 |
| 332 | 0.40         | 0.4427 | 2.43 | 16.44 | 140.961 | 77.2718 |
| 333 | 0.39         | 0.4437 | 2.43 | 16.44 | 140.909 | 77.1268 |
| 334 | 0.38         | 0.4447 | 2.43 | 16.45 | 140.732 | 77.3453 |
| 335 | 0.38         | 0.4421 | 2.45 | 16.47 | 140.704 | 77.474  |
| 336 | 0.37         | 0.439  | 2.43 | 16.49 | 140.619 | 77.1626 |
| 337 | 0.36         | 0.438  | 2.39 | 16.51 | 140.479 | 77.2309 |
| 338 | 0.37         | 0.4445 | 2.4  | 16.51 | 140.27  | 77.2754 |
| 339 | 0.35         | 0.4469 | 2.46 | 16.51 | 140.218 |         |
| 340 | 0.34         | 0.442  | 2.44 | 16.53 | 140.223 | 77.1834 |
| 341 | 0.34         | 0.4439 | 2.46 | 16.53 | 140.032 | 77.2858 |
| 342 | 0.33         | 0.4432 | 2.47 | 16.54 | 139.886 | 77.1959 |
| 343 | 0.33         | 0.4413 | 2.45 | 16.56 | 139.711 | 77.2225 |
| 344 | 0.32         | 0.4358 | 2.42 | 16.59 | 139.645 | 77.3345 |
| 345 | 0.31         | 0.4386 | 2.43 | 16.58 | 139.429 | 77.1358 |
| 346 | 0.31         | 0.4366 | 2.43 | 16.62 | 139.429 | 77.0625 |
| 347 | 0.30         | 0.4372 | 2.42 | 16.62 | 139.204 | 77.4037 |
| 347 | 0.30         | 0.4372 | 2.42 | 16.64 | 139.395 | 77.2608 |
| 349 | 0.30         | 0.4404 | 2.44 | 16.65 | 139.402 | 77.0485 |
|     |              |        | 2.44 | 16.69 |         |         |
| 350 | 0.29         | 0.4349 |      |       | 139.301 | 77.1312 |
| 351 | 0.28         | 0.4357 | 2.43 | 16.68 | 139.175 | 76.9142 |
| 352 | 0.28         | 0.4313 | 2.42 | 16.69 | 138.949 | 77.3658 |
| 353 | 0.27         | 0.485  | 2.41 | 16.69 | 138.827 | 77.2137 |
| 354 | 0.26         | 0.4859 | 2.41 | 16.69 | 138.956 | 77.0769 |
| 355 | 0.25         | 0.4752 | 2.42 | 16.72 | 139.038 | 77.2488 |
| 356 | 0.25         | 0.4653 | 2.43 | 16.73 | 138.993 | 77.1527 |
| 357 | 0.24         | 0.4575 | 2.41 | 16.76 | 138.91  | 77.1824 |
| 358 | 0.24         | 0.4497 | 2.39 | 16.79 | 138.818 | 77.0894 |
| 359 | 0.24         | 0.4464 | 2.4  | 16.81 | 138.651 | 77.17   |
| 360 | 0.23         | 0.4461 | 2.39 | 16.82 | 138.632 | 76.8692 |
| 361 | 0.21         | 0.4465 | 2.36 | 16.84 |         | 77.2008 |
| 362 | 0.21         | 0.4433 | 2.36 | 16.87 | 138.42  | 77.2874 |
|     |              |        |      |       |         |         |

| 363 | 0.21 | 0.4414 | 2.37 | 16.88 | 138.372 | 77.233  |
|-----|------|--------|------|-------|---------|---------|
| 364 | 0.21 | 0.4349 | 2.32 | 16.92 | 138.226 | 77.1865 |
| 365 | 0.20 | 0.4329 | 2.31 | 16.94 | 138.244 | 77.0444 |
| 366 | 0.19 | 0.4306 | 2.31 | 16.99 | 138.218 | 76.9935 |
| 367 | 0.19 | 0.4281 | 2.3  | 16.86 | 137.947 | 77.1197 |
| 368 | 0.18 | 0.4259 | 2.31 | 16.98 | 138.017 | 77.1162 |
| 369 | 0.17 | 0.4215 | 2.28 | 17.02 | 137.994 | 76.9964 |
| 370 | 0.18 | 0.4167 | 2.26 | 17.05 | 137.928 | 76.9283 |
| 371 | 0.18 | 0.4157 | 2.27 | 17.08 | 137.769 | 77.0441 |
| 372 | 0.16 | 0.4163 | 2.27 | 17.08 | 137.763 | 76.981  |
| 373 | 0.16 | 0.4142 | 2.26 | 17.15 | 137.539 | 77.024  |
| 374 | 0.14 | 0.4117 | 2.24 | 17.22 | 137.371 | 77.0616 |
| 375 | 0.15 | 0.4133 | 2.23 | 17.09 | 137.144 | 77.0207 |
| 376 | 0.14 | 0.4106 | 2.23 | 17.14 | 137.093 | 76.925  |
| 377 | 0.14 | 0.4184 | 2.25 | 17.15 | 137.077 | 76.9696 |
| 378 | 0.12 | 0.4126 | 2.24 | 17.17 | 136.932 | 76.9823 |
| 379 | 0.12 | 0.4061 | 2.21 | 17.23 | 136.659 | 76.932  |
| 380 | 0.13 | 0.4028 | 2.2  | 17.24 | 136.61  | 77.1625 |
| 381 | 0.12 | 0.4041 | 2.19 | 17.28 | 136.459 | 77.053  |
| 382 | 0.11 | 0.4004 | 2.19 | 17.29 | 136.275 | 77.008  |
| 383 | 0.10 | 0.4021 | 2.19 | 17.29 | 136.032 | 77.0608 |
| 384 | 0.10 | 0.4086 | 2.17 | 17.31 | 135.914 | 77.0523 |
| 385 | 0.09 | 0.4018 | 2.15 | 17.32 | 135.874 | 77.015  |
| 386 | 0.09 | 0.3996 | 2.15 | 17.38 | 135.576 | 76.9836 |
| 387 | 0.08 | 0.3974 | 2.15 | 17.35 | 135.439 | 77.0572 |
| 388 | 0.09 | 0.4005 | 2.15 | 17.37 | 135.323 | 76.8337 |
| 389 | 0.08 | 0.4033 | 2.15 | 17.38 | 135.085 | 77.0555 |
| 390 | 0.07 | 0.4038 | 2.15 | 17.53 | 134.901 | 76.9844 |
| 391 | 0.07 | 0.4018 | 2.15 | 17.33 | 134.755 | 77.0791 |
| 392 | 0.06 | 0.4015 | 2.14 | 17.39 | 134.532 | 76.9842 |
| 393 | 0.06 | 0.3963 | 2.12 | 17.43 | 134.37  | 77.0706 |
| 394 | 0.06 | 0.3879 | 2.14 | 17.44 | 134.1   | 77.0603 |
| 395 | 0.06 | 0.3925 | 2.09 | 17.45 | 134.05  | 76.9788 |
| 396 | 0.04 | 0.3958 | 2.12 | 17.48 | 133.849 | 77.0055 |
| 397 | 0.04 | 0.3955 | 2.11 | 17.45 | 133.777 | 77.1273 |
| 398 | 0.03 | 0.3892 | 2.09 | 17.47 | 133.755 | 76.9919 |
| 399 | 0.02 | 0.3836 | 2.05 | 17.5  | 133.444 | 76.8244 |
| 400 | 0.03 | 0.3861 | 2.07 | 17.52 | 133.313 | 76.9119 |
| 401 | 0.02 | 0.3854 | 2.06 | 17.5  | 133.128 | 76.8441 |
| 402 | 0.02 | 0.3774 | 2.05 | 17.53 | 133.064 | 76.8897 |
| 403 | 0.01 | 0.3809 | 2.04 | 17.56 | 132.981 | 76.9507 |
| 404 | 0.01 | 0.3784 | 2.01 | 17.6  | 132.819 | 77.0689 |
| 405 | 0.00 | 0.3739 | 2    | 17.62 | 132.572 | 77.0773 |
| 406 | 0.00 | 0.3697 | 1.99 | 17.64 | 132.459 | 76.9915 |
|     |      |        |      |       |         |         |

# Stove Builder International Inc.

 Manufacturer:
 SBI
 Technicians:
 Claude Pelland

 Model:
 2.1 series
 2

 Date:
 02-23-21
 2

 Run:
 2

 Control #:
 G104576994

Test Duration: 406
Output Category: Low

#### Test Results in Accordance with CSA B415.1-10

|                          | HHV Basis | LHV Basis |
|--------------------------|-----------|-----------|
| Overall Efficiency       | 74.7%     | 80.1%     |
| Combustion Efficiency    | 95.6%     | 95.6%     |
| Heat Transfer Efficiency | 78%       | 83.7%     |

| Output Rate (kJ/h) | 9,957  | 9,446  | (Btu/h) |
|--------------------|--------|--------|---------|
| Burn Rate (kg/h)   | 0.71   | 1.56   | (lb/h)  |
| Input (kJ/h)       | 13,324 | 12,639 | (Btu/h) |

| Test Load Weight (dry kg) | 4.80  | 10.57 | dry lb |
|---------------------------|-------|-------|--------|
| MC wet (%)                | 17.1  |       |        |
| MC dry (%)                | 20.63 |       |        |
| Particulate (g )          | 6.508 |       |        |
| CO (g)                    | 313   |       |        |
| Test Duration (h)         | 6.77  |       |        |

| Emissions        | Particulate | СО    |
|------------------|-------------|-------|
| g/MJ Output      | 0.10        | 4.65  |
| g/kg Dry Fuel    | 1.36        | 65.31 |
| g/h              | 0.96        | 46.29 |
| lb/MM Btu Output | 0.22        | 10.80 |

| Air/Fuel Ratio (A/F)    | 18.29 |
|-------------------------|-------|
| Aii/i doi itatio (Aii ) | 10.20 |

VERSION: 2.4 2010-04-15

**Elapsed** Time (min)

6

8

9

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26 27

28

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

52

53

VERSION: 24 2010-04-15 Appliance Type: Non-Cat (Cat, Non-Cat, Pellet) Manufacturer: SBI Model: 2.1 series **Default Fuel Values** F Date: 2021-02-24 Temp. Units (F or C) Run: 3 Weight Units lb (kg or lb) D. Fir Oak Control #: G104576994 HHV (kJ/kg) 19,810 19,887 Test Duration: 464 %C 48.73 50 **Dutput Category: Low Fuel Data** %Н 6.87 6.6 **%**O 42.9 Beech 43.9 16.60 HHV Wood Moisture (% wet): 18,800 kJ/kg %Ash 0.5 0.5

16.94

19.86

19.48

18.85

15.50

14.69

12.85

10.30

10.15

10.26

10.00

9.63

9.81

10.68

11.07

11.35

11.44

11.40

11.26

11.08

10.92

10.81

10.67

10.51

10.36

10.12

9 92

9.77

9.66

9.63

9.54

9.57

9.57

9.56

9.60

9.58

9.51

9.51

9.49

9.46

9.51

9 57

9.60

9.62

9.7

9.65

9.67

9.75

192.45

293

305.8

325.3

350.

399.1

399.5

404.2

399.2

381.

368 (

357.1

349.9

345.1

341.2

340.4

339.6

339.3

339.1

340.0

340.2

341.4

342.8

343.9

345.9

348.1

348.7

349.2

348.6

348.0

347.

346.3

346.4

346.

346.1

346.0

346.

345.5

345.7

345.0

345.0

344.7

345.007

344.709

344.485

343.658

343.296 79.0538

Load Weight (lb wet): 12.92 %C 48.7 Burn Rate (dry kg/h): %Н 0.63 5.8 **Total Particulate Emissions:** 7.501 g **%**O 44.9 %Ash 0.6

4.37

1.92

2.37

7.40

7.58

10.00

12.52

11.83

11.50

11.94

12.18

11.90

10.74

10.45

10.24

10.19

10.30

10.42

10 61

10.79

10.90

11.01

11 18

11.36

11.62

11.72

11.83

12.00

11.94

12.11

12.06

12.01

12.04

12.11

12.11

12.24

12.30

12.33

12.24

12.29

12.27

12.28 12.2

12.43

12.36

12.38

12.25

0.35

0.20

0.31

0.40

0.60

0.55

0.40

0.23

0.15

0.11

0.16

0.28

0.35

0.15

0.14

0.13

0.15

0.28

0.31

0.31

0.33

0.32

0.31

0.31

0.33

0.41

0.40

0.35

0.31

0.29

0.22

0.19

0.19

0.19

0.18

0.16

0.16

0.16

0.15

0.15

0.17

0.1

0.183

0.1618

0.1724

0.1809

0.1764

0.1749

**Averages** 

12.44

12.23

11.91

11.78

11.60

11.44

11.31

11.18

11.01

10.88

10.79

10.69

10.58

10.47

10.36

10.27

10.15

10.05

9.94

9.82

9.71

9 61

9.49

9.36

9 25

9.14

8.96

8.86

8.74

8.65

8.52

8.43

8.32

8.19

8.10

7.99

7.87

7.78

7.68

7 54

7.45

7 23

7.14

6.95

6.86

|   | Fuel Weight<br>Remaining (lb) | Flue Ga | s Compositi | on (%)<br>O <sub>2</sub> | Temp<br>Flue<br>Gas | . (°F)<br>Room<br>Temp |
|---|-------------------------------|---------|-------------|--------------------------|---------------------|------------------------|
| 0 | 12.92                         |         | 1.73        | 19.37                    | 287.1               |                        |
| 1 | 12.85                         | 0.30    | 2.93        | 18.73                    | 265.9               | 74.4                   |
| 2 | 12.78                         | 0.11    | 0.99        | 20.02                    | 266.4               | 75.9                   |
| 3 | 12.71                         | 0.10    | 1.10        | 20.31                    | 279.9               | 77.2                   |
| 4 | 12.58                         | 0.16    | 1.80        | 19.99                    | 288.4               | 77.5                   |

78.2

78.1

78.6

78.4

78.7

79.1

79.4

79.6

80.1

80.4

80.9

79 (

79.8

80.6

81.2

81.7

81.9

82.3

82.5

82.7

83.0

83.2

82 7

81.6

82.2

79.4

79.0

79.9

80.1

79.5

79.3

79.4

79.9

78.5

79.

79.4

79.8

78.0

78.2

78.5

78.9

78.9

78.9

78 7646

78.9611

78.997°

79.1811

82

79.45

Note 1: For other fuels, use the heating value and

fuel composition determined by analysis of fuel

sample in accordance with Clause 9.2.

|            |      |        |                     | 1                       |                              |                              |
|------------|------|--------|---------------------|-------------------------|------------------------------|------------------------------|
| 55         | 6.63 | 0.2017 | 12.12               | 9.9                     | 342.571                      | 79.6336                      |
| 56         | 6.56 | 0.2095 | 12.18               | 9.92                    | 341.613                      | 79.1643                      |
| 57         | 6.48 | 0.1889 | 12                  | 10.06                   | 341.229                      | 79.7501                      |
| 58         | 6.39 | 0.1962 | 12.01               | 10.13                   | 341.1                        | 78.9674                      |
| 59         | 6.29 | 0.1863 | 11.89               | 10.22                   | 338.706                      | 78.6315                      |
| 60         | 6.21 | 0.1513 | 11.4                | 10.62                   | 334.775                      | 79.0527                      |
| 61         | 6.12 | 0.07   | 10.67               | 11.32                   | 330.126                      | 78.8617                      |
| 62         | 6.04 | 0.0435 | 10.02               | 11.99                   | 326.544                      | 78.7752                      |
| 63         | 6.00 | 0.0505 | 10                  | 12.23                   | 323.391                      | 78.703                       |
| 64         | 5.92 | 0.0503 | 9.83                | 12.52                   | 320.41                       | 78.5628                      |
| 65         | 5.84 | 0.0548 | 9.7                 | 12.75                   | 318.209                      | 78.7023                      |
| 66         | 5.76 | 0.0574 | 9.64                | 12.94                   | 315.559                      | 78.55                        |
| 67         | 5.70 | 0.062  | 9.4                 | 13.2                    | 312.561                      | 78.8043                      |
| 68         | 5.63 | 0.0689 | 9.23                | 13.44                   | 310.526                      | 78.5731                      |
| 69         | 5.56 | 0.0647 | 9.17                | 13.56                   | 308.62                       | 78.6516                      |
| 70         |      | 0.0641 | 9.17                | 13.64                   | 306.02                       | 78.3702                      |
|            | 5.48 |        |                     |                         |                              |                              |
| 71         | 5.42 | 0.076  | 9.19                | 13.7                    | 306.219                      | 78.6836                      |
| 72         | 5.36 | 0.0661 | 9.41                | 13.57                   | 307.163                      | 78.896                       |
| 73         | 5.30 | 0.0495 | 9.43                | 13.51                   | 306.074                      | 78.53                        |
| 74         | 5.25 | 0.0486 | 8.96                | 13.84                   | 303.277                      | 77.7398                      |
| 75         | 5.20 | 0.0631 | 8.29                | 14.48                   | 298.994                      | 78.4359                      |
| 76         | 5.16 | 0.0944 | 7.16                | 15.5                    | 293.114                      | 78.5366                      |
| 77         | 5.11 | 0.1542 | 6.47                | 16.28                   | 287.282                      | 78.6328                      |
| 78         | 5.07 | 0.2476 | 6.16                | 16.77                   | 281.75                       | 78.8392                      |
| 79         | 5.03 | 0.2703 | 6.03                | 17.04                   | 276.645                      | 78.5554                      |
| 80         | 4.98 | 0.2848 | 5.98                | 17.19                   | 272.523                      | 78.7819                      |
| 81         | 4.95 | 0.2955 | 5.96                | 17.25                   | 268.752                      | 78.6054                      |
| 82         | 4.92 | 0.3044 | 5.93                | 17.32                   | 265.692                      | 78.7468                      |
| 83         | 4.89 | 0.2975 | 5.98                | 17.31                   | 263.299                      | 78.5209                      |
| 84         | 4.84 | 0.2829 | 6.07                | 17.26                   | 260.685                      | 78.447                       |
| 85         | 4.81 | 0.271  | 6.11                | 17.22                   | 258.937                      | 78.6722                      |
| 86         | 4.78 | 0.2413 | 6.24                | 17.11                   | 257.478                      | 78.5313                      |
| 87         | 4.72 | 0.2436 | 6.2                 | 17.18                   | 255.002                      | 79.6267                      |
| 88         | 4.67 | 0.2377 | 6.16                | 17.17                   | 254.054                      | 80.503                       |
| 89         | 4.64 | 0.2335 | 6.24                | 17.19                   | 251.785                      | 81.0025                      |
| 90         | 4.57 | 0.2315 | 6.2                 | 17.18                   | 250.676                      | 81.5447                      |
| 91         | 4.52 | 0.235  | 6.17                | 17.19                   | 249.325                      | 81.7779                      |
| 92         | 4.45 | 0.252  | 6.18                | 17.16                   | 248.462                      | 81.7652                      |
| 93         | 4.42 | 0.28   | 6.1                 | 17.19                   | 247.37                       | 82.1067                      |
| 94         | 4.38 | 0.2986 | 6.03                | 17.13                   | 245.431                      | 82.172                       |
| 95         | 4.33 | 0.3323 | 5.82                | 17.36                   | 243.043                      | 82.235                       |
| 96         | 4.28 | 0.3734 | 5.77                | 17.43                   | 241.108                      | 82.4582                      |
| 97         | 4.24 | 0.3775 | 5.79                | 17.43                   | 239.155                      | 82.3779                      |
| 98         | 4.24 | 0.3759 |                     | 17.39                   | 237.311                      | 82.5083                      |
| 99         | 4.15 | 0.3796 | 5.77<br>5.75        |                         | 235.798                      | 82.7781                      |
|            |      |        |                     | 17.39<br>17.39          |                              | 82.5717                      |
| 100        | 4.12 | 0.385  | 5.69                |                         | 234.18                       |                              |
| 101        | 4.06 | 0.3832 | 5.68                | 17.39                   | 233.138                      | 82.7385                      |
| 102        | 4.02 | 0.3844 | 5.63                | 17.41                   | 231.567                      | 82.3787                      |
| 103        | 3.98 | 0.3932 | 5.55                | 17.43                   | 230.432                      | 82.8155                      |
| 104        | 3.94 | 0.3909 | 5.54                | 17.4                    | 229.007                      | 82.6545                      |
| 105        | 3.90 | 0.3883 | 5.45                | 17.38                   | 227.85                       | 82.5142                      |
| 106        | 3.88 | 0.3977 | 5.43                | 17.37                   | 226.389                      |                              |
| 107        | 3.84 | 0.3756 | 5.43                | 17.31                   | 226.014                      | 82.7711                      |
| 108        | 3.80 | 0.3675 | 5.41                | 17.28                   | 225.203                      | 82.8395                      |
| 109        | 3.76 | 0.3817 | 5.38                | 17.25                   | 224.063                      | 82.8298                      |
| 110        | 3.72 | 0.3794 | 5.4                 | 17.25                   | 223.314                      | 82.6285                      |
| 111        | 3.67 | 0.3827 | 5.41                | 17.21                   | 222.484                      | 82.7835                      |
| 112        | 3.65 | 0.386  | 5.38                | 17.16                   | 221.854                      | 82.6517                      |
| 113        | 3.61 | 0.3829 | 5.39                | 17.11                   | 221.064                      | 82.7892                      |
| 114        | 3.57 | 0.3823 | 5.38                | 17.03                   | 220.254                      | 82.6718                      |
| 115        | 3.54 | 0.3797 | 5.45                | 16.96                   | 219.887                      | 82.699                       |
| 116        | 3.52 | 0.3776 | 5.47                | 16.9                    | 219.807                      | 82.6261                      |
| 117        | 3.48 | 0.3768 | 5.5                 | 16.82                   | 219.146                      | 82.4747                      |
| 118        | 3.43 | 0.3673 | 5.5                 | 16.78                   | 218.585                      | 82.5065                      |
| 119        | 3.41 | 0.3667 | 5.52                | 16.67                   | 219.003                      | 82.4312                      |
| 120        | 3.36 | 0.3558 | 5.56                | 16.63                   | 218.387                      | 82.5233                      |
| 121        | 3.32 | 0.3425 | 5.6                 | 16.57                   | 218.273                      | 82.784                       |
| 122        | 3.29 | 0.3314 | 5.68                | 16.48                   | 218.474                      | 82.6632                      |
| 123        | 3.25 | 0.3283 | 5.64                | 16.45                   | 218.375                      | 82.6167                      |
| 124        | 3.22 | 0.3176 | 5.67                | 16.43                   | 218.775                      | 82.5437                      |
| 125        | 3.18 | 0.3074 | 5.65                | 16.45                   | 218.458                      | 82.4939                      |
| 123        | 3.14 | 0.3074 | 5.59                | 16.46                   | 218.097                      | 82.4412                      |
| 126        |      | 0.0034 | 0.09                | 10.40                   | 210.03/                      | 02.7412                      |
| 126<br>127 |      |        | 5.6                 | 16.42                   | 217 66                       | 82 7005                      |
| 127        | 3.11 | 0.3035 | 5.6<br>5.51         | 16.43<br>16.43          | 217.66                       | 82.7095                      |
|            |      |        | 5.6<br>5.51<br>5.43 | 16.43<br>16.43<br>16.48 | 217.66<br>217.346<br>217.118 | 82.7095<br>82.6695<br>82.699 |

| 131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |        |      |       |         |         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|--------|------|-------|---------|---------|
| 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 130 | 3.00 | 0.3714 | 5.38 | 16.52 | 216.428 | 82.526  |
| 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 131 | 2.97 | 0.3632 | 5.35 | 16.54 | 215.639 | 82.4175 |
| 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 132 | 2.94 | 0.3712 | 5.33 | 16.54 | 215.47  | 82,4683 |
| 134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |        |      |       |         |         |
| 136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |        |      |       |         |         |
| 136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |        |      |       |         |         |
| 137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |        |      |       |         |         |
| 138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |        |      |       |         |         |
| 139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |        |      |       |         |         |
| 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 138 |      |        | 5.12 | 16.69 |         |         |
| 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 139 |      | 0.3809 | 5.07 | 16.76 | 211.357 | 81.1761 |
| 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 140 | 2.68 |        | 4.99 | 16.83 |         |         |
| 142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 141 |      |        |      |       |         |         |
| 143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |        |      |       |         |         |
| 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |        |      |       | 200.032 |         |
| 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |        |      |       |         |         |
| 146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |        |      |       |         |         |
| 147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 145 | 2.56 |        |      | 17.09 |         | 81.5254 |
| 147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 146 | 2.55 | 0.4242 | 4.59 | 17.13 | 205.204 | 81.2068 |
| 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 147 | 2.53 | 0.4268 | 4.52 | 17.21 | 204.521 | 81.2125 |
| 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 148 |      |        |      |       |         |         |
| 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |        |      |       | 203 733 |         |
| 151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |        |      | 17.20 |         |         |
| 152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |        |      |       |         |         |
| 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |        |      |       |         |         |
| 154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |        |      |       |         |         |
| 154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |        | 4.64 | 17.23 |         |         |
| 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |        |      | 17.22 |         | 80.8882 |
| 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 155 | 2.33 | 0.3654 | 4.79 |       | 202.815 | 80.7219 |
| 157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |        |      |       |         |         |
| 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |        |      |       |         |         |
| 159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |        |      |       |         |         |
| 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |        |      |       |         |         |
| 161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |        |      |       |         |         |
| 162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |        |      |       |         |         |
| 163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |        |      |       |         |         |
| 164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 162 |      |        |      |       |         | 80.5035 |
| 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 163 |      | 0.2673 | 4.39 | 17.55 | 202.562 | 80.5156 |
| 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 164 | 2.11 | 0.3163 | 4.21 | 17.76 | 201.781 | 80.4886 |
| 166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |        | 4 04 |       |         |         |
| 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |        |      |       |         |         |
| 168         2.07         0.6993         3.16         18.85         193.627         80.4787           169         2.05         0.6554         3.13         18.92         191.644         80.2973           170         2.05         0.6504         3.15         18.93         190.057         80.3748           171         2.04         0.6247         3.12         19.01         188.179         80.3565           172         2.02         0.5863         3.15         18.98         186.7         80.0368           173         2.01         0.6198         3.16         19.01         185.377         80.1682           176         1.98         0.5985         3.21         19.02         183.842         80.262           176         1.99         0.5821         3.2         19.05         181.668         80.1671           177         1.98         0.5911         3.21         19.09         180.47         79.8443           178         1.96         0.5736         3.23         19.05         179.499         79.9086           179         1.95         0.572         3.23         19.11         178.271         179.697           180         1.94                                                                                 |     |      |        |      |       |         |         |
| 169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |        |      |       |         |         |
| 170         2.05         0.6504         3.15         18.93         190.057         80.3748           171         2.04         0.6247         3.12         19.01         188.179         80.3565           172         2.02         0.5863         3.15         18.98         186.7         80.0368           173         2.01         0.6198         3.16         19.01         183.842         80.246           174         2.00         0.6053         3.18         19.02         183.842         80.246           175         1.98         0.5985         3.21         19.02         182.724         80.262           176         1.99         0.5821         3.2         19.05         181.668         80.1671           177         1.98         0.5911         3.21         19.09         180.47         79.8443           178         1.96         0.5785         3.23         19.01         179.499         79.908           179         1.95         0.572         3.23         19.11         178.271         79.9279           180         1.94         0.5736         3.28         19.14         177.631         79.6999           181         1.92 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>     |     |      |        |      |       |         |         |
| 171         2.04         0.6247         3.12         19.01         188.179         80.366           172         2.02         0.5863         3.15         18.98         186.7         80.0368           173         2.01         0.6198         3.16         19.01         185.377         80.1682           174         2.00         0.6053         3.18         19.02         182.724         80.262           175         1.98         0.5985         3.21         19.02         182.724         80.262           176         1.99         0.5821         3.2         19.05         181.668         80.1671           177         1.98         0.5911         3.21         19.09         180.47         79.8443           178         1.96         0.5785         3.23         19.06         179.499         79.086           180         1.94         0.5736         3.28         19.14         177.631         79.6999           181         1.92         0.5833         3.32         19.13         176.699         80.005           182         1.92         0.5748         3.29         19.13         175.615         79.826           183         1.90 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>    |     |      |        |      |       |         |         |
| 172         2.02         0.5863         3.15         18.98         186.7         80.0368           173         2.01         0.6198         3.16         19.01         185.377         80.1682           174         2.00         0.6053         3.18         19.02         183.842         80.262           175         1.98         0.5985         3.21         19.05         181.668         80.1671           176         1.99         0.5821         3.2         19.05         181.668         80.1671           177         1.98         0.5911         3.21         19.09         180.47         79.8443           178         1.96         0.5785         3.23         19.06         179.499         79.9086           179         1.95         0.5722         3.23         19.11         178.271         79.927           180         1.94         0.5736         3.28         19.14         177.631         79.699           181         1.92         0.5748         3.29         19.13         175.615         79.825           183         1.90         0.5634         3.34         19.14         174.891         79.646           184         1.90 <t< td=""><td></td><td>2.05</td><td></td><td></td><td></td><td></td><td></td></t<> |     | 2.05 |        |      |       |         |         |
| 173         2.01         0.6198         3.16         19.01         185.377         80.1682           174         2.00         0.6053         3.18         19.02         183.842         80.246           175         1.98         0.5985         3.21         19.02         182.724         80.262           176         1.99         0.5821         3.2         19.05         181.668         80.1671           177         1.98         0.5911         3.21         19.09         180.47         79.8443           178         1.96         0.5785         3.23         19.06         179.499         79.9086           179         1.95         0.572         3.23         19.11         178.271         79.9279           180         1.94         0.5736         3.28         19.14         177.631         79.6999           181         1.92         0.5833         3.32         19.13         176.699         80.0005           182         1.92         0.5748         3.29         19.13         176.615         79.825           183         1.90         0.5616         3.28         19.19         174.236         79.7977           185         1.88                                                                                 | 171 |      |        | 3.12 |       |         |         |
| 174         2.00         0.6053         3.18         19.02         183.842         80.246           175         1.98         0.5985         3.21         19.02         182.724         80.262           176         1.99         0.5821         3.2         19.05         181.668         80.1671           177         1.98         0.5911         3.21         19.06         179.499         79.9843           178         1.96         0.5785         3.23         19.06         179.499         79.9089           179         1.95         0.572         3.23         19.11         178.271         79.9279           180         1.94         0.5736         3.28         19.14         177.631         79.6999           181         1.92         0.5833         3.32         19.13         176.699         80.0005           182         1.92         0.5748         3.29         19.13         175.615         79.825           183         1.90         0.5616         3.28         19.19         174.280         79.797           185         1.88         0.5596         3.27         19.18         173.56         79.6804           186         1.87                                                                                  | 172 | 2.02 | 0.5863 | 3.15 | 18.98 | 186.7   | 80.0368 |
| 174         2.00         0.6053         3.18         19.02         183.842         80.246           175         1.98         0.5985         3.21         19.02         182.724         80.262           176         1.99         0.5821         3.2         19.05         181.668         80.1671           177         1.98         0.5911         3.21         19.06         179.499         79.9843           178         1.96         0.5785         3.23         19.06         179.499         79.9089           179         1.95         0.572         3.23         19.11         178.271         79.9279           180         1.94         0.5736         3.28         19.14         177.631         79.6999           181         1.92         0.5833         3.32         19.13         176.699         80.0005           182         1.92         0.5748         3.29         19.13         175.615         79.825           183         1.90         0.5616         3.28         19.19         174.280         79.797           185         1.88         0.5596         3.27         19.18         173.56         79.6804           186         1.87                                                                                  | 173 | 2.01 | 0.6198 | 3.16 | 19.01 | 185.377 | 80.1682 |
| 175         1.98         0.5985         3.21         19.02         182.724         80.262           176         1.99         0.5821         3.2         19.05         181.668         80.1671           177         1.98         0.5911         3.21         19.09         180.47         79.8443           178         1.96         0.5785         3.23         19.06         179.499         79.9086           179         1.95         0.572         3.23         19.11         178.271         79.9279           180         1.94         0.5736         3.28         19.14         177.631         79.6999           181         1.92         0.5833         3.32         19.13         176.699         80.0005           182         1.92         0.5748         3.29         19.13         175.615         79.825           183         1.90         0.5634         3.34         19.14         174.293         79.777           184         1.90         0.5616         3.28         19.19         174.236         79.777           185         1.88         0.5596         3.27         19.18         173.56         79.6804           186         1.87         <                                                                         |     |      |        | 3 18 |       |         |         |
| 176         1.99         0.5821         3.2         19.05         181.668         80.1671           177         1.98         0.5911         3.21         19.09         180.47         79.8443           178         1.96         0.5785         3.23         19.06         179.499         79.9086           179         1.95         0.572         3.23         19.11         178.271         79.9279           180         1.94         0.5736         3.28         19.14         177.631         79.6999           181         1.92         0.5833         3.32         19.13         176.699         80.0005           182         1.92         0.5748         3.29         19.13         175.615         79.825           183         1.90         0.5634         3.34         19.14         174.891         79.646           184         1.90         0.5616         3.28         19.19         174.280         79.797           185         1.88         0.5596         3.27         19.18         173.56         79.6804           186         1.87         0.5561         3.3         19.19         172.808         79.8563           187         1.86         <                                                                         |     |      |        |      |       |         |         |
| 177         1.98         0.5911         3.21         19.09         180.47         79.8443           178         1.96         0.5785         3.23         19.06         179.499         79.9086           179         1.95         0.572         3.23         19.11         178.271         79.9279           180         1.94         0.5736         3.28         19.14         177.631         79.6999           181         1.92         0.5833         3.32         19.13         175.615         79.825           182         1.92         0.5748         3.29         19.13         175.615         79.825           183         1.90         0.5634         3.34         19.14         174.891         79.646           184         1.90         0.5616         3.28         19.19         174.236         79.7977           185         1.88         0.5596         3.27         19.18         173.56         79.6804           186         1.87         0.5561         3.3         19.24         172.03         79.6763           187         1.86         0.5561         3.3         19.24         172.03         79.6763           188         1.86 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>    |     |      |        |      |       |         |         |
| 178         1.96         0.5785         3.23         19.06         179.499         79.9086           179         1.95         0.572         3.23         19.11         178.271         79.9279           180         1.94         0.5736         3.28         19.14         177.631         79.6998           181         1.92         0.5833         3.32         19.13         176.699         80.0005           182         1.92         0.5748         3.29         19.13         176.699         80.0005           183         1.90         0.5634         3.34         19.14         174.891         79.646           184         1.90         0.5616         3.28         19.19         174.236         79.7977           185         1.88         0.5596         3.27         19.18         173.56         79.6804           186         1.87         0.5577         3.32         19.19         172.808         79.8763           187         1.86         0.5561         3.3         19.24         172.03         79.6763           188         1.86         0.5463         3.26         19.26         171.714         79.327           189         1.85                                                                                 |     |      |        |      |       |         |         |
| 179         1.95         0.572         3.23         19.11         178.271         79.9279           180         1.94         0.5736         3.28         19.14         177.631         79.6999           181         1.92         0.5833         3.32         19.13         175.615         79.825           183         1.90         0.5634         3.34         19.14         174.891         79.625           184         1.90         0.5616         3.28         19.19         174.236         79.7977           185         1.88         0.5596         3.27         19.18         173.56         79.6804           186         1.87         0.5577         3.32         19.19         172.808         79.8633           187         1.86         0.5561         3.3         19.24         172.03         79.6763           188         1.86         0.5463         3.26         19.26         171.714         79.3327           189         1.85         0.5347         3.25         19.32         171.258         78.9793           190         1.85         0.5298         3.22         19.39         170.788         78.3822           191         1.84                                                                                 |     |      |        |      |       |         |         |
| 180         1.94         0.5736         3.28         19.14         177.631         79.6999           181         1.92         0.5833         3.32         19.13         176.699         80.0005           182         1.92         0.5748         3.29         19.13         175.615         79.825           183         1.90         0.5634         3.34         19.14         174.891         79.646           184         1.90         0.5616         3.28         19.19         174.236         79.7977           185         1.88         0.5596         3.27         19.18         173.56         79.6804           186         1.87         0.5577         3.32         19.19         172.808         79.8583           187         1.86         0.5561         3.3         19.24         172.03         79.6763           188         1.86         0.5463         3.26         19.26         171.714         79.3327           189         1.85         0.5347         3.25         19.39         170.798         78.3825           190         1.85         0.5298         3.22         19.39         170.798         78.3822           191         1.84                                                                                |     |      |        |      |       |         |         |
| 181         1.92         0.5833         3.32         19.13         176.699         80.0005           182         1.92         0.5748         3.29         19.13         175.615         79.825           183         1.90         0.5634         3.34         19.14         174.891         79.646           184         1.90         0.5616         3.28         19.19         174.236         79.7977           185         1.88         0.5596         3.27         19.18         173.56         79.6804           186         1.87         0.5577         3.32         19.19         172.808         79.8563           187         1.86         0.5561         3.3         19.24         172.03         79.6763           188         1.86         0.5463         3.26         19.26         171.714         79.3327           189         1.85         0.5347         3.25         19.32         171.258         78.9793           190         1.85         0.5298         3.22         19.39         170.798         78.3822           191         1.84         0.5207         3.24         19.43         170.166         78.145           192         1.84                                                                                 |     |      |        |      |       |         | 79.9279 |
| 181         1.92         0.5833         3.32         19.13         176.699         80.0005           182         1.92         0.5748         3.29         19.13         175.615         79.825           183         1.90         0.5634         3.34         19.14         174.891         79.646           184         1.90         0.5616         3.28         19.19         174.236         79.7977           185         1.88         0.5596         3.27         19.18         173.56         79.6804           186         1.87         0.5577         3.32         19.19         172.808         79.8503           187         1.86         0.5561         3.3         19.24         172.03         79.6763           188         1.86         0.5463         3.26         19.26         171.714         79.3327           189         1.85         0.5347         3.25         19.32         171.258         78.9793           190         1.85         0.5298         3.22         19.39         170.798         78.3822           191         1.84         0.5207         3.24         19.43         170.166         78.145           192         1.84                                                                                 | 180 | 1.94 |        | 3.28 | 19.14 |         | 79.6999 |
| 182         1.92         0.5748         3.29         19.13         175.615         79.825           183         1.90         0.5634         3.34         19.14         174.891         79.646           184         1.90         0.5616         3.28         19.19         174.236         79.7977           185         1.88         0.5596         3.27         19.18         173.56         79.6804           186         1.87         0.5577         3.32         19.19         172.2808         79.8583           187         1.86         0.5561         3.3         19.24         172.03         79.6763           188         1.86         0.5463         3.26         19.26         171.714         79.3327           189         1.85         0.5347         3.25         19.32         171.258         78.9793           190         1.85         0.5298         3.22         19.39         170.798         78.3822           191         1.84         0.5302         3.24         19.43         170.166         78.145           192         1.84         0.5271         3.24         19.47         168.663         77.7412           193         1.84                                                                                | 181 | 1.92 | 0.5833 | 3.32 | 19.13 | 176.699 | 80.0005 |
| 183         1.90         0.5634         3.34         19.14         174.891         79.646           184         1.90         0.5616         3.28         19.19         174.236         79.7977           185         1.88         0.5596         3.27         19.18         173.56         79.6804           186         1.87         0.5577         3.32         19.19         172.808         79.8583           187         1.86         0.5561         3.3         19.24         172.03         79.6763           188         1.86         0.5463         3.26         19.26         171.714         79.327           189         1.85         0.5347         3.25         19.32         171.258         78.9793           190         1.85         0.5298         3.22         19.39         170.798         78.3822           191         1.84         0.5302         3.24         19.43         170.166         78.1145           192         1.84         0.5271         3.24         19.44         169.499         77.7472           193         1.84         0.5259         3.24         19.47         168.663         77.7679           194         1.84                                                                                |     |      |        |      |       |         | 79.825  |
| 184         1.90         0.5616         3.28         19.19         174.236         79.7977           185         1.88         0.5596         3.27         19.18         173.56         79.6804           186         1.87         0.5577         3.32         19.19         172.808         79.8583           187         1.86         0.5561         3.3         19.24         172.03         79.6763           188         1.86         0.5463         3.26         19.26         171.714         79.3327           189         1.85         0.5347         3.25         19.32         171.258         78.9793           190         1.85         0.5298         3.22         19.39         170.798         78.3822           191         1.84         0.5302         3.24         19.43         170.166         78.1145           192         1.84         0.5271         3.24         19.44         169.499         77.7412           193         1.84         0.5259         3.24         19.47         168.663         77.7679           194         1.84         0.5259         3.24         19.47         168.663         77.7679           195         1.83                                                                              |     |      |        |      |       |         |         |
| 185         1.88         0.5596         3.27         19.18         173.56         79.6804           186         1.87         0.5577         3.32         19.19         172.808         79.8583           187         1.86         0.5561         3.3         19.24         172.03         79.6763           188         1.86         0.5463         3.26         19.26         171.714         79.3327           189         1.85         0.5347         3.25         19.32         171.258         78.9793           190         1.85         0.5298         3.22         19.39         170.798         78.3822           191         1.84         0.5302         3.24         19.43         170.166         78.1145           192         1.84         0.5271         3.24         19.47         168.663         77.7679           193         1.84         0.5259         3.24         19.47         168.663         77.7679           194         1.84         0.5259         3.24         19.47         168.663         77.7679           195         1.83         0.5234         3.24         19.51         167.83         77.3866           195         1.83                                                                               |     |      |        |      |       |         |         |
| 186         1.87         0.5577         3.32         19.19         172.808         79.8583           187         1.86         0.5561         3.3         19.24         172.03         79.6763           188         1.86         0.5463         3.26         19.26         171.714         79.3327           189         1.85         0.5347         3.25         19.32         171.258         78.9793           190         1.85         0.5298         3.22         19.39         170.798         78.3822           191         1.84         0.5302         3.24         19.43         170.166         78.1145           192         1.84         0.5271         3.24         19.47         168.663         77.7679           193         1.84         0.5259         3.24         19.47         168.663         77.7679           194         1.84         0.5207         3.21         19.53         167.837         77.8606           195         1.83         0.5234         3.24         19.61         166.61         77.4353           196         1.84         0.5198         3.24         19.61         166.61         77.3245           198         1.82                                                                               |     |      |        |      |       |         |         |
| 187         1.86         0.5561         3.3         19.24         172.03         79.6763           188         1.86         0.5463         3.26         19.26         171.714         79.3327           189         1.85         0.5347         3.25         19.32         171.258         78.9793           190         1.85         0.5298         3.22         19.39         170.798         78.3822           191         1.84         0.5302         3.24         19.43         170.166         78.1145           192         1.84         0.5271         3.24         19.44         169.499         77.7412           193         1.84         0.5259         3.24         19.47         168.663         77.7679           194         1.84         0.5207         3.21         19.53         167.837         77.8606           195         1.83         0.5234         3.24         19.61         166.61         77.4353           196         1.84         0.5198         3.24         19.61         166.61         77.35245           197         1.83         0.5221         3.23         19.66         166.174         77.3245           198         1.82                                                                              |     |      |        |      |       |         |         |
| 188         1.86         0.5463         3.26         19.26         171.714         79.3327           189         1.85         0.5347         3.25         19.32         171.258         78.9793           190         1.85         0.5298         3.22         19.39         170.798         78.3822           191         1.84         0.5302         3.24         19.43         170.166         78.1145           192         1.84         0.5271         3.24         19.44         169.499         77.7412           193         1.84         0.5259         3.24         19.47         168.663         77.7679           194         1.84         0.5207         3.21         19.53         167.837         77.8606           195         1.83         0.5234         3.24         19.66         167.183         77.6386           196         1.84         0.5198         3.24         19.61         166.61         77.4353           197         1.83         0.5221         3.23         19.66         166.174         77.30245           198         1.82         0.5205         3.23         19.71         165.704         77.4039           199         1.82                                                                           |     |      |        |      |       |         |         |
| 189         1.85         0.5347         3.25         19.32         171.258         78.9793           190         1.85         0.5298         3.22         19.39         170.798         78.3822           191         1.84         0.5302         3.24         19.43         170.166         78.145           192         1.84         0.5271         3.24         19.44         169.499         77.7412           193         1.84         0.5259         3.24         19.47         168.663         77.7679           194         1.84         0.5207         3.21         19.53         167.837         77.8606           195         1.83         0.5234         3.24         19.56         167.183         77.6366           196         1.84         0.5198         3.24         19.61         166.61         77.453           197         1.83         0.5221         3.23         19.66         166.174         77.3245           198         1.82         0.5205         3.23         19.71         165.704         77.4039           199         1.82         0.5213         3.26         19.74         165.208         77.3812           200         1.82                                                                              |     |      |        |      |       |         |         |
| 190         1.85         0.5298         3.22         19.39         170.798         78.3822           191         1.84         0.5302         3.24         19.43         170.166         78.1145           192         1.84         0.5271         3.24         19.44         169.499         77.7412           193         1.84         0.5259         3.24         19.47         168.663         77.7679           194         1.84         0.5207         3.21         19.53         167.837         77.8606           195         1.83         0.5234         3.24         19.61         167.837         77.6366           196         1.84         0.5198         3.24         19.61         166.61         77.453           197         1.83         0.5221         3.23         19.61         166.17         77.3245           198         1.82         0.5205         3.23         19.71         165.704         77.403           199         1.82         0.5205         3.23         19.74         165.208         77.3812           200         1.82         0.523         3.25         19.79         164.675         77.384           201         1.82                                                                                 |     |      |        |      |       |         | 79.3327 |
| 190         1.85         0.5298         3.22         19.39         170.798         78.3822           191         1.84         0.5302         3.24         19.43         170.166         78.1145           192         1.84         0.5271         3.24         19.44         169.499         77.7412           193         1.84         0.5259         3.24         19.47         168.663         77.7679           194         1.84         0.5207         3.21         19.53         167.837         77.6806           195         1.83         0.5234         3.24         19.56         167.183         77.6366           196         1.84         0.5198         3.24         19.61         166.61         77.453           197         1.83         0.5221         3.23         19.66         166.174         77.3245           198         1.82         0.5205         3.23         19.71         165.704         77.403           199         1.82         0.519         3.26         19.74         165.208         77.3812           200         1.82         0.523         3.25         19.79         164.675         77.384           201         1.82                                                                                 | 189 | 1.85 | 0.5347 | 3.25 | 19.32 | 171.258 | 78.9793 |
| 191         1.84         0.5302         3.24         19.43         170.166         78.1145           192         1.84         0.5271         3.24         19.44         169.499         77.7412           193         1.84         0.5259         3.24         19.47         168.663         77.7679           194         1.84         0.5207         3.21         19.53         167.837         77.8606           195         1.83         0.5234         3.24         19.56         167.183         77.6386           196         1.84         0.5198         3.24         19.61         166.61         77.4385           197         1.83         0.5221         3.23         19.66         166.174         77.3245           198         1.82         0.5205         3.23         19.71         165.704         77.4039           199         1.82         0.519         3.26         19.74         165.208         77.3842           200         1.82         0.523         3.25         19.79         164.675         77.384           201         1.82         0.5211         3.28         19.83         164.137         77.314           202         1.81                                                                                | 190 | 1.85 |        | 3.22 |       |         | 78.3822 |
| 192     1.84     0.5271     3.24     19.44     169.499     77.7412       193     1.84     0.5259     3.24     19.47     168.663     77.7679       194     1.84     0.5207     3.21     19.53     167.837     77.8606       195     1.83     0.5234     3.24     19.56     167.183     77.6386       196     1.84     0.5198     3.24     19.61     166.61     77.4353       197     1.83     0.5221     3.23     19.66     166.174     77.3245       198     1.82     0.5205     3.23     19.71     165.704     77.4039       199     1.82     0.519     3.26     19.74     165.208     77.3812       200     1.82     0.523     3.25     19.79     164.675     77.313       201     1.82     0.5211     3.28     19.83     164.137     77.313       202     1.81     0.5206     3.26     19.9     163.544     77.4623       203     1.80     0.5244     3.25     19.93     163.24     77.7623                                                                                                                                                                                                                                                                                                                                                    |     |      |        |      |       |         |         |
| 193     1.84     0.5259     3.24     19.47     168.663     77.7679       194     1.84     0.5207     3.21     19.53     167.837     77.8606       195     1.83     0.5234     3.24     19.56     167.183     77.6386       196     1.84     0.5198     3.24     19.61     166.61     77.4353       197     1.83     0.5221     3.23     19.66     166.174     77.3245       198     1.82     0.5205     3.23     19.71     165.704     77.4039       199     1.82     0.519     3.26     19.74     165.208     77.3812       200     1.82     0.523     3.25     19.79     164.675     77.313       201     1.82     0.5211     3.28     19.83     164.137     77.313       202     1.81     0.5206     3.26     19.9     163.544     77.483       203     1.80     0.5244     3.25     19.93     163.24     77.7623                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |        |      |       |         |         |
| 194         1.84         0.5207         3.21         19.53         167.837         77.8606           195         1.83         0.5234         3.24         19.56         167.183         77.6386           196         1.84         0.5198         3.24         19.61         166.61         77.4353           197         1.83         0.5221         3.23         19.66         166.174         77.3245           198         1.82         0.5205         3.23         19.71         165.704         77.4039           199         1.82         0.519         3.26         19.74         165.208         77.3812           200         1.82         0.523         3.25         19.79         164.675         77.384           201         1.82         0.5211         3.28         19.83         164.137         77.313           202         1.81         0.5206         3.26         19.9         163.544         77.483           203         1.80         0.5244         3.25         19.93         163.24         77.7623                                                                                                                                                                                                                   |     |      |        |      |       |         |         |
| 195         1.83         0.5234         3.24         19.56         167.183         77.6386           196         1.84         0.5198         3.24         19.61         166.61         77.4353           197         1.83         0.5221         3.23         19.66         166.174         77.3245           198         1.82         0.5205         3.23         19.71         165.704         77.4039           199         1.82         0.519         3.26         19.74         165.208         77.3812           200         1.82         0.523         3.25         19.79         164.675         77.384           201         1.82         0.5211         3.28         19.83         164.137         77.314           202         1.81         0.5206         3.26         19.9         163.544         77.463           203         1.80         0.5244         3.25         19.93         163.24         77.7623                                                                                                                                                                                                                                                                                                                        |     |      |        |      |       |         |         |
| 196         1.84         0.5198         3.24         19.61         166.61         77.4353           197         1.83         0.5221         3.23         19.66         166.174         77.3245           198         1.82         0.5205         3.23         19.71         165.704         77.4039           199         1.82         0.519         3.26         19.74         165.208         77.3812           200         1.82         0.523         3.25         19.79         164.675         77.384           201         1.82         0.5211         3.28         19.83         164.137         77.314           202         1.81         0.5206         3.26         19.9         163.544         77.483           203         1.80         0.5244         3.25         19.93         163.24         77.7623                                                                                                                                                                                                                                                                                                                                                                                                                             |     |      |        |      |       |         |         |
| 197     1.83     0.5221     3.23     19.66     166.174     77.3245       198     1.82     0.5205     3.23     19.71     165.704     77.4039       199     1.82     0.519     3.26     19.74     165.208     77.3812       200     1.82     0.523     3.25     19.79     164.675     77.384       201     1.82     0.5211     3.28     19.83     164.137     77.314       202     1.81     0.5206     3.26     19.9     163.544     77.483       203     1.80     0.5244     3.25     19.93     163.24     77.7623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |      |        |      |       |         |         |
| 198     1.82     0.5205     3.23     19.71     165.704     77.4039       199     1.82     0.519     3.26     19.74     165.208     77.3812       200     1.82     0.523     3.25     19.79     164.675     77.384       201     1.82     0.5211     3.28     19.83     164.137     77.3113       202     1.81     0.5206     3.26     19.9     163.544     77.483       203     1.80     0.5244     3.25     19.93     163.24     77.7623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |      |        |      |       |         |         |
| 199     1.82     0.519     3.26     19.74     165.208     77.3812       200     1.82     0.523     3.25     19.79     164.675     77.384       201     1.82     0.5211     3.28     19.83     164.137     77.3113       202     1.81     0.5206     3.26     19.9     163.544     77.483       203     1.80     0.5244     3.25     19.93     163.24     77.7623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 197 | 1.83 | 0.5221 | 3.23 | 19.66 | 166.174 | 77.3245 |
| 199     1.82     0.519     3.26     19.74     165.208     77.3812       200     1.82     0.523     3.25     19.79     164.675     77.384       201     1.82     0.5211     3.28     19.83     164.137     77.3113       202     1.81     0.5206     3.26     19.9     163.544     77.483       203     1.80     0.5244     3.25     19.93     163.24     77.7623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 198 | 1.82 | 0.5205 |      | 19.71 | 165.704 | 77.4039 |
| 200     1.82     0.523     3.25     19.79     164.675     77.384       201     1.82     0.5211     3.28     19.83     164.137     77.3113       202     1.81     0.5206     3.26     19.9     163.544     77.483       203     1.80     0.5244     3.25     19.93     163.24     77.7623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199 | 1.82 | 0.519  | 3.26 | 19.74 | 165.208 | 77.3812 |
| 201     1.82     0.5211     3.28     19.83     164.137     77.3113       202     1.81     0.5206     3.26     19.9     163.544     77.483       203     1.80     0.5244     3.25     19.93     163.24     77.7623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |      |        |      |       |         |         |
| 202         1.81         0.5206         3.26         19.9         163.544         77.483           203         1.80         0.5244         3.25         19.93         163.24         77.7623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |      |        |      |       |         |         |
| 203 1.80 0.5244 3.25 19.93 163.24 77.7623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |      |        |      |       |         |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |      |       |         |         |
| 204 1.80 0.5244 3.28 19.98 162.831 77.7245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |      |        |      |       |         |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 204 | 1.80 | 0.5244 | 3.28 | 19.98 | 102.831 | 11.1245 |

| 205               | 1.78                 | 0.5232           | 3.31         | 20.01          | 162.737            | 77.8804            |
|-------------------|----------------------|------------------|--------------|----------------|--------------------|--------------------|
| 206               | 1.78                 | 0.5177           | 3.28         | 20.12          | 162.273            | 77.8861            |
| 207               | 1.76                 | 0.5154           | 3.26         | 20.2           | 162.033            | 77.7319            |
| 208               | 1.75                 | 0.5102           | 3.27         | 20.22          | 161.924            | 77.9039            |
| 209               | 1.72                 | 0.5099           | 3.27         | 20.31          | 161.497            | 77.8127            |
| 210               | 1.72                 | 0.5028           | 3.25         | 20.35          | 161.249            | 77.8759            |
| 211               | 1.70                 | 0.4982           | 3.26         | 20.38          | 161.126            | 77.8652            |
| 212               | 1.70                 | 0.5122           | 3.23         | 20.46          | 160.86             | 77.7965            |
| 213               | 1.69                 | 0.5094           | 3.27         | 20.51          | 160.542            | 77.9168            |
| 214               | 1.68                 | 0.5101           | 3.23         | 20.59          | 160.212            | 77.8313            |
| 215               | 1.68                 | 0.4841           | 3.17         | 20.69          | 159.963            | 77.908             |
| 216               | 1.66                 | 0.4901           | 3.06         | 20.8           | 159.892            | 77.8126            |
| 217               | 1.66                 | 0.4844           | 2.97         | 20.93          | 159.511            | 77.8437            |
| 218               | 1.64                 | 0.4779           | 2.98         | 20.98          | 159.16             | 77.8319            |
| 219               | 1.64                 | 0.4722           | 2.94         | 21.01          | 158.744            | 77.8391            |
| 220               | 1.63                 | 0.4681           | 2.95         | 21.04          | 158.537            | 77.6243            |
| 221               | 1.62                 | 0.4647           | 2.96         | 21.04          | 158.392            | 77.7622            |
| 222               | 1.62                 | 0.4643           | 2.92         | 21.00          | 157.921            | 77.5643            |
|                   |                      |                  |              |                |                    |                    |
| 223<br>224        | 1.60                 | 0.4622<br>0.4549 | 2.88<br>2.93 | 21.12<br>21.11 | 157.566<br>157.164 | 77.6908<br>77.5716 |
|                   | 1.59                 |                  |              |                |                    |                    |
| 225               | 1.58                 | 0.4527           | 2.89         | 21.14          | 156.653            | 78.0541            |
| 226               | 1.57                 | 0.457            | 2.93         | 21.12          | 156.403            | 78.5889            |
| 227               | 1.54                 | 0.4608           | 2.93         | 21.1           | 155.944            | 78.8658            |
| 228               | 1.52                 | 0.4588           | 2.94         | 21.08          | 155.56             | 79.0691            |
| 229               | 1.52                 | 0.4554           | 2.92         | 21.08          | 155.191            | 79.2601            |
| 230               | 1.50                 | 0.4544           | 2.93         | 21.04          | 154.922            | 79.3927            |
| 231               | 1.48                 | 0.4526           | 2.95         | 21.01          | 154.823            | 79.5343            |
| 232               | 1.47                 | 0.4527           | 2.93         | 21.02          | 154.456            | 79.579             |
| 233               | 1.45                 | 0.4532           | 2.95         | 20.99          | 154.393            | 79.7223            |
| 234               | 1.44                 | 0.4541           | 2.96         | 20.92          | 154.269            | 79.8187            |
| 235               | 1.41                 | 0.4539           | 2.98         | 20.9           | 153.821            | 79.9251            |
| 236               | 1.41                 | 0.4543           | 2.95         | 20.87          | 153.816            | 79.9648            |
| 237               | 1.40                 | 0.4544           | 2.96         | 20.84          | 153.395            | 80.0406            |
| 238               | 1.38                 | 0.4516           | 2.96         | 20.85          | 153.378            | 80.097             |
| 246               | 1.29                 | 0.4063           | 2.94         | 17.55          | 151.998            | 78.7315            |
| 247               | 1.29                 | 0.4155           | 2.96         | 17.43          | 151.692            | 78.7977            |
| 248               | 1.27                 | 0.419            | 2.94         | 17.35          | 151.278            | 78.4992            |
| 249               | 1.26                 | 0.4203           | 2.96         | 17.33          | 151.171            | 78.5806            |
| 250               | 1.26                 | 0.4236           | 2.99         | 17.3           | 151.087            | 78.5378            |
| 251               | 1.25                 | 0.4214           | 2.96         | 17.31          | 150.837            | 78.4206            |
| 252               | 1.23                 | 0.4244           | 2.94         | 17.28          | 150.865            | 78.4242            |
| 253               | 1.23                 | 0.4243           | 2.94         | 17.23<br>17.21 | 150.48             | 78.3351<br>78.2325 |
| 254               | 1.23                 | 0.4221           | 2.94         |                | 150.389            |                    |
| 255<br>256        | 1.22                 | 0.4222<br>0.4213 | 2.96<br>2.96 | 17.2<br>17.15  | 150.203<br>149.874 | 78.1261<br>78.2656 |
|                   | 1.21                 |                  |              |                |                    |                    |
| 257               | 1.20                 | 0.4222           | 2.94         | 17.11          | 149.853            | 78.1564            |
| 258               | 1.19                 | 0.425<br>0.4234  | 2.97         | 17.12          | 149.834            | 78.1849            |
| 259               | 1.19                 |                  | 2.97         | 17.11          | 149.487            | 78.1022            |
| 260               | 1.18                 | 0.4241<br>0.4256 | 2.97         | 17.08          | 149.449            | 78.0133            |
| 261               | 1.17<br>1.16         |                  | 2.99<br>2.97 | 17.09<br>17.07 | 149.242            | 78.0681            |
| 262               |                      | 0.4231           |              |                | 149.014            | 78.0829            |
| 263               | 1.16                 | 0.4241           | 2.96         | 17.04          | 148.943            |                    |
| 264               | 1.16                 | 0.4242<br>0.4232 | 2.96         | 16.98          | 149.097            | 77.9636            |
| 265               | 1.14<br>1.12         | 0.4232           | 2.97         | 17 02          | 148.762<br>148.753 | 78.0152            |
| 266               |                      |                  | 2.95         | 17.03          |                    | 77.8195            |
| 267               | 1.12                 | 0.4176           | 2.94         | 17.03          | 148.506            | 77.8278            |
| 268               | 1.12                 | 0.4163           | 2.95         | 16.00          | 148.391            | 77.9111            |
| 269               | 1.10                 | 0.4164           | 2.95         | 16.99          | 148.314            | 78.0342            |
| 270               | 1.10                 | 0.4103           | 2.9          | 17<br>16.97    | 148.093            | 77.9347            |
| 271               | 1.09                 | 0.4107           | 2.93         |                | 148.028            | 78.3237            |
| 272               | 1.09                 | 0.4198<br>0.4208 | 3.01         | 16.92<br>16.87 | 148.01             | 78.746             |
| 273<br>274        | 1.07<br>1.07         | 0.4208           | 2.98         | 16.88          | 147.85<br>147.65   | 78.9383<br>79.0446 |
| 275               | 1.07                 | 0.4169           | 2.96         | 16.00          | 147.591            | 79.0446            |
|                   | 1.05                 | 0.4169           | 2.97         | 16.91          | 147.591            | 79.1449            |
| 276<br>277        | 1.04                 | 0.4142           | 2.98         | 16.93          | 147.549            | 79.276             |
| 278               | 1.03                 | 0.4091           | 2.91         | 16.93          | 147.316            | 79.3591            |
| 279               | 1.02                 | 0.4094           | 2.94         | 16.92          | 147.392            | 79.4325            |
| 280               | 1.01                 | 0.4096           | 2.81         | 16.97          | 147.288            | 79.4323            |
| 281               | 0.98                 | 0.4003           | 2.52         | 17.21          | 147.266            | 79.4637            |
|                   | 0.98                 | 0.3773           | 2.52         | 17.27          | 146.821            | 79.5672            |
|                   |                      | 0.0113           |              |                |                    |                    |
| 282               |                      | 0.373/           | 2 47         | 17 32          | 146 595            | 79 5776            |
| 282<br>283        | 0.98                 | 0.3734<br>0.3696 | 2.47<br>2.49 | 17.32<br>17.33 | 146.595<br>146.369 | 79.5776<br>79.5543 |
| 282<br>283<br>284 | 0.98<br>0.97         | 0.3696           | 2.49         | 17.33          | 146.369            | 79.5543            |
| 282<br>283        | 0.98<br>0.97<br>0.95 |                  |              |                |                    |                    |

|            |              |        |      | 1     |         |                    |
|------------|--------------|--------|------|-------|---------|--------------------|
| 287        | 0.95         | 0.3621 | 2.45 | 17.38 | 145.355 | 79.6758            |
| 288        | 0.93         | 0.3619 | 2.45 | 17.41 | 145.373 | 79.7097            |
| 289        | 0.92         | 0.3568 | 2.42 | 17.35 | 145.001 | 79.5778            |
| 290        | 0.91         | 0.3559 | 2.44 | 17.39 | 144.952 | 79.7728            |
| 291        | 0.91         | 0.3551 | 2.4  | 17.38 | 144.567 | 79.7575            |
| 292        | 0.90         | 0.3539 | 2.39 | 17.38 | 144.378 | 79.7655            |
| 293        | 0.90         | 0.3508 | 2.4  | 17.39 | 144.108 | 79.8064            |
| 294        | 0.89         | 0.3542 | 2.41 | 17.39 | 143.925 | 79.782             |
| 295        | 0.89         | 0.3529 | 2.39 | 17.38 | 143.566 | 79.7979            |
| 296        | 0.87         | 0.3505 | 2.41 | 17.39 | 143.287 | 79.7806            |
| 297        | 0.87         | 0.3508 | 2.4  | 17.41 | 143.283 | 79.7793            |
| 298        | 0.86         | 0.3508 | 2.39 | 17.49 | 142.962 | 79.7169            |
| 299        | 0.86         | 0.3493 | 2.37 | 17.42 | 142.757 | 79.8395            |
| 300        | 0.84         | 0.3487 | 2.37 | 17.4  | 142.618 | 79.7303            |
| 301        | 0.84         | 0.3482 | 2.37 | 17.44 | 142.445 | 79.774             |
| 302        | 0.84         | 0.3491 | 2.36 | 17.43 | 142.071 | 79.6015            |
| 303        | 0.83         | 0.3495 | 2.34 | 17.43 | 142.016 | 79.6932            |
| 304        | 0.83         | 0.3507 | 2.37 | 17.43 | 141.787 | 79.7591            |
|            |              |        |      | 17.43 |         |                    |
| 305        | 0.82         | 0.3497 | 2.35 |       | 141.464 | 79.7741            |
| 306        | 0.81         | 0.3507 | 2.35 | 17.46 | 141.124 | 79.6182            |
| 307        | 0.81         | 0.3509 | 2.36 | 17.44 | 141.119 | 79.7217            |
| 308        | 0.80         | 0.3525 | 2.34 | 17.45 | 140.993 | 79.6606            |
| 309        | 0.79         | 0.3517 | 2.37 | 17.43 | 140.686 | 79.6785            |
| 310        | 0.79         | 0.3513 | 2.36 | 17.46 | 140.475 | 79.5858            |
| 311        | 0.80         | 0.3524 | 2.36 | 17.47 | 140.538 | 79.5967            |
| 312        | 0.77         | 0.3545 | 2.4  | 17.46 | 140.274 | 79.5804            |
| 313        | 0.77         | 0.3569 | 2.37 | 17.47 | 140.126 | 79.622             |
| 314        | 0.77         | 0.3568 | 2.41 | 17.41 | 139.961 | 79.6737            |
| 315        | 0.75         | 0.3583 | 2.42 | 17.39 | 139.96  | 79.56              |
| 316        | 0.75         | 0.3655 | 2.4  | 17.39 | 139.779 | 79.4198            |
| 317        | 0.74         | 0.3618 | 2.41 | 17.38 | 139.516 | 79.5497            |
| 318        | 0.73         | 0.3617 | 2.41 | 17.38 | 139.298 | 79.6146            |
| 319        | 0.73         | 0.364  | 2.43 | 17.41 | 139.276 | 79.5526            |
| 320        | 0.72         | 0.3625 | 2.4  | 17.38 | 139.025 | 79.4443            |
| 321        | 0.72         | 0.3641 | 2.41 | 17.41 | 139.027 | 79.4453            |
| 322        | 0.72         | 0.3629 | 2.4  | 17.39 | 138.959 | 79.4833            |
| 323        | 0.71         | 0.3639 | 2.42 | 17.39 | 138.796 | 79.508             |
| 324        | 0.70         | 0.362  | 2.43 | 17.39 | 138.538 | 79.3576            |
| 325        | 0.70         | 0.3625 | 2.41 | 17.45 | 138.511 | 79.3811            |
| 326        | 0.69         | 0.363  | 2.42 | 17.43 | 138.396 | 79.4735            |
| 327        | 0.69         | 0.3647 | 2.41 | 17.43 | 138.451 | 79.3421            |
| 328        | 0.68         | 0.3653 | 2.43 | 17.48 | 138.315 | 79.4024            |
| 329        | 0.68         | 0.3686 | 2.43 | 17.41 | 138.209 | 79.4638            |
| 330        | 0.67         | 0.3676 | 2.44 | 17.45 | 138.218 | 79.4726            |
| 331        | 0.66         | 0.3667 | 2.41 | 17.41 | 138.092 | 79.3822            |
| 332        | 0.66         | 0.3747 | 2.43 | 17.42 | 137.897 | 79.4163            |
| 333        | 0.65         | 0.3733 | 2.4  | 17.42 | 137.642 | 79.3565            |
| 334        | 0.64         | 0.3678 | 2.43 | 17.45 | 137.628 | 79.2497            |
| 335        | 0.64         | 0.3604 | 2.43 | 17.46 | 137.474 | 79.1229            |
| 336        | 0.63         | 0.3591 | 2.39 | 17.46 | 137.474 | 79.1229            |
| 337        | 0.62         | 0.3597 | 2.39 | 17.65 | 137.161 | 79.2638            |
|            |              | 0.3623 |      | 17.57 |         |                    |
| 338<br>339 | 0.62<br>0.61 | 0.3625 | 2.42 | 17.54 | 137.353 | 79.0794<br>79.1902 |
| 340        | 0.60         | 0.3625 | 2.42 | 17.55 | 137.217 | 79.1902            |
|            |              |        | 2.39 |       |         |                    |
| 341        | 0.60         | 0.3593 |      | 17.56 | 136.872 | 79.1886            |
| 342        | 0.60         | 0.358  | 2.37 | 17.54 | 136.765 | 79.1681            |
| 343        | 0.59         | 0.3556 | 2.4  | 17.57 | 136.706 | 79.1752            |
| 344        | 0.58         | 0.3554 | 2.39 | 17.65 | 136.552 | 79.2241            |
| 345        | 0.58         | 0.3548 | 2.37 | 17.59 | 136.475 | 79.2285            |
| 346        | 0.57         | 0.3495 | 2.37 | 17.61 | 136.189 | 79.1165            |
| 347        | 0.56         | 0.3476 | 2.34 | 17.64 | 136.096 | 79.1534            |
| 348        | 0.56         | 0.348  | 2.36 | 17.65 | 135.954 | 79.1243            |
| 349        | 0.55         | 0.3508 | 2.37 | 17.62 | 135.981 | 79.1785            |
| 350        | 0.55         | 0.3474 | 2.37 | 17.63 | 135.83  | 79.1867            |
| 351        | 0.54         | 0.3488 | 2.37 | 17.61 | 135.637 | 79.19              |
| 352        | 0.54         | 0.3483 | 2.37 | 17.63 | 135.694 | 79.1443            |
| 353        | 0.53         | 0.3499 | 2.38 | 17.62 | 135.58  | 79.1562            |
| 354        | 0.53         | 0.3521 | 2.42 | 17.6  | 135.574 | 79.1129            |
| 355        | 0.52         | 0.3599 | 2.43 | 17.56 | 135.451 | 79.0697            |
| 356        | 0.51         | 0.3595 | 2.42 | 17.57 | 135.477 | 79.0979            |
| 357        | 0.50         | 0.3625 | 2.46 | 17.58 | 135.448 | 79.0605            |
| 358        | 0.51         | 0.3608 | 2.41 | 17.56 | 135.321 | 79.1102            |
| 359        | 0.50         | 0.3604 | 2.43 | 17.59 | 135.223 | 79.1645            |
| 360        | 0.48         | 0.3596 | 2.43 | 17.6  |         | 79.0774            |
| 361        | 0.48         | 0.362  | 2.43 | 17.61 | 135.339 | 78.9923            |
|            |              |        |      |       |         |                    |

|     | •    |                  |      |                |                    |                    |
|-----|------|------------------|------|----------------|--------------------|--------------------|
| 362 | 0.48 | 0.3613           | 2.45 | 17.62          | 135.356            | 79.0739            |
| 363 | 0.47 | 0.3599           | 2.43 | 17.61          | 135.288            | 78.9732            |
| 364 | 0.47 | 0.3556           | 2.38 | 17.62          | 135.057            | 78.9336            |
| 365 | 0.46 | 0.3533           | 2.34 | 17.71          | 135.098            | 78.9604            |
| 366 | 0.45 | 0.3535           | 2.38 | 17.68          | 135.229            | 79.0151            |
| 367 | 0.46 | 0.3507           | 2.33 | 17.72          | 135.08             | 78.9502            |
| 368 | 0.45 | 0.3499           | 2.35 | 17.75          | 135.159            | 78.9162            |
| 369 | 0.44 | 0.3468           | 2.32 | 17.75          | 134.85             | 78.8867            |
| 370 | 0.44 | 0.3451           | 2.32 | 17.77          | 134.678            | 78.9576            |
| 371 | 0.42 | 0.3449           | 2.3  | 17.82          | 134.605            | 78.9639            |
| 372 | 0.43 | 0.3444           | 2.31 | 17.79          | 134.616            | 78.9068            |
| 373 | 0.43 | 0.3444           | 2.3  | 17.82          | 134.55             | 78.9023            |
| 374 | 0.43 | 0.3459           | 2.3  | 17.79          | 134.535            | 78.9546            |
| 375 | 0.41 | 0.3453           | 2.28 | 17.87          | 134.356            | 78.8425            |
| 376 | 0.42 | 0.342            | 2.26 | 17.84          | 134.157            | 78.7995            |
| 377 | 0.40 | 0.3422           | 2.25 | 17.84          | 134.166            | 78.8974            |
| 378 | 0.40 | 0.3447           | 2.29 | 17.83          | 134.174            | 78.839             |
| 379 | 0.39 | 0.3444           | 2.31 | 17.84          | 134.099            | 78.8871            |
| 380 | 0.39 | 0.3417           | 2.28 | 17.85          | 133.92             | 78.758             |
| 381 | 0.38 | 0.3422           | 2.27 | 17.87          | 133.874            | 78.7633            |
| 382 | 0.39 | 0.3425           | 2.28 |                | 133.92             |                    |
| 382 | 0.39 | 0.3425           | 2.28 | 17.82<br>17.87 | 133.92             | 78.8506<br>78.8409 |
|     |      |                  | 2.29 |                |                    |                    |
| 384 | 0.37 | 0.3416           |      | 17.87          | 133.662            | 78.7949            |
| 385 | 0.36 | 0.3429<br>0.3405 | 2.27 | 17.87          | 133.514            | 78.8116            |
| 386 | 0.37 |                  | 2.28 | 17.87          | 133.42             | 78.7433            |
| 387 | 0.35 | 0.3409           | 2.28 | 17.84          | 133.176            | 78.8005            |
| 388 | 0.35 | 0.3422           | 2.25 | 17.85          | 133.259            | 78.822             |
| 389 | 0.34 | 0.342            | 2.27 | 17.83          | 133.139<br>132.926 | 78.7905            |
| 390 | 0.33 | 0.3419           | 2.31 | 17.83          |                    | 78.7331            |
| 391 | 0.34 | 0.3412           | 2.26 | 17.84          | 132.867            | 78.7848            |
| 392 | 0.32 | 0.3381           | 2.27 | 17.86          | 132.855            | 78.7234            |
| 393 | 0.32 | 0.34             | 2.29 | 17.84          | 132.798            | 78.7982            |
| 394 | 0.31 | 0.3403           | 2.28 | 17.85          | 132.666            | 78.7074            |
| 395 | 0.31 | 0.3395           | 2.3  | 17.85          | 132.568            | 78.6938            |
| 396 | 0.31 | 0.3401           | 2.28 | 17.89          | 132.646            | 78.7357            |
| 397 | 0.29 | 0.3402           | 2.26 | 17.86          | 132.634            | 78.6484            |
| 398 | 0.29 | 0.3394           | 2.26 | 17.84          | 132.55             | 78.6366            |
| 399 | 0.29 | 0.3387           | 2.24 | 17.85          | 132.469            | 78.7099            |
| 400 | 0.28 | 0.3405           | 2.21 | 17.96          | 132.285            | 78.6143            |
| 401 | 0.29 | 0.3389           | 2.22 | 17.94          | 132.252            | 78.6884            |
| 402 | 0.28 | 0.3383           | 2.2  | 17.94          | 132.152            | 78.52              |
| 403 | 0.28 | 0.3347           | 2.16 | 17.95          | 131.998            | 78.7025            |
| 404 | 0.26 | 0.3341           | 2.18 | 17.94          | 132.053            | 78.7516            |
| 405 | 0.27 | 0.334            | 2.17 | 17.95          | 131.906            | 78.6502            |
| 406 | 0.25 | 0.3335           | 2.18 | 17.9           | 131.74             | 78.6502            |
| 407 | 0.24 | 0.3296           | 2.16 | 17.94          | 131.686            | 78.7187            |
| 408 | 0.24 | 0.3328           | 2.16 | 18.01          | 131.572            | 78.715             |
| 409 | 0.24 | 0.3297           | 2.14 | 17.99          | 131.459            | 78.6304            |
| 410 | 0.24 | 0.3317           | 2.17 | 17.95          | 131.34             | 78.6151            |
| 411 | 0.23 | 0.3321           | 2.15 | 17.98          | 131.337            | 78.6586            |
| 412 | 0.23 | 0.3349           | 2.16 | 18.1           | 131.248            | 78.6282            |
| 413 | 0.22 | 0.3307           | 2.14 | 18.06          |                    |                    |
| 414 | 0.22 | 0.3308           | 2.14 | 18.02          | 131.051            | 78.635             |
| 415 | 0.22 | 0.3265           | 2.11 | 17.98          | 130.845            | 78.5797            |
| 416 |      | 0.3272           | 2.14 | 18.01          | 130.769            | 78.5407            |
| 417 | 0.21 | 0.3285           | 2.12 | 18.03          | 130.774            | 78.6172            |
| 418 | 0.19 | 0.3273           | 2.11 | 18.03          | 130.578            | 78.5712            |
| 419 | 0.19 | 0.3277           | 2.12 | 18.01          | 130.539            | 78.4959            |
| 420 | 0.19 | 0.3277           | 2.11 | 18.04          | 130.441            | 78.5943            |
| 421 | 0.19 | 0.3287           | 2.11 | 18.02          | 130.38             | 78.5282            |
| 422 | 0.17 | 0.3286           | 2.11 | 18.06          | 130.185            | 78.583             |
| 423 | 0.17 | 0.3349           | 2.14 | 18.04          | 130.204            | 78.556             |
| 424 | 0.17 | 0.3411           | 2.12 | 18.03          | 130.132            | 78.5271            |
| 425 | 0.16 | 0.3402           | 2.14 | 17.99          | 130.109            | 78.4393            |
| 426 | 0.16 | 0.3417           | 2.12 | 18.01          | 129.965            | 78.5347            |
| 427 | 0.16 | 0.3377           | 2.12 | 18.01          | 129.901            | 78.4557            |
| 428 | 0.15 | 0.3336           | 2.12 | 18.05          | 129.843            | 78.4759            |
| 429 | 0.14 | 0.3319           | 2.08 | 18.02          | 129.633            | 78.4927            |
| 430 | 0.14 | 0.3332           | 2.11 | 18.18          | 129.508            | 78.3679            |
| 431 | 0.13 | 0.3322           | 2.08 | 18.21          | 129.543            | 78.5337            |
| 432 | 0.13 | 0.3319           | 2.06 | 18.16          | 129.432            | 78.4542            |
| 433 | 0.13 | 0.3361           | 2.04 | 18.16          | 129.425            | 78.3811            |
| 434 | 0.12 | 0.3349           | 1.96 | 18.18          | 129.39             | 78.2379            |
| 435 | 0.12 | 0.3418           | 1.99 | 18.2           | 129.208            | 78.3876            |
| 436 | 0.11 | 0.3417           | 1.98 | 18.2           | 129.099            | 78.3901            |
|     |      |                  |      |                |                    |                    |

| 56 | 1.59 | 0.0159 | 9.57 | 11.58 | 463.096 | 73.1311 |
|----|------|--------|------|-------|---------|---------|
| 57 | 1.53 | 0.0168 | 9.43 | 11.72 | 459.586 | 72.756  |
| 58 | 1.43 | 0.0185 | 9.36 | 11.81 | 457.431 | 72.5805 |
| 59 | 1.33 | 0.0171 | 9.25 | 11.92 | 455.359 | 73.1499 |
| 60 | 1.24 | 0.0172 | 9.34 | 11.93 | 453.591 | 73.2055 |
| 61 | 1.20 | 0.0174 | 9.21 | 12.01 | 451.976 | 72.6774 |
| 62 | 1.09 | 0.0152 | 8.64 | 12.43 | 448.386 | 72.8498 |
| 63 | 1.02 | 0.0208 | 8.18 | 12.9  | 442.885 | 72.7916 |
| 64 | 0.97 | 0.0298 | 7.8  | 13.28 | 437.544 | 73.0165 |
| 65 | 0.88 | 0.0347 | 7.66 | 13.54 | 432.503 | 72.7712 |
| 66 | 0.84 | 0.0321 | 7.42 | 13.81 | 425.823 | 72.9278 |
| 67 | 0.77 | 0.0336 | 7.23 | 14.03 | 421.124 | 72.7016 |
| 68 | 0.74 | 0.0367 | 7.06 | 14.22 | 416.471 | 72.8843 |
| 69 | 0.67 | 0.0395 | 6.95 | 14.4  | 411.567 | 72.2567 |
| 70 | 0.62 | 0.0423 | 6.89 | 14.49 | 407.042 | 72.8749 |
| 71 | 0.58 | 0.0465 | 6.8  | 14.61 | 403.769 | 72.5935 |
| 72 | 0.51 | 0.0494 | 6.67 | 14.73 | 400.11  | 72.1461 |
| 73 | 0.45 | 0.0474 | 6.61 | 14.81 | 396.376 | 72.0232 |
| 74 | 0.42 | 0.0519 | 6.56 | 14.9  | 392.045 | 72.006  |
| 75 | 0.39 | 0.0582 | 6.26 | 15.17 | 387.664 | 72.6109 |
| 76 | 0.35 | 0.0747 | 5.97 | 15.5  | 381.639 | 72.0412 |
| 77 | 0.32 | 0.1161 | 5.6  | 15.84 | 375.132 | 72.2151 |
| 78 | 0.28 | 0.136  | 5.36 | 16.13 | 369.495 | 72.0806 |
| 79 | 0.24 | 0.1564 | 5.24 | 16.34 | 363.896 | 72.1718 |
| 80 | 0.20 | 0.1775 | 5.09 | 16.5  | 358.766 | 72.0098 |
| 81 | 0.19 | 0.1807 | 5.22 | 16.47 | 354.279 | 71.5633 |
| 82 | 0.14 | 0.1731 | 5.21 | 16.51 | 350.592 | 72.007  |
| 83 | 0.12 | 0.1693 | 5.14 | 16.57 | 347.844 | 72.0788 |
| 84 | 0.11 | 0.1648 | 5.09 | 16.64 | 344.903 | 72.1121 |
| 85 | 0.06 | 0.1655 | 5.05 | 16.7  | 341.646 | 71.5954 |
| 86 | 0.04 | 0.162  | 5.08 | 16.7  | 340.289 | 71.8154 |
| 87 | 0.00 | 0.1594 | 5.07 | 16.73 | 339.082 | 71.8027 |
| 88 | 0.00 | 0.1582 | 5.01 | 16.79 | 336.375 | 71.9573 |

# Stove Builder International Inc.

| Manufacturer: | SBI        | Technicians: | Claude Pelland |
|---------------|------------|--------------|----------------|
| Model:        | 2.1 series |              |                |
| Date:         | 02-24-21   |              |                |
| Run:          | 3          |              |                |
| Control #:    | G104576994 |              |                |

**Test Duration**: 464 **Output Category**: Low

#### Test Results in Accordance with CSA B415.1-10

|                          | HHV Basis | LHV Basis |
|--------------------------|-----------|-----------|
| Overall Efficiency       | 75.1%     | 80.5%     |
| Combustion Efficiency    | 95.9%     | 95.9%     |
| Heat Transfer Efficiency | 78%       | 84.0%     |

| Output Rate (kJ/h) | 8,930  | 8,471  | (Btu/h) |
|--------------------|--------|--------|---------|
| Burn Rate (kg/h)   | 0.63   | 1.39   | (lb/h)  |
| Input (kJ/h)       | 11,885 | 11,274 | (Btu/h) |

| Test Load Weight (dry kg) | 4.89  | 10.78 | dry lb |
|---------------------------|-------|-------|--------|
| MC wet (%)                | 16.6  |       |        |
| MC dry (%)                | 19.90 |       |        |
| Particulate (g )          | 7.501 |       |        |
| CO (g)                    | 316   |       |        |
| Test Duration (h)         | 7.73  |       |        |

| Emissions        | Particulate | CO    |
|------------------|-------------|-------|
| g/MJ Output      | 0.11        | 4.57  |
| g/kg Dry Fuel    | 1.53        | 64.62 |
| g/h              | 0.97        | 40.85 |
| lb/MM Btu Output | 0.25        | 10.63 |

| Air/Fuel Ratio (A/F)   | 20.12 |
|------------------------|-------|
| All/I del Natio (A/I ) | 20.12 |

VERSION: 2.4 2010-04-15

0.6

| VERSION:         | 2.4                 | 4/15/2010 |                 |         |            |              |              |              |
|------------------|---------------------|-----------|-----------------|---------|------------|--------------|--------------|--------------|
| Manufacturer:    | SBI                 |           | Appliance Type: | Non-Cat | (Cat, Non- | Cat, Pellet) |              |              |
| Model:           | 2.1 series          |           |                 |         |            |              |              |              |
| Date:            | 2/25/2021           |           | Temp. Units     | F       | (F or C)   | Defaul       | t Fuel Value | es           |
| Run:             | 4                   |           | Weight Units    | lb      | (kg or lb) |              | D. Fir       | Oak          |
| Control #:       | G104576994          |           |                 |         |            | HHV (kJ/kg)  | 19,810       | 19,887       |
| Test Duration:   | 88                  |           |                 |         |            | %C           | 48.73        | 50           |
| Output Category: | High                |           | Fuel            | Data    |            | %Н           | 6.87         | 6.6          |
|                  |                     |           |                 | Beech   |            | %O           | 43.9         | 42.9         |
| Wood             | Moisture (% wet):   | 16.80     | HHV             | 18,800  | kJ/kg      | %Ash         | 0.5          | 0.5          |
| Loa              | d Weight (lb wet):  | 9.49      | %С              | 48.7    |            |              |              |              |
| Bui              | rn Rate (dry kg/h): | 2.44      | %Н              | 5.8     |            |              | Note 1. For  | . ather five |
| Total Partic     | culate Emissions:   | 6.344     | g <b>%O</b>     | 44.9    |            |              | Note 1: For  |              |
|                  |                     |           |                 |         |            |              |              |              |

%Ash

Note 1: For other fuels, use the heating value and fuel composition determined by analysis of fuel sample in accordance with Clause 9.2.

| 1 | Note 2: In cases where the "Fuel Weight             |
|---|-----------------------------------------------------|
| F | Remaining" is the same for three or more readings   |
| i | n a row, a "divide by zero error" will occur in the |
| ( | calculation sheet. In such cases, adjust the weight |
| ١ | values by interpolation between the first occurence |
| 8 | and the next reading showing a decrease in          |
| ١ | weight.                                             |

|                       |                               |                 |                                | 7071011        | 0.0                 |                    |
|-----------------------|-------------------------------|-----------------|--------------------------------|----------------|---------------------|--------------------|
|                       | Averages                      | 0.07            | 9.31                           | 11.97          | 443.15<br>Temp      |                    |
| Elapsed<br>Time (min) | Fuel Weight<br>Remaining (lb) | Flue Ga         | as Composit<br>CO <sub>2</sub> | ion (%)<br>O₂  | Flue<br>Gas         | Room<br>Temp       |
| 0                     | 9.49                          | 0.07            | 4.18                           | 15.92          | 415.3               | 77.0               |
| 1                     | 9.45                          | 0.17            | 1.64                           | 18.25          | 360.6               | 77.6               |
| 2                     | 9.23                          | 0.18            | 1.53                           | 18.93          | 335.0               | 77.8               |
| 3                     | 9.11                          | 0.23            | 2.24                           | 18.85          | 343.8               | 78.0               |
| 4                     | 9.00                          | 0.26            | 7.72                           | 15.11          | 360.1               | 78.1               |
| 5                     | 8.86                          | 0.20            | 7.83                           | 14.11          | 373.5               | 77.8               |
| 6                     | 8.73                          | 0.13            | 9.24                           | 12.75          | 393.1               | 77.9               |
| 7                     | 8.59                          | 0.09            | 9.35                           | 12.17          | 408.2               | 77.8               |
| 8                     | 8.46                          | 0.10            | 9.23                           | 12.01          | 417.8               | 77.9               |
| 9                     | 8.31                          | 0.11            | 9.70                           | 11.64          | 426.7               | 78.0               |
| 10                    | 8.17                          | 0.08            | 10.44                          | 11.04          | 435.2               | 77.7               |
| 11                    | 8.01                          | 0.05            | 11.47                          | 10.21          | 449.0               | 75.1               |
| 12                    | 7.87                          | 0.03            | 11.71                          | 9.76<br>9.56   | 459.7               | 75.2               |
| 13<br>14              | 7.70<br>7.54                  | 0.03            | 11.78<br>11.83                 | 9.56           | 467.6<br>471.9      | 74.0<br>73.4       |
| 15                    | 7.38                          | 0.02            | 11.89                          | 9.43           | 471.9               | 73.4               |
| 16                    | 7.23                          | 0.02            | 11.69                          | 9.43           | 478.4               | 73.4               |
| 17                    | 7.06                          | 0.02            | 11.55                          | 9.55           | 478.9               | 72.6               |
| 18                    | 6.94                          | 0.02            | 11.45                          | 9.66           | 479.3               | 72.6               |
| 19                    | 6.76                          | 0.02            | 11.47                          | 9.65           | 478.8               | 72.4               |
| 20                    | 6.61                          | 0.03            | 11.61                          | 9.59           | 480.5               | 73.4               |
| 21                    | 6.47                          | 0.03            | 11.93                          | 9.35           | 483.0               | 73.7               |
| 22                    | 6.30                          | 0.04            | 11.95                          | 9.20           | 485.9               | 74.1               |
| 23                    | 6.13                          | 0.05            | 11.77                          | 9.31           | 487.1               | 72.2               |
| 24                    | 5.99                          | 0.05            | 11.78                          | 9.34           | 489.7               | 72.4               |
| 25                    | 5.82                          | 0.06            | 11.81                          | 9.34           | 490.7               | 73.3               |
| 26                    | 5.68                          | 0.06            | 12.03                          | 9.14           | 491.9               | 72.6               |
| 27                    | 5.49                          | 0.07            | 12.19                          | 8.94           | 494.2               | 72.6               |
| 28                    | 5.35                          | 0.06            | 12.24                          | 8.90           | 495.5               | 73.3               |
| 29                    | 5.19                          | 0.06            | 12.23                          | 8.91           | 496.3               | 73.0               |
| 30                    | 5.03                          | 0.07            | 12.31                          | 8.85           | 497.2               | 72.8               |
| 31                    | 4.86                          | 0.07            | 12.36                          | 8.80           | 499.2               | 72.8               |
| 32                    | 4.72                          | 0.08            | 12.31                          | 8.81           | 499.8               | 72.7               |
| 33                    | 4.56                          | 0.08            | 12.34                          | 8.79           | 500.2               | 73.1               |
| 34<br>35              | 4.40<br>4.24                  | 0.08            | 12.54<br>12.43                 | 8.72<br>8.70   | 501.9<br>503.4      | 72.6<br>73.0       |
| 36                    | 4.24                          | 0.09            | 12.43                          | 8.66           | 503.4               | 72.2               |
| 37                    | 3.95                          | 0.09            | 12.58                          | 8.64           | 503.9               | 73.0               |
| 38                    | 3.80                          | 0.10            | 12.48                          | 8.68           | 504.7               | 72.9               |
| 39                    | 3.64                          | 0.09            | 12.49                          | 8.69           | 505.1               | 73.2               |
| 40                    | 3.50                          | 0.08            | 12.41                          | 8.71           | 505.7               | 73.5               |
| 41                    | 3.35                          | 0.07            | 12.40                          | 8.77           | 504.0               | 73.0               |
| 42                    | 3.22                          | 0.05            | 12.35                          | 8.82           | 503.6               | 72.7               |
| 43                    | 3.07                          | 0.06            | 12.31                          | 8.90           | 503.0               | 72.7               |
| 44                    | 2.94                          | 0.05            | 12.13                          | 9.03           | 501.6               | 72.2               |
| 45                    | 2.80                          | 0.04            | 11.88                          | 9.26           | 499.0               | 72.4               |
| 46                    | 2.65                          | 0.03            | 11.76                          |                | 496.7               | 72.6               |
| 47                    | 2.55                          | 0.03            | 11.60                          | 9.61           | 493.9               | 72.4               |
| 48                    | 2.42                          | 0.02            | 11.55                          | 9.64           | 492.2               | 72.0               |
| 49                    | 2.31                          | 0.0227          | 11.62                          | 9.64           | 489.509             | 71.9088            |
| 50                    | 2.19                          | 0.0226          | 11.28                          | 9.83           | 487.049             | 72.0801            |
| 51<br>52              | 2.08                          | 0.0142          | 10.61                          | 10.37          | 483.793             | 72.7123            |
|                       | 2.00                          | 0.012           | 10.19<br>9.97                  | 10.84          | 477.427<br>473.913  | 72.5681<br>72.3791 |
| 53<br>54              | 1.89<br>1.78                  | 0.013<br>0.0143 | 9.97                           | 11.09<br>11.22 | 473.913             | 73.3363            |
| 55                    | 1.69                          | 0.0143          | 9.92                           | 11.39          | 467.698             | 73.5536            |
| 55                    | 1.09                          | 0.0133          | 3.1                            | 11.39          | 050.10 <del>F</del> | 10.0000            |

| 437 | 0.12 | 0.3332 | 1.96 | 18.12 | 129.02  | 78.4253 |
|-----|------|--------|------|-------|---------|---------|
| 438 | 0.10 | 0.3271 | 1.97 | 18.1  | 128.964 | 78.2709 |
| 439 | 0.10 | 0.3209 | 1.94 | 18.15 | 128.871 | 78.3685 |
| 440 | 0.10 | 0.3178 | 1.92 | 18.16 | 128.795 | 78.4053 |
| 441 | 0.09 | 0.3159 | 1.95 | 18.2  | 128.546 | 78.3262 |
| 442 | 0.09 | 0.3193 | 1.93 | 18.29 | 128.611 | 78.3762 |
| 443 | 0.09 | 0.3174 | 1.96 | 18.27 | 128.579 | 78.3383 |
| 444 | 0.08 | 0.3137 | 1.94 | 18.27 | 128.333 | 78.3608 |
| 445 | 0.07 | 0.3107 | 1.93 | 18.25 | 128.117 | 78.3059 |
| 446 | 0.08 | 0.3098 | 1.93 | 18.26 | 128.012 | 78.2476 |
| 447 | 0.08 | 0.3039 | 1.92 | 18.25 | 127.869 | 78.329  |
| 448 | 0.06 | 0.3035 | 1.91 | 18.22 | 127.814 | 78.2612 |
| 449 | 0.05 | 0.3023 | 1.9  | 18.21 | 127.753 | 78.2684 |
| 450 | 0.05 | 0.2991 | 1.91 | 18.21 | 127.697 | 78.1933 |
| 451 | 0.05 | 0.2969 | 1.9  | 18.27 | 127.559 | 78.2414 |
| 452 | 0.04 | 0.2964 | 1.87 | 18.24 | 127.35  | 78.1615 |
| 453 | 0.04 | 0.2946 | 1.87 | 18.33 | 127.236 | 78.1693 |
| 454 | 0.05 | 0.2934 | 1.86 | 18.31 | 126.9   | 78.2094 |
| 455 | 0.04 | 0.2904 | 1.86 | 18.3  | 126.811 | 78.1979 |
| 456 | 0.04 | 0.2927 | 1.87 | 18.19 | 126.905 | 78.2525 |
| 457 | 0.03 | 0.296  | 1.87 | 18.23 | 126.783 | 78.1014 |
| 458 | 0.02 | 0.2951 | 1.86 | 18.21 | 126.708 | 78.1215 |
| 459 | 0.01 | 0.2935 | 1.85 | 18.23 | 126.677 | 78.1889 |
| 460 | 0.02 | 0.2917 | 1.85 | 18.24 | 126.396 | 78.2305 |
| 461 | 0.01 | 0.2913 | 1.85 | 18.3  | 126.351 | 78.0191 |
| 462 | 0.01 | 0.2904 | 1.84 | 18.35 | 126.207 | 78.1861 |
| 463 | 0.01 | 0.2926 | 1.86 | 18.34 | 126.1   | 78.1127 |
| 464 | 0.00 | 0.3071 | 1.87 | 18.22 | 126.055 | 78.116  |

## Stove Builder International Inc.

| Manufacturer:     | SBI             | Technician    | s: | Claude Pelland |
|-------------------|-----------------|---------------|----|----------------|
| Model:            | 2.1 series      |               |    |                |
| Date:             | 02/25/21        |               |    |                |
| Run:              | 4               |               |    |                |
| Control #:        | G104576994      |               |    |                |
| Test Duration:    | 88              |               |    |                |
| Output Category:  | High            |               |    |                |
| Test Results in A | Accordance with | CSA B415.1-10 |    |                |

|                          | HHV Basis | LHV Basis |
|--------------------------|-----------|-----------|
| Overall Efficiency       | 72.9%     | 78.1%     |
| Combustion Efficiency    | 99.5%     | 99.5%     |
| Heat Transfer Efficiency | 73%       | 78.5%     |

| Output Rate (kJ/h) | 33,462 | 31,742 | (Btu/h) |
|--------------------|--------|--------|---------|
| Burn Rate (kg/h)   | 2.44   | 5.38   | (lb/h)  |
| Input (kJ/h)       | 45,920 | 43,560 | (Btu/h) |

| Test Load Weight (dry kg) | 3.58  | 7.90 | dry lb |
|---------------------------|-------|------|--------|
| MC wet (%)                | 16.8  |      |        |
| MC dry (%)                | 20.19 |      |        |
| Particulate (g )          | 6.344 |      |        |
| CO (g)                    | 44    |      |        |
| Test Duration (h)         | 1.47  |      |        |

| Emissions        | Particulate | CO    |
|------------------|-------------|-------|
| g/MJ Output      | 0.13        | 0.89  |
| g/kg Dry Fuel    | 1.77        | 12.16 |
| g/h              | 4.33        | 29.70 |
| lb/MM Btu Output | 0.30        | 2.06  |

0.49 g/min

| Air/Fuel Ratio (A/F) | 11.38 |
|----------------------|-------|

VERSION: 2.4 4/15/2010

#### ID Certificat de Calibration CA0003-051-030920-ACC-USI

**Mettler Toledo** 

# **METTLER TOLEDO**





Accredited by the American Association for Laboratory Accreditation (A2LA)

CALIBRATION CERT #1902.01

ISO 17025 Registered
ANSI/NCSL Z540-1 Accredited

#### 1900 Polaris Parkway Columbus, OH 43240 1-800-METTLER

Service Business Unit Industrial

## Certificat de Calibration de Précision

**Accuracy Calibration Certificate** 

#### Client

Compagnie: SBI Fabricant De Poeles

Adresse: 250 Rue de Copenhague

Ville: Saint-Augustin-De-Desmaures Contact: Gabrielle Santerre

Zip/Code Postal: G3A 2H3

État/Province: Quebec

#### **Weighing Device**

| Manufacturier: | Weigh-Tronix | Type d'Instrument:   | Weighing Instrument |
|----------------|--------------|----------------------|---------------------|
| Modèle:        | DSL 4848-05  | # Outil:             | SBI-014 FLOOR SCALE |
| No. Série:     | B00927386KL  | Modèle Indicateur:   | N/D                 |
| Building:      | N/D          | Terminal Serial No.: | N/D                 |
| Floor:         | N/D          | Terminal Asset No.:  | N/D                 |
| Room:          | N/D          |                      |                     |

| Plage | Capacité Max | Lisibilité (d) |
|-------|--------------|----------------|
| 1     | 500 kg       | 0.02 kg        |

#### **Procedure**

Instruction de Calibration: EURAMET cg-18 v. 4.0 (11/2015)

Instruction de travail METTLER TOLEDO: 30260953 Rev1.31

Ce certificat de calibration contient des mesures pour les calibrations Tel que Trouvé et Tel que Laissé.

The sensitivity/span of the weighing instrument was adjusted before As Left calibration with an external weight.

The calibration was agreed with the user below the maximum capacity of the balance.

|                | Temperature    |              |  |
|----------------|----------------|--------------|--|
| Tel que Trouvé | Start: 19.0 °C | End: 19.0 °C |  |
| Tel que Laissé | Start: 19.0 °C | End: 19.0 °C |  |

Environmental conditions have been verified to ensure the accuracy of the calibration.

This certificate is issued in accordance with the conditions of accreditation granted by A2LA, which is based on ISO/IEC 17025. A2LA has assessed the measurement capability of the laboratory and its traceability to recognized national standards.

 Date calibration Tel que Trouvé:
 09-Mar-2020

 Date calibration Tel que Laissé:
 09-Mar-2020

 Date d'Émission:
 09-Mar-2020

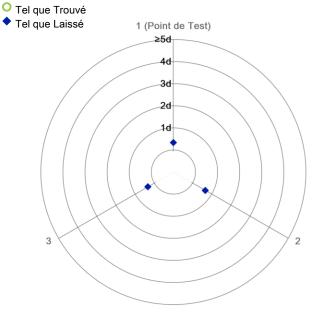
 Requested Next Calibration Date:
 31-Mar-2021

Authorized A2LA Signatory:

Dany Carear

Dany Careau




#### Résultats de Mesure

#### Répétabilité

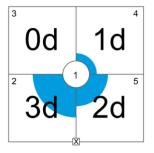
#### Charge de Test: 100 kg

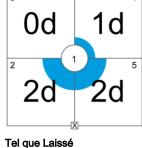
|   | Tel que Trouvé | Tel que Laissé |
|---|----------------|----------------|
| 1 | N/D            | 100.00 kg      |
| 2 | N/D            | 100.02 kg      |
| 3 | N/D            | 100.00 kg      |





The "d" in the graph represents the readability of the range/interval in which the test was performed.


The results of this graph are based upon the absolute values of the differences from the mean value.


#### Excentricité

#### Charge de Test: 100 kg

| Position | Tel que Trouvé | Tel que Laissé |
|----------|----------------|----------------|
| 1        | 99.96 kg       | 100.00 kg      |
| 2        | 99.90 kg       | 99.96 kg       |
| 3        | 99.96 kg       | 100.00 kg      |
| 4        | 99.98 kg       | 100.02 kg      |
| 5        | 100.00 kg      | 100.04 kg      |

| Déviation<br>Maximale | 0.06 kg | 0.04 kg |
|-----------------------|---------|---------|
|-----------------------|---------|---------|



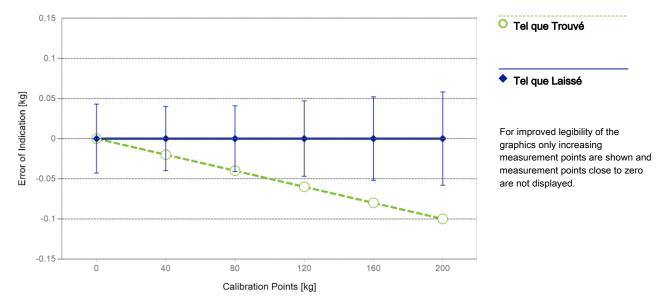


Tel que Trouvé

The "d" in the graph represents the readability of the range/interval in which the test was performed.

#### **Erreur d'indication**

#### Tel que Trouvé


|   | Reference Value | Indication | Erreur d'indication | Incertitude Élargie | k   |
|---|-----------------|------------|---------------------|---------------------|-----|
| 1 | 0 kg            | 0.00 kg    | 0.00 kg             | N/D                 | N/D |
| 2 | 40 kg           | 39.98 kg   | -0.02 kg            | N/D                 | N/D |
| 3 | 80 kg           | 79.96 kg   | -0.04 kg            | N/D                 | N/D |
| 4 | 120 kg          | 119.94 kg  | -0.06 kg            | N/D                 | N/D |
| 5 | 160 kg          | 159.92 kg  | -0.08 kg            | N/D                 | N/D |
| 6 | 200 kg          | 199.90 kg  | -0.10 kg            | N/D                 | N/D |

Version Logicielle: 1.22.0.155 © METTLER TOLEDO Page 2 of 4



#### Tel que Laissé

|   | Reference Value | Indication | Erreur d'indication | Incertitude Élargie | k    |
|---|-----------------|------------|---------------------|---------------------|------|
| 1 | 0 kg            | 0.00 kg    | 0.00 kg             | 0.043 kg            | 3.31 |
| 2 | 40 kg           | 40.00 kg   | 0.00 kg             | 0.040 kg            | 2.65 |
| 3 | 80 kg           | 80.00 kg   | 0.00 kg             | 0.041 kg            | 2.37 |
| 4 | 120 kg          | 120.00 kg  | 0.00 kg             | 0.047 kg            | 2.28 |
| 5 | 160 kg          | 160.00 kg  | 0.00 kg             | 0.052 kg            | 2.13 |
| 6 | 200 kg          | 200.00 kg  | 0.00 kg             | 0.058 kg            | 2.05 |



The uncertainty stated is the expanded uncertainty at calibration obtained by multiplying the standard combined uncertainty by the coverage factor k – which can be larger than 2 according to EURAMET cg-18. The value of the measurand lies within the assigned range of values with a probability of approximately 95%. The user is responsible for maintaining environmental conditions and the settings of the weighing instrument when it was calibrated.

#### **Test Equipment**

Tous les poids utilisés pour le contrôle métrologique sont retraçables aux étalons Nationaux et Internationaux. Les poids ont été calibrés et certifiés par un laboratoire de calibration accrédité.

#### Jeu de Poids 1: OIML M1

 Weight Set Number:
 Q1
 Date d'Émission:
 13-Mar-2019

 # Certificat:
 1415364
 Date de Calibration Due:
 13-Mar-2020

#### Remarques

N/D

#### **End of Accredited Section**

The information below and any attachments to this calibration certificate are not part of the accredited calibration.

Version Logicielle: 1.22.0.155 © METTLER TOLEDO Page 3 of 4



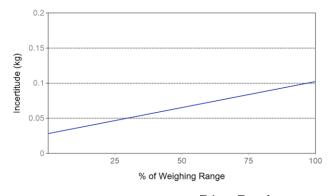
#### Incertitude de Mesure du dispositif de pesage en opération

Stated is the expanded uncertainty with k=2 in use. The formula shall be used for the estimation of the uncertainty under consideration of the errors of indication. The value R represents the net load indication in the unit of measure of the device.

Coefficient de température pour l'évaluation de l'incertitude de mesure en opération: 10.0 · 10<sup>-6</sup> / K

Plage d'opération sur le site pour l'évaluation de l'incertitude de mesure en opération:

10 K


#### Linéarisation de l'Équation d'Incertitude


| Plage |               | Tel que Trouvé | Tel que Laissé                                           |  |
|-------|---------------|----------------|----------------------------------------------------------|--|
| 1     | 0 kg - 500 kg | N/A            | $U_1 = 28 \text{ g} + 0.371 \text{ g/kg} \cdot \text{R}$ |  |

To optimize the stability of the linearization, besides of the zero load only increasing measurement points with a test load of 5% of the measurement range or larger are taken for the calculation of the linear equation.

#### Absolute and Relative Measurement Uncertainty in Use for Various Net Indications (Examples)

| Indication Net | Tel que | Trouvé | Tel que Laissé |        |  |
|----------------|---------|--------|----------------|--------|--|
| 0.20 kg        | N/A     | N/A    | 0.028 kg       | 14%    |  |
| 2.00 kg        | N/A     | N/A    | 0.029 kg       | 1.4%   |  |
| 20.00 kg       | N/A     | N/A    | 0.035 kg       | 0.18%  |  |
| 100.00 kg      | N/A     | N/A    | 0.065 kg       | 0.065% |  |
| 200.00 kg      | N/A     | N/A    | 0.10 kg        | 0.051% |  |



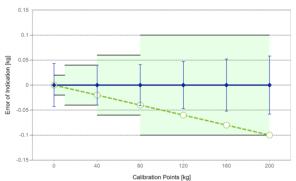


Tel que Trouvé

Tel que Laissé

Version Logicielle: 1.22.0.155 © METTLER TOLEDO Page 4 of 4




# Handbook 44 Tolerance Assessment (Entretien)

Les mesures du certificat de calibration joint ont été évaluées selon les tolérances définies par NIST HB44.



#### Weighing Device

| Range | Max. Capacity | Readability (d) | Verification Scale Interval (e) | Class       |
|-------|---------------|-----------------|---------------------------------|-------------|
| 1     | 500 kg        | 0.02 kg         | 0.02 kg                         | III         |
| 0.15  |               |                 | Tolerances according to NIST I  | Handbook 44 |





O Tel que Trouvé

Tel que Laissé

- Tolérance

#### **Eccentricity and Repeatability**

|                              |           |           | As Found           |          | As Left            |          |
|------------------------------|-----------|-----------|--------------------|----------|--------------------|----------|
| Test                         | Test Load | Tolérance | Max. Error / Range | Result   | Max. Error / Range | Result   |
| Excentricité (Maximum Error) | 100 kg    | 0.10 kg   | 0.1 kg             | <b>~</b> | 0.04 kg            | <b>~</b> |
| Excentricité (Plage)         | 100 kg    | 0.1 kg    | 0.10 kg            | <b>/</b> | 0.08 kg            | <b>~</b> |
| Répétabilité (Maximum Error) | 100 kg    | 0.1 kg    | N/D                | N/D      | 0.02 kg            | <b>~</b> |
| Répétabilité (Plage)         | 100 kg    | 0.10 kg   | N/D                | N/D      | 0.02 kg            | <b>~</b> |

**Max. Error:** Maximum of the absolute values of the individual errors. **Range:** Difference between largest and smallest measurement value.

#### **Error of Indication**

|   | Deference Value           | Taláranas | As Found            |          | As Left             |          |
|---|---------------------------|-----------|---------------------|----------|---------------------|----------|
|   | Reference Value Tolérance |           | Error of Indication | Result   | Error of Indication | Result   |
| 1 | 0 kg                      | 0.02 kg   | 0.00 kg             | <b>✓</b> | 0.00 kg             | <b>~</b> |
| 2 | 40 kg                     | 0.04 kg   | -0.02 kg            | <b>✓</b> | 0.00 kg             | <b>~</b> |
| 3 | 80 kg                     | 0.06 kg   | -0.04 kg            | <b>✓</b> | 0.00 kg             | <b>✓</b> |
| 4 | 120 kg                    | 0.10 kg   | -0.06 kg            | <b>✓</b> | 0.00 kg             | <b>✓</b> |
| 5 | 160 kg                    | 0.10 kg   | -0.08 kg            | <b>✓</b> | 0.00 kg             | <b>✓</b> |
| 6 | 200 kg                    | 0.10 kg   | -0.10 kg            | <b>✓</b> | 0.00 kg             | <b>✓</b> |

Version Logicielle: 1.22.0.155 © METTLER TOLEDO Page 1 of 1



Tél. (514) 631-6653 Fax (514) 631-6122 info@ulrich.ca www.ulrich.ca







#### CALIBRATION CERTIFICATE

Certificate no.:

753379

Identification:

SBI-096

Description:

CALIBRATOR, OMEGA CL23A

Size:

TC K/J/T

Manufacturer:

**OMEGA** 

Model no.: Serial no.: CL23A

T-256137

Calibration date:

May 25, 2020

Certificate issued: May 25, 2020

Interval:

12 months

Due date:

Procedure no.:

May 25, 2021 MET/CAL

**Environment:** 

CLAS Type 2 Laboratory

Temperature:

23 ± 2°C

**Humidity:** 

35 - 55% RH

Metrologist:

YUK

Property of:

SBI

250 RUE DE COPENHAGUE

ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3

Approved by:

David Llorens, Quality Manager

This calibration certificate is issued in accordance with the applicable requirements of ISO/IEC 17025 and Ulrich Metrology's quality manual QM-09 Revision 9. Measurement results provided are traceable to either the National Research Council Canada (NRC), the National Institute of Standards and Technology (NIST), a national laboratory of another country signatory to the CIPM Mutual Recognition Arrangement (MRA), or a calibration laboratory accredited by an accrediting body with which Canada has an equivalence agreement.

#### **CALIBRATION STANDARDS**

See notes below.

#### **MEASUREMENT UNCERTAINTY**

The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted otherwise. For measurement results associated with the conformance to a tolerance, the uncertainty in the measurement system did not exceed 25% (4:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the report.

#### **CALIBRATION DATA**

See next page for measurement results.

Notes:

9V battery replaced.



Tél. (514) 631-6653 Fax (514) 631-6122 info@ulrich.ca www.ulrich.ca

#### CALIBRATION DATA

Certificate no.:

753379

Identification:

SBI-096

Description:

Calibration Data for Certificate No.

753379

CALIBRATOR THERMOMETER

Serial no.:

T-256137

Procedure:

Omega CL23A: 5520A-M

Result:

**PASS** 

Condition: FOUND-LEFT

CALIBRATION STANDARDS

Identification

Description

Manufacturer

Model no.

**Due Date** Cal. Date

7870009

**CALIBRATOR** 

FLUKE

5520A

2020/03/20 2021/03/31

Page 1 of 2

Rtrslt01

MEASUREMENT RESULTS (Per MET/CAL)

| TRUE                                       | TEST          | ACCEPTANC | E LIMITS      | PASS/ |     |
|--------------------------------------------|---------------|-----------|---------------|-------|-----|
| PARAMETER VALUE                            | RESULT        | LOW       | HIGH          | FAIL  | TUR |
| Temperature measurements are performed by  |               |           |               |       |     |
| electrical simulation.                     |               |           |               |       |     |
| DISPLAY CALIBRATION                        |               |           |               |       |     |
| Did all segments of the display illuminate | e?            |           |               |       |     |
| Result of Operator Evaluation              |               |           |               | PASS  |     |
| THERMOMETER CALIBRATION                    |               |           |               |       |     |
| K Type Thermocouple                        |               |           |               |       |     |
| -200.0degF                                 | -199.8        | -201.0    | -199.0        | PASS  | 1.7 |
| -60.0degF                                  | -59.7         | -61.0     | -59.0         | PASS  | 3.1 |
| -40.0degF                                  | <b>-</b> 39.9 | -40.5     | <b>-</b> 39.5 | PASS  | 1.5 |
| 32.0degF                                   | 32.2          | 31.5      | 32.5          | PASS  | 1.7 |
| 300.0degF                                  | 300.2         | 299.5     | 300.5         | PASS  | 1.1 |
| 572.0degF                                  | 572.2         | 571.5     | 572.5         | PASS  | 1.1 |
| 1240.0degF                                 | 1240.2        | 1239.5    | 1240.5        | PASS  | 1.1 |
| 1260.0degF                                 | 1260.1        | 1259.5    | 1260.5        | PASS  | 1.1 |
| 2500.0degF                                 | 2500.2        | 2499.0    | 2501.0        | PASS  | 1.4 |
| J Type Thermocouple                        |               |           |               |       |     |
| -200.0degF                                 | -200.1        | -201.0    | -199.0        | PASS  | 2.1 |
| -60.0degF                                  | -59.9         | -61.0     | -59.0         | PASS  | 3.5 |
| -40.0degF                                  | -40.0         | -40.5     | -39.5         | PASS  | 1.7 |
| 32.0degF                                   | 31.9          | 31.5      | 32.5          | PASS  | 2.0 |
| 572.0degF                                  | 571.9         | 571.5     | 572.5         | PASS  | 1.6 |
| 300.0degF                                  | 299.9         | 299.5     | 300.5         | PASS  | 2.0 |
| 1240.0degF                                 | 1239.8        | 1239.5    | 1240.5        | PASS  | 1.6 |
| 1260.0degF                                 | 1259.8        | 1259.5    | 1260.5        | PASS  | 1.6 |
| 1400.0degF                                 | 1399.8        | 1399.4    | 1400.6        | PASS  | 1.8 |
| T Type Thermocouple                        |               |           |               |       |     |
| -200.0degF                                 | -200.1        | -201.0    | -199.0        | PASS  | 2.3 |
| -60.0degF                                  | -59.9         | -61.0     | -59.0         | PASS  | 2.3 |
| -40.0degF                                  | -40.0         | -40.5     | -39.5         | PASS  | 1.2 |
| 32.0degF                                   | 32.0          | 31.5      | 32.5          | PASS  | 1.7 |
| 300.0degF                                  | 300.0         | 299.5     | 300.5         | PASS  | 2.0 |
| 572.0degF                                  | 571.9         | 571.5     | 572.5         | PASS  | 2.0 |
| 750.0degF                                  | 750.0         | 749.5     | 750.5         | PASS  | 2.0 |



Tél. (514) 631-6653 Fax (514) 631-6122 info@ulrich.ca

www.ulrich.ca

| DIVISION - TRANSPORT CANADA | Wontreal (Quebec) Hol TAT | www.ulr | ich.ca |           |          |       |     |
|-----------------------------|---------------------------|---------|--------|-----------|----------|-------|-----|
|                             |                           | TRUE    | TEST   | ACCEPTANC | E LIMITS | PASS/ |     |
| PARAMETER                   |                           | VALUE   | RESULT | LOW       | HIGH     | FAIL  | TUR |
| CALIBRATOR C                | ALIBRATION                |         |        |           |          |       |     |
| K Type Therm                | ocouple                   |         |        |           |          |       |     |
| -200.0degF                  |                           |         | -199.5 | -201.0    | -199.0   | PASS  | 1.7 |
| -60.0degF                   |                           |         | -59.8  | -61.0     | -59.0    | PASS  | 3.1 |
| -40.0degF                   |                           |         | -39.7  | -40.5     | -39.5    | PASS  | 1.5 |
| 32.0degF                    |                           |         | 32.2   | 31.5      | 32.5     | PASS  | 1.7 |
| 300.0degF                   |                           |         | 300.1  | 299.5     | 300.5    | PASS  | 1.1 |
| 572.0degF                   |                           |         | 572.2  | 571.5     | 572.5    | PASS  | 1.1 |
| 1240.0degF                  |                           |         | 1240.3 | 1239.5    | 1240.5   | PASS  | 1.1 |
| 1260.0degF                  |                           |         | 1260.2 | 1259.5    | 1260.5   | PASS  | 1.1 |
| 2500.0degF                  |                           |         | 2500.4 | 2499.0    | 2501.0   | PASS  | 1.4 |
| J Type Therm                | ocouple                   |         |        |           |          |       |     |
| -200.0degF                  |                           |         | -199.7 | -201.0    | -199.0   | PASS  | 2.1 |
| -60.0degF                   |                           |         | -60.0  | -61.0     | -59.0    | PASS  | 3.5 |
| -40.0degF                   |                           |         | -39.8  | -40.5     | -39.5    | PASS  | 1.7 |
| 32.0degF                    |                           |         | 32.0   | 31.5      | 32.5     | PASS  | 2.0 |
| 300.0degF                   |                           |         | 300.1  | 299.5     | 300.5    | PASS  | 2.0 |
| 572.0degF                   |                           |         | 572.0  | 571.5     | 572.5    | PASS  | 1.6 |
| 1240.0degF                  |                           |         | 1240.2 | 1239.5    | 1240.5   | PASS  | 1.6 |
| 1260.0degF                  |                           |         | 1260.1 | 1259.5    | 1260.5   | PASS  | 1.6 |
| 1400.0degF                  |                           |         | 1399.9 | 1399.4    | 1400.6   | PASS  | 1.8 |
| T Type Therm                | ocouple                   |         |        |           |          |       |     |
| -200.0degF                  |                           |         | -199.8 | -201.0    | -199.0   | PASS  | 2.3 |
| -60.0degF                   |                           |         | -59.9  | -61.0     | -59.0    | PASS  | 2.3 |
| -40.0degF                   |                           |         | -39.8  | -40.5     | -39.5    | PASS  | 1.2 |
| 32.0degF                    |                           |         | 32.0   | 31.5      | 32.5     | PASS  | 1.7 |
| 300.0degF                   |                           |         | 300.0  | 299.5     | 300.5    | PASS  | 2.0 |
| 572.0degF                   |                           |         | 572.0  | 571.5     | 572.5    | PASS  | 2.0 |
| 750.0degF                   |                           |         | 750.0  | 749.5     | 750.5    | PASS  | 2.0 |
|                             |                           |         |        |           |          |       |     |

End of Test Data







#### CERTIFICAT D'ÉTALONNAGE # 13027

Date d'étalonnage: 2020-10-13 Date d'émission du certificat : 2020-10-13

Stove Builder International 250, rue de Copenhague Saint-Augustin-de-Desmaures, Québec, Canada **G3A 2H3** 

Étalonnage d'un Débitmètre volumétrique American Meter Company DTM-200A S/N: 07J264834

#### CONFORMITÉ AU PROGRAMME DE QUALITÉ

Tous les étalonnages sont effectués conformément au manuel d'assurance qualité de Polycontrols qui est conforme à la norme ISO/IEC 17025 - 2017, à la norme ISO 9001 - 2015 ainsi qu'à tout autre exigences de qualité définies dans la description d'achat des clients.

#### TRAÇABILITÉ

La traçabilité des étalons de débit au National Institute of Standards and Technology, NIST, est maintenue par les laboratoires de Fluke Corporation de Phoenix, Arizona et est conforme aux normes ISO/IEC 17025, ANSI/NCSL Z540-1-1994, ISO-10012-1, MIL-STD 45662A.

Le Service d'évaluation des laboratoires d'étalonnage (CLAS) du Conseil national de recherches du Canada (CNRC) a évalué et certifié la capacité d'étalonnage du laboratoire et la traçabilité au Système international d'unités (SI) ou à des étalons acceptables selon le CLAS. Le présent certificat d'étalonnage est délivré conformément aux conditions de certification du CLAS et aux conditions d'accréditation du Conseil canadien des normes (CCN). Le CLAS et le CCN ne garantissent pas l'exactitude des étalonnages individuels effectués par les laboratoires accrédités.

#### APTITUDE EN MATIÈRE DE MESURE ET D'ÉTALONNAGE - CMC

Les références utilisées pour l'étalonnage de débit ont une incertitude de ±0.2% de la lecture pour les mesures entre 5 SCCM à 10 SLPM, ±0.3% de la lecture pour les mesures entre 10 SLPM à 30 SLPM, ±0.2% de la lecture pour les mesures entre 30 SLPM à 3000 SLPM, ±0.3% de la lecture pour les mesures supérieures à 3000 SLPM jusqu'à 6000 SLPM et ±0.5% pour les mesures inférieures à 5 SCCM jusqu'à concurrence de 1 SCCM, équivalent air ou azote. Les incertitudes exprimées sont élargies avec un facteur d'élargissement k = 2, et ce, pour un niveau de confiance d'environ 95 %, dans l'hypothèse d'une distribution normale incluant la résolution de l'instrument. Le rapport d'incertitude des essais (RIE) de cet étalonnage respecte un ratio de 4:1 à moins d'indication contraire.

#### SOMMAIRE DES CONDITIONS DE L'INSTRUMENT EN TEST

Conditions initiales

En bon état

Travail Effectué

Étalonnage de l'instrument

Lectures Initiales = Lectures finales, aucun ajustement

Résultats

Lectures finales dans les tolérances

Remarques

Fréquence d'étalonnage aux 12 mois

Bernard Poirier Métrologiste

Responsable du laboratoire

©2012 Polycontrols • Le présent document ne peut être reproduit, sinon en entier, que par l'approbation écrite des laboratoires d'étalonnage de la compagnie Polycontrols inc. 3650 boul. Matte (Local A-I), Brossard (Québec), Canada, J4Y 2Z2 Tel: (450) 444-3600 Fax: (450) 444-1088 www.polycontrols.com







#### Certificat d'étalonnage # 13027

Numéro de série:

07J264834

Station de mesure:

3

Date d'étalonnage:

2020-10-13

Procédure:

POS-CAL-005

Identification de l'instrument: SBI-103

Règle de décision: Méthode #2

| Instrument de mesure de référence utilisé pour l'étalonnage final |             |         |             |            |  |  |  |  |  |
|-------------------------------------------------------------------|-------------|---------|-------------|------------|--|--|--|--|--|
| Description                                                       | Modèle      | # Série | Traçabilité | Date dû    |  |  |  |  |  |
| DHI molbloc (30 slpm)                                             | 3E4-VCR-V-Q | 2359    | 1500279712  | 2021-03-04 |  |  |  |  |  |
| DHI molbox1                                                       | Molbox1     | 755     | 1500285062  | 2021-06-09 |  |  |  |  |  |
| RTD Mist                                                          | Mist        | L00295  | 2019008203  | 2020-12-13 |  |  |  |  |  |
| Module 44.5 PSI avec Baro 163671                                  | Module 30   | 160659  | 2020003156  | 2021-04-28 |  |  |  |  |  |

| Spécifications :         | finales de l'appareil | Condition d'         | 'étalonnage  |
|--------------------------|-----------------------|----------------------|--------------|
| Gaz                      | Air                   | Gaz                  | Air          |
| Température d'opération  |                       | Température ambiante | 22 °C        |
| Pression à l'entrée      |                       | Pression ambiante    | 1017.71 mbar |
| Pression à la sortie     |                       | Orientation          | Horizontale  |
| Température de référence |                       | Élastomère           | Viton        |
| Pression de référence    |                       | Valve                | Viton        |
| Étendue d'échelle        | 0-200 ACFH            |                      | ľ            |
| Signaux Entrée/Sortie    | 12                    |                      |              |
| Alimentation             |                       |                      | ľ            |
| Tolérance ±2 %F.S.       | •                     |                      | Į            |

| Lectures finales         |                              |                  |                                      |                                    |                              |                           |                                |                                         |     |  |
|--------------------------|------------------------------|------------------|--------------------------------------|------------------------------------|------------------------------|---------------------------|--------------------------------|-----------------------------------------|-----|--|
| Débit<br>du test<br>ACFH | Instrument<br>en test<br>ft³ | Pression<br>PSIA | Valeurs mesurée<br>Température<br>°C | es<br>Référence<br>ft <sup>3</sup> | Référence<br>calculée<br>ft³ | Erreur<br>calculée<br>ft³ | Tolérance<br>acceptable<br>ft³ | Incertitude<br>k = 2<br>ft <sup>3</sup> | TUR |  |
| 5.0012                   | 0.8350                       | 14.7006          | 22.19                                | 0.8297                             | 0.8325                       | 0.0025                    | 0.6658                         | 0.0034                                  | >4  |  |
| 10.0479                  | 1.6910                       | 14.6978          | 22.14                                | 1.6681                             | 1.6737                       | 0.0173                    | 0.6663                         | 0.0056                                  | >4  |  |
| 15.0460                  | 2.5350                       | 14.6960          | 22.09                                | 2.4977                             | 2.5060                       | 0.0290                    | 0.6662                         | 0.0083                                  | >4  |  |
| 25.0808                  | 4.2250                       | 14.6987          | 22.01                                | 4.1601                             | 4.1720                       | 0.0530                    | 0.6654                         | 0.0139                                  | >4  |  |
| 40.1053                  | 6.7640                       | 14.7066          | 21.93                                | 6.6675                             | 6.6813                       | 0.0827                    | 0.6664                         | 0.0222                                  | >4  |  |





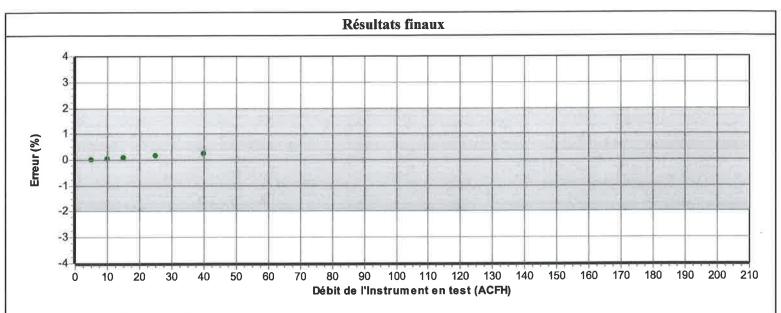


#### Certificat d'étalonnage # 13027

Numéro de série: Date d'étalonnage: 07J264834

2020-10-13

Station de mesure: Procédure:


POS-CAL-005

Identification de l'instrument: SBI-103

Règle de décision:

Méthode #2

3



Voir l'annexe pour la règle de décision



MICRO PRECISION CALIBRATION, INC. 22835 INDUSTRIAL PLACE **GRASS VALLEY CA 95949** 530-268-1860

#### **Certificate of Calibration**



Cert No. 551220083969913

Customer:

Date: Dec 4, 2020

STOVE BUILDERS INTERNATIONAL INC.

DA5990

SBI-104

160S-24

20.0°C / 40.0%

N/A

**PORTES 11-12** 

MPC Control #:

Asset ID:

Gage Type:

Manufacturer:

Model Number:

250 DE COPENHAGUE

SAINT-AUGUSTIN-DE-DESMAURES QC G3A 2H3

PITOT STATIC TUBE

DWYER INSTRUMENTS INC.

Work Order #:

SAC-70112509

Purchase Order #:

66348 N/A

Serial Number:

Department:

N/A

Performed By:

**BRETT SHANLEY** 

Received Condition:

IN TOLERANCE

Returned Condition: IN TOLERANCE

Cal. Date:

December 03, 2020

Cal. Interval:

12 MONTHS

Temp/RH: Location:

Size:

Calibration performed at MPC facility

Cal. Due Date:

December 03, 2021

**Calibration Notes:** 

See attached calibration data.(1 Page)

Pitot Coefficient: 0.84

#### Standards Used to Calibrate Equipment

| I.D.   | Description.                      | Model   | Serial   | Manufacturer               | Cal. Due Date | Traceability #  |
|--------|-----------------------------------|---------|----------|----------------------------|---------------|-----------------|
| AW4419 | MULTI-FUNCTION PRESSURE INDICATOR | DPI 145 | 14501283 | DRUCK INC                  | Aug 31, 2022  | 551220083774826 |
| CJ5100 | WIND TUNNEL WITH CONTROLLER       | JS-500  | 375/305  | INTERACTIVE<br>INSTRUMENTS | Oct 31, 2021  | 551220083300219 |
| AE2821 | ANEMOMETER                        | AM-4822 | N272316  | LANDTEK                    | Oct 31, 2021  | 551220083907679 |

#### **Procedures Used in this Event**

Procedure Name

Description

MPC-AIR-001 Rev. 01

Air Velocity, Temperature and Flow Meters, General, rev01, Feb-11-2020

Calibrating Technician:

**BRETT SHANLEY** 

QC Approval:

MARVIN ILAO

STATEMENTS OF PASS OR FAIL CONFORMANCE: The uncertainty of measurement has been taken into account when determining compliance with specificalism. All measurements and less probability of false-accept does not exceed 2% in compliance with ANSI/NCSL 2540.3-2006 and in case without guard banded the probability of false-accept depending on test uncertainty ratio. nce with specification. All measurements and test results guard banded to ensure the

THE CALIBRATION REPORT STATUS:

THE CALIBRATION REPORT STATUS:

PASS. Torm used when compliance statement is given, and the measurement result is PASS,

PASS - Term used when compliance statement is given, and the measurement result is conditional passed or PASS<sup>2</sup>.

FAIL- Tarm used when compliance statement is given, and the measurement result is FAIL.

FAIL- Tarm used when compliance statement is given, and the measurement result is conditional failed or FAIL-7.

REPORT OF VALUE - Torm used when reported measurement is not requiring compliance statement in report.

ADJUSTED - When adjustment are made to an instrument which changes the value of measurement from what was measured as found to new value as left.

LIMITED - When an instrument fails calibration but is abil functional in a limited manner.

The expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%, unless otherwise stated. This calibration report compiles with ISO/IEC 17025:2017 and ANSI/NCSL 2540.3. Calibration cycles and resulting due dates were submitted/approved by the customer. Any number of factors may cause an instrument to drift out of Iderance before the next scheduled calibration. Recalibration cycles should be based on frequency of use, environmental conditions and customer's established systematic accuracy. All alandards are traceable to SI through the National Institute of Standards and Technology (NIST) and/or recognized national or international standards isobarotories. Services rendered include proper manufacturer is service instruction and are warranted for no feas then thirty (30) days. The information on this report partains only to the instrument Identified, this may not be reproduced in part or in a whole without the prior written approval of the issuing MP Calibration Laboratory.

Page 1 of 1

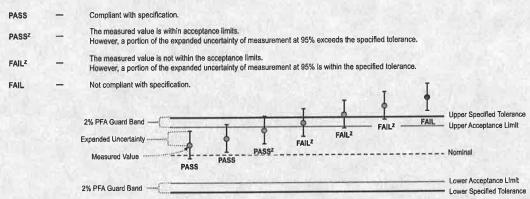
(CERT, Rev 7)



### Calibration Report of Dwyer Instruments 160S-24 Pitot Static Tube

| MPC Control #: | DA5990  | Serial Number:    | NA                |
|----------------|---------|-------------------|-------------------|
| Asset ID:      | SBI-104 | Calibration Date: | December 03, 2020 |

Velocity Accuracy


| Function Tested | Nominal  | Lower<br>Limit | As Found | As Left  | Upper<br>Limit | Result | Uncertainty (±) | TUR     |
|-----------------|----------|----------------|----------|----------|----------------|--------|-----------------|---------|
|                 | 10.0 mps | 9.8 mps        | 9,9 mps  | 9.9 mps  | 10.2 mps       | PASSz  | 0.14 mps        | 1.4 : 1 |
| Velocity        | 20.0 mps | 19.6 mps       | 19.8 mps | 19.8 mps | 20.4 mps       | PASSz  | 0.30 mps        | 1,3:1   |

#### Statements of Pass or Fail Conformance

The uncertainty of measurement has been taken into account when determining compliance with specification.

All measurements and test results guard banded to ensure the probability of false-accept does not exceed 2% in compliance with ANSI/NCSL Z540.3-2006

The status of compliance with the acceptance criteria is reported as:



Acceptance limits for ≤ 2% probability of false accept (PFA) guard band

The expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k = 2, which for a normal distribution corresponds to a coverage probability of approximately 95%, unless otherwise stated.

This calibration report complies with ISO/IEC 17025:2017 and ANSI/NCSL Z540.3-2006, Method 6 --- Guard Bands Based on Test Uncertainty Ratio.

- End of Calibration Report -



# CERTIFICAT DE VÉRIFICATION VERIFICATION CERTIFICATE

No. Certificat: 20201028001

Identification: SBI-153

**Description:** Moisture content standard

Manufacturier: Delmhorst

No. Modèle: MCS-1

No. Série: 81808 Propriété de: SBI

250 de Copenhague

St-Augustin-de-Desmaures, QC G3A 2H3

**Date de vérification :** 28 octobre 2020 **Prochaine vérification :** 28 octobre 2021

Méthode utilisée : Cal-Temp 01

**Température :** 69.8 °F

**Humidité** : 25.4 %

État avant calibration : Bon état

Ce certificat de calibration est émis en accordance avec les requis applicables du standard ISO/IEC 17025 et le manuel qualité, version 2.0 de SBI.

#### **MESURES D'INCERTITUDE**

Les incertitudes signalées représentent un niveau de confiance de 95% en supposant une distribution normale, avec un facteur de couverture de K = 2.

#### **REMARQUES**

L'instrument de mesure est vérifié et nettoyé avant l'étalonnage. Les résultats de calibration de ce certificat se rapportent seulement à l'instrument calibré ci-dessus.

#### ÉTALON UTILISÉ POUR VÉRIFIER L'ÉQUIPEMENT

| No. de l'étalon<br>utilisé | Description | No. de certificat | Date de calibration | Date d'échéance |
|----------------------------|-------------|-------------------|---------------------|-----------------|
| SBI-194                    | Multimètre  | 724382            | 2019-10-30          | 2020-10-30      |

1



# CERTIFICAT DE VÉRIFICATION VERIFICATION CERTIFICATE

#### **DONNÉES DE VÉRIFICATION**

Unités :  $M\Omega$ 

Résultat : PASS

| S.D.     | 0.00     | %    |   |
|----------|----------|------|---|
| R.M.U.   | 0.91     | %    |   |
| O.M.U    | 98.18    | %    |   |
|          | Ave A.D. | 0.00 | % |
| Standard | Reading  | A.D. |   |
|          |          |      |   |
| 1.10     | 1.10     | 0.00 |   |
| 1.10     | 1.10     | 0.00 |   |
| 1.10     | 1.10     | 0.00 |   |

| S.D.     | 0.00     | %    |   |
|----------|----------|------|---|
| R.M.U.   | 0.83     | %    |   |
| O.M.U    | 98.00    | %    |   |
|          | Ave A.D. | 0.56 | % |
| Standard | Reading  | A.D. |   |
|          |          |      |   |
| 120      | 120      | 0.00 |   |
| 120      | 119      | 0.83 |   |
| 120      | 119      | 0.83 |   |

VÉRIFIÉ PAR: Gabuille antine

Gabrielle Santerre

FIN DU CERTIFICAT



#### Digital Measurement Metrology Inc.

A Trescal company 26 Automatic Road, Unit 4 Brampton, ON, L6S 5N7 Tel. (905) 790-9400 Fax. (905) 790-9266 www.dmm.ca // service@dmm.ca





#### CALIBRATION CERTIFICATE

| Description:         | WEIGHT  | •                  | Calibration Date: | Oct 02, 2018   | Certificate:        | 95513 |
|----------------------|---------|--------------------|-------------------|----------------|---------------------|-------|
| Asset Number:        | SBI-190 |                    | Property of:      | SBI ST-AUGU    | STIN                |       |
| Serial/Model Number: | N/A     |                    | Address:          | 250, rue de Co | openhague, Doors 10 | -12   |
| Manufacturer:        | N/A     |                    | City/Prov/PC:     | St-Augustin-de | e-Desmaures QC G3   | A 2H3 |
| Instrument Capacity: | 5 kg    |                    | Country:          | Canada         |                     |       |
| Procedure:           | CP34G   |                    | Method Used:      | COMPARISO      | N                   |       |
| Room Humidity:       | 45 %    | Room Temp: 19.6 °C | Conformance Sto   | s: ISO/IEC 17  | 025: 2005           |       |

| CAL | IDD | ATI | IAN | DA- | ГΛ |
|-----|-----|-----|-----|-----|----|
| LAL |     | ΑП  | UN. | UA  | ıA |

| CALIBRATION DATA |     |     | Units: kg           |          |  |
|------------------|-----|-----|---------------------|----------|--|
| As Left          | Min | Max | Tolerance<br>In Out | Comments |  |

4.9995 5.0005 5.0005 5.0005

#### Remarks:

Range

Inspected, cleaned and tested using the mfgr's specs and procedures, customer's, national or international standards, or new procedure design. Measurement uncertainty is not included when any statement of compliance is made. The user must decide on acceptance for the intended use.

| CALIBRATION | STANDARD(S) | LISED |
|-------------|-------------|-------|
| CALIDRATION | STANDARDIST | USED  |

As Found

Received Condition:

Traceable No. 95457

Asset Number DMML-2356075 Calibration Date Oct 01, 2018

Date Due Oct 01, 2019 In tolerance.

W-046636-25724

DMML-21701

Jan 08, 2018

Jan 08, 2020

Weights are accurate to class F tolerance.

Estimated measurement uncertainty is ± 0.2 g.

Std/Nominal

5

Reported uncertainties represent a 95 % confidence level assuming a normal distribution, with a coverage factor of k=2.

This calibration was performed in the lab and is traceable to the International System of Units (SI Units) through NIST or NRC. This report is covered by our accreditation.

Oct 02, 2023 Calibration of the instrument expires on

Christopher Riddle

CALIBRATION, SOLUTIONS, TO, IMPROVE, YOUR, PERFORMANCE

LA, MÉTROLOGIE, AU, SERVICE, DE, VOTRE, PERFORMANCE

The results shown above relate to the above calibrated instrument/equipment only. Copyright of this Certificate is owned by the issuing laboratory and may not be reproduced other than in full except with the prior written approval of the issuing laboratory.

CALIBRATED BY

**END OF REPORT** 

Andres Galeano





Transcat Canada Inc. 9900, Côte-de-Liesse Montréal (Québec) H8T 1A1

Tél. (514) 631-6653 Fax (514) 631-6122 info@transcat.ca www.transcat.ca







#### CALIBRATION CERTIFICATE

Certificate no.:

780975

Identification:

SBI-194

Description:

MULTIMETER, RADIO SHACK 22-168A

Manufacturer:

RADIO SHACK

Model no.:

22-168A

Serial no.:

FC388201

Calibration date:

November 24, 2020

Certificate issued: November 25, 2020

Interval:

12 months

Due date:

November 24, 2021

Procedure no.:

MET/CAL

**Environment:** 

CLAS Type 2 Laboratory

Temperature:

23 ± 2°C

**Humidity:** 

35 - 55% RH

Metrologist:

MIC

Property of:

250 RUE DE COPENHAGUE

ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3

Approved by:

David Llorens, Quality Manager

This calibration certificate is issued in accordance with the applicable requirements of ISO/IEC 17025 and Ulrich Metrology's quality manual QM-09 Revision 9. Measurement results provided are traceable to either the National Research Council Canada (NRC), the National Institute of Standards and Technology (NIST), a national laboratory of another country signatory to the CIPM Mutual Recognition Arrangement (MRA), or a calibration laboratory accredited by an accrediting body with which Canada has an equivalence agreement.

#### **CALIBRATION STANDARDS**

See notes below.

#### **MEASUREMENT UNCERTAINTY**

The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted otherwise. For measurement results associated with the conformance to a tolerance, the uncertainty in the measurement system did not exceed 25% (4:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the report.

The Calibration Laboratory Assessment Service (CLAS) of the National Hesearch Council of Canada (NRC) has assessed and certified specific calibration capabities of this laboratory and fraceability to the International System of Units (St) or to standards acceptable to the CLAS program. This certificate of calibration is issued in accordance with the conditions of certification granted by CLAS and the conditions of acceptable aboratories.

#### **CALIBRATION DATA**

See next page for measurement results.



Tél. (514) 631-6653 Fax (514) 631-6122 info@ulrich.ca www.ulrich.ca

#### CALIBRATION DATA

Certificate no.:

780975

Identification:

SBI-194

Description: Serial no.:

**MULTIMETER** FC388201

Procedure:

MICRONTA 22-168A: 5520A-M

Result:

**PASS** 

Condition: FOUND-LEFT

**CALIBRATION STANDARDS** 

Identification

8608002

Description

**CALIBRATOR** 

Manufacturer

Model no.

Cal. Date **Due Date** 

**FLUKE** 

5520A

2020/07/15 2021/07/31

MEASUREMENT RESULTS (Per MET/CAL)

|                                            | TRUE  | TEST   |        | CE LIMITS | PASS/    |        |
|--------------------------------------------|-------|--------|--------|-----------|----------|--------|
| PARAMETER                                  | VALUE | RESULT | LOW    | HIGH      | FAIL     | TUR    |
| DC VOLTAGE CALIBRATION                     |       |        |        |           |          |        |
| 200 mV Range                               |       |        |        |           |          |        |
| 190.0mV                                    |       | 189.9  | 187.8  | 192.2     | PASS     |        |
| 2V Range                                   |       |        |        |           |          |        |
| 1.900V                                     |       | 1.899  | 1.878  | 1.922     | PASS     |        |
| -1.900V                                    |       | -1.897 | -1.922 | -1.878    | PASS     |        |
| 20V Range                                  |       |        |        |           |          |        |
| 19.00V                                     |       | 18.98  | 18.78  | 19.22     | PASS     |        |
| 200V Range                                 |       |        |        |           |          |        |
| 190.0V                                     |       | 190.1  | 187.8  | 192.2     | PASS     |        |
| 1000V Range                                |       |        |        |           |          |        |
| 950V                                       |       | 950    | 938    | 962       | PASS     |        |
| AC VOLTAGE CALIBRATION                     |       |        |        |           |          |        |
| 200 mV Range                               | G G   |        |        |           |          |        |
| 190.0mV @ 60Hz                             |       | 185.8  | 185.8  | 194.2     | PASS     |        |
| 2V Range                                   |       |        |        |           |          |        |
| 1.900V @ 60Hz                              |       | 1.858  | 1.858  | 1.942     | PASS     |        |
| 20V Range                                  |       |        |        |           |          |        |
| 19.00V @ 60Hz                              |       | 18.58  | 18.58  | 19.42     | PASS     |        |
| 200V Range                                 |       |        |        |           |          |        |
| 190.0V @ 60Hz                              |       | 185.8  | 185.8  | 194.2     | PASS     |        |
| 50V Range                                  |       |        |        |           |          |        |
| 700V @ 60Hz                                |       | 683    | 678    | 723       | PASS     |        |
| FREQUENCY CALIBRATION                      |       |        |        |           |          |        |
| 1.900kHz @ 5V                              |       | 1.904  | 1.809  | 1.990     | PASS     |        |
| RESISTANCE CALIBRATION                     |       |        |        |           |          |        |
| 00 Ohm Range                               |       |        |        |           |          |        |
| 190.0 Ohm                                  |       | 190.0  | 186.8  | 193.2     | PASS     |        |
| kOhm Range                                 |       |        |        |           |          |        |
| 1.900 kOhm                                 |       | 1.903  | 1.870  | 1.930     | PASS     |        |
| 0 kOhm Range                               |       |        |        |           |          |        |
| 19.00 kOhm                                 | · ·   | 18.98  | 18.70  | 19.30     | PASS     |        |
| alibration Data for Certificate No. 780975 |       |        |        |           | Rtrslt01 | Page 1 |



Tél. (514) 631-6653 Fax (514) 631-6122 info@ulrich.ca

www.ulrich.ca

|                                                  | TRUE        | TEST       | ACCEPTANCE | LIMITS | PASS/ |     |
|--------------------------------------------------|-------------|------------|------------|--------|-------|-----|
| PARAMETER                                        | VALUE       | RESULT     | LOW        | HIGH   | FAIL  | TUR |
| 200 kOhm Range                                   |             |            |            |        |       |     |
| 190.0 kOhm                                       |             | 190.0      | 187.0      | 193.0  | PASS  |     |
| 2 MOhm Range                                     |             |            |            |        |       |     |
| 1.900 MOhm                                       |             | 1.899      | 1.870      | 1.930  | PASS  |     |
| 20 MOhm Range                                    |             |            |            |        |       |     |
| 19.00 MOhm                                       |             | 19.02      | 18.50      | 19.50  | PASS  |     |
| 2000 MOhm Range                                  |             |            |            |        |       |     |
| 1100 MOhm                                        |             | 1090       | 935        | 1266   | PASS  |     |
| CONTINUITY CALIBRATION                           |             |            |            |        |       |     |
| Is the beeper on when 30 Ohms res                | istance is  | applied?   |            |        |       |     |
| Result of Operator Evaluation                    |             |            |            |        | PASS  |     |
| Is the beeper off when 100 ${\rm Ohms}\ {\rm r}$ | esistance i | s applied? |            |        |       |     |
| Result of Operator Evaluation                    |             |            |            |        | PASS  |     |
| DC CURRENT CALIBRATION                           |             |            |            |        |       |     |
| 200 μA Range                                     |             |            |            |        |       |     |
| 190.0uA                                          |             | 189.7      | 187.0      | 193.0  | PASS  |     |
| 2 mA Range                                       |             |            |            |        |       |     |
| 1.900mA                                          |             | 1.900      | 1.870      | 1.930  | PASS  |     |
| 20 mA Range                                      |             |            |            |        |       |     |
| 19.00mA                                          |             | 19.06      | 18.47      | 19.54  | PASS  |     |
| 200 mA Range                                     |             |            |            |        |       |     |
| 190.0mA                                          |             | 191.6      | 184.7      | 195.3  | PASS  |     |
| 20 A Range                                       |             |            |            |        |       |     |
| 10.00A                                           |             | 9.89       | 9.30       | 10.70  | PASS  |     |
| AC CURRENT CALIBRATION                           |             |            |            |        |       |     |
| 200 μA Range                                     |             |            |            |        |       |     |
| 190.0uA @ 60Hz                                   |             | 185.1      | 184.8      | 195.2  | PASS  |     |
| 2 mA Range                                       |             |            |            |        |       |     |
| 1.900mA @ 60Hz                                   |             | 1.855      | 1.848      | 1.952  | PASS  |     |
| 20 mA Range                                      |             |            |            |        |       |     |
| 19.00mA @ 60Hz                                   |             | 18.60      | 18.15      | 19.85  | PASS  |     |
| 200 mA Range                                     |             |            |            |        |       |     |
| 190.0mA @ 60Hz                                   |             | 186.8      | 181.5      | 198.5  | PASS  |     |
| 20 A Range                                       |             |            |            |        |       |     |
| 10.00A @ 60Hz                                    |             | 9.83       | 8.98       | 11.02  | PASS  |     |
| CAPACITANCE CALIBRATION                          |             |            |            |        |       |     |
| 200 nF Range                                     |             |            |            |        |       |     |
| 190.0nF                                          |             | 188.5      | 180.9      | 199.1  | PASS  |     |
| 20 μF Range                                      |             |            |            |        |       |     |
| 19.00uF                                          |             | 18.46      | 17.30      | 20.70  | PASS  |     |
| 200 μF Range                                     |             |            |            |        |       |     |
| 190.0uF                                          |             | 183.5      | 172.9      | 207.1  | PASS  |     |

End of Test Data

Calibration Data for Certificate No. 780975



# CERTIFICAT DE VÉRIFICATION VERIFICATION CERTIFICATE

No. Certificat: 20201103001

Identification: SBI-197

**Description:** EPA sampling banc 4

Manufacturier: Home made

No. Modèle: NA No. Série: NA Propriété de: SBI

250 de Copenhague

St-Augustin-de-Desmaures, QC G3A 2H3

Date de vérification: 3 novembre 2020

**Prochaine vérification :** 3 novembre 2021

Méthode utilisée : Cal-Temp\_01

**Température :** 67.5 °F

**Humidité: 24.8 %** 

État avant calibration : Bon état

Ce certificat de calibration est émis en accordance avec les requis applicables du standard ISO/IEC 17025 et le manuel qualité, version 2.0 de SBI.

#### **MESURES D'INCERTITUDE**

Les incertitudes signalées représentent un niveau de confiance de 95% en supposant une distribution normale, avec un facteur de couverture de K = 2.

#### **REMARQUES**

L'instrument de mesure est vérifié et nettoyé avant l'étalonnage. Les résultats de calibration de ce certificat se rapportent seulement à l'instrument calibré ci-dessus.

#### ÉTALON UTILISÉ POUR VÉRIFIER L'ÉQUIPEMENT

| No. de l'étalon<br>utilisé | Description                    | No. de certificat | Date de calibration | Date d'échéance |
|----------------------------|--------------------------------|-------------------|---------------------|-----------------|
| SBI-096                    | Calibreur de<br>température de | 700929            | 2020-05-25          | 2021-05-25      |
| 351 030                    | référence                      | 700323            | 2020 03 23          | 2021 03 23      |



# CERTIFICAT DE VÉRIFICATION VERIFICATION CERTIFICATE

#### **DONNÉES DE VÉRIFICATION**

Unités : °F Résultat : PASS

| S.D.     | 0.01     | %    |   |
|----------|----------|------|---|
| R.M.U.   | 0.14     | %    |   |
| O.M.U    | 98.26    | %    |   |
|          | Ave A.D. | 0.86 | % |
| Standard | Reading  | A.D. |   |
|          |          |      |   |
| 70       | 70.6     | 0.86 |   |
| 70       | 70.6     | 0.86 |   |
| 70       | 70.6     | 0.86 |   |

| S.D.     | 0.00     | %    |   |
|----------|----------|------|---|
| R.M.U.   | 0.02     | %    |   |
| O.M.U    | 99.79    | %    |   |
|          | Ave A.D. | 0.11 | % |
| Standard | Reading  | A.D. |   |
|          |          |      |   |
| 600      | 600.7    | 0.12 |   |
| 600      | 600.6    | 0.10 |   |
| 600      | 600.6    | 0.10 |   |

| S.D.     | 0.00     | %    |   |
|----------|----------|------|---|
| R.M.U.   | 0.05     | %    |   |
| O.M.U    | 99.49    | %    |   |
|          | Ave A.D. | 0.25 | % |
| Standard | Reading  | A.D. |   |
|          |          |      |   |
| 200      | 200.5    | 0.25 |   |
| 200      | 200.5    | 0.25 |   |
| 200      | 200.5    | 0.25 |   |

| S.D.     | 0.00     | %    |   |
|----------|----------|------|---|
| R.M.U.   | 0.01     | %    |   |
| O.M.U    | 99.85    | %    |   |
|          | Ave A.D. | 0.08 | % |
| Standard | Reading  | A.D. |   |
|          |          |      |   |
| 1000     | 1000.8   | 0.08 |   |
| 1000     | 1000.8   | 0.08 |   |
| 1000     | 1000.7   | 0.07 |   |

| S.D.     | 0.00     | %    |   |
|----------|----------|------|---|
| R.M.U.   | 0.01     | %    |   |
| O.M.U    | 99.88    | %    |   |
|          | Ave A.D. | 0.06 | % |
| Standard | Reading  | A.D. |   |
|          |          |      |   |
| 1400     | 1400.9   | 0.06 |   |
| 1400     | 1400.8   | 0.06 |   |
| 1400     | 1400.8   | 0.06 |   |

VÉRIFIÉ PAR : Gabuillean

Gabrielle Santerre

FIN DU CERTIFICAT

#### ID Certificat de Calibration CA0003-041-030920-ACC-USL

# **METTLER TOLEDO**





Accredited by the American Association for Laboratory Accreditation (A2LA)

CALIBRATION CERT #1788.01

ISO 17025 Accredited ANSI/NCSL Z540-1 Accredited

#### Service Business Unit Industrial 1900 Polaris Parkway

Columbus, OH 43240 1-800-METTLER

Mettler Toledo

## Certificat de Calibration de Précision

**Accuracy Calibration Certificate** 

| $\sim$ | II. | -4 |
|--------|-----|----|
| ٠.     |     |    |

Compagnie: SBI Fabricant De Poeles

Adresse: 250 Rue de Copenhague

Ville: Saint-Augustin-De-Desmaures Contact: Gabrielle Santerre

Zip/Code Postal: G3A 2H3

État/Province: Quebec

#### Weighing Device

| Manufacturier: | SARTORIUS | Type d'Instrument:   | Weighing Instrument     |
|----------------|-----------|----------------------|-------------------------|
| Modèle:        | TE214S    | # Outil:             | SBI-206 BAL. ANALYTIQUE |
| No. Série:     | 25851066  | Modèle Indicateur:   | N/D                     |
| Building:      | N/D       | Terminal Serial No.: | N/D                     |
| Floor:         | N/D       | Terminal Asset No.:  | N/D                     |
| Room:          | N/D       |                      |                         |

| Plage | Capacité Max | Lisibilité (d) |
|-------|--------------|----------------|
| 1     | 210 g        | 0.0001 g       |

#### **Procedure**

Instruction de Calibration:EURAMET cg-18 v. 4.0 (11/2015)Instruction de travail METTLER TOLEDO:30260953 Rev1.31

Ce certificat de calibration contient des mesures pour les calibrations Tel que Trouvé et Tel que Laissé.

The sensitivity/span of the weighing instrument was adjusted before As Left calibration with an external weight.

|                | Temperature    |              | _  |
|----------------|----------------|--------------|----|
| Tel que Trouvé | Start: 66.5 °F | End: 66.5 °F | ti |
| Tel que Laissé | Start: 66.7 °F | End: 67.1 °F |    |

Environmental conditions have been verified to ensure the accuracy of the calibration.

This certificate is issued in accordance with the conditions of accreditation granted by A2LA, which is based on ISO/IEC 17025. A2LA has assessed the measurement capability of the laboratory and its traceability to recognized national standards.

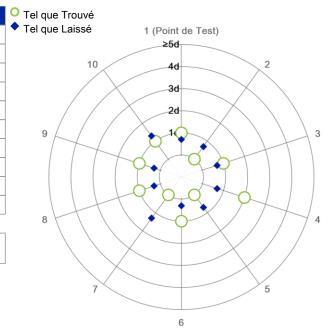
 Date calibration Tel que Trouvé:
 09-Mar-2020

 Date calibration Tel que Laissé:
 09-Mar-2020

 Date d'Émission:
 09-Mar-2020

 Requested Next Calibration Date:
 31-Mar-2021

Authorized A2LA Signatory:


Dany Careau

#### Résultats de Mesure

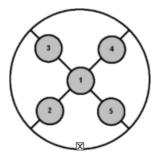
#### Répétabilité

#### Charge de Test: 100 g

|    | Tel que Trouvé | Tel que Laissé |
|----|----------------|----------------|
| 1  | 99.9996 g      | 99.9999 g      |
| 2  | 99.9997 g      | 99.9999 g      |
| 3  | 99.9998 g      | 99.9999 g      |
| 4  | 99.9999 g      | 99.9999 g      |
| 5  | 99.9997 g      | 99.9999 g      |
| 6  | 99.9998 g      | 100.0000 g     |
| 7  | 99.9997 g      | 100.0001 g     |
| 8  | 99.9996 g      | 100.0000 g     |
| 9  | 99.9996 g      | 100.0000 g     |
| 10 | 99.9996 g      | 100.0001 g     |



The "d" in the graph represents the readability of the range/interval in which the test was performed.


The results of this graph are based upon the absolute values of the differences from the mean value.

#### Excentricité

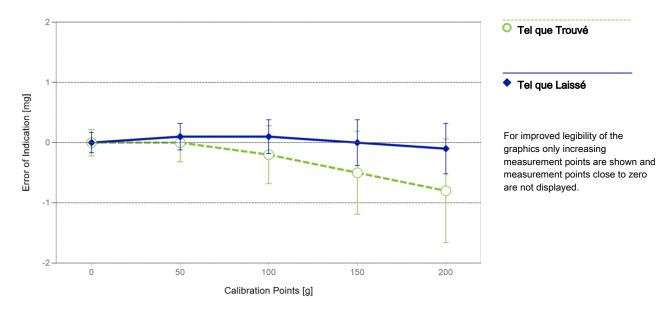
#### Charge de Test: 100 g

| Position | Tel que Trouvé | Tel que Laissé |
|----------|----------------|----------------|
| 1        | 99.9997 g      | 99.9998 g      |
| 2        | 99.9998 g      | 99.9998 g      |
| 3        | 99.9997 g      | 99.9998 g      |
| 4        | 99.9997 g      | 99.9998 g      |
| 5        | 99.9999 g      | 99.9998 g      |

| Déviation<br>Maximale 0.0002 g | 0.0000 g |
|--------------------------------|----------|
|--------------------------------|----------|



#### **Erreur d'indication**


#### Tel que Trouvé

|   | Reference Value | Indication | Erreur d'indication | Incertitude Élargie | k |
|---|-----------------|------------|---------------------|---------------------|---|
| 1 | 0.0000 g        | 0.0000 g   | 0.0000 g            | 0.22 mg             | 2 |
| 2 | 50.0000 g       | 50.0000 g  | 0.0000 g            | 0.32 mg             | 2 |
| 3 | 99.9999 g       | 99.9997 g  | -0.0002 g           | 0.48 mg             | 2 |
| 4 | 149.9999 g      | 149.9994 g | -0.0005 g           | 0.69 mg             | 2 |
| 5 | 200.0001 g      | 199.9993 g | -0.0008 g           | 0.86 mg             | 2 |

# **METTLER TOLEDO Service**

#### Tel que Laissé

|   | Reference Value | Indication | Erreur d'indication | Incertitude Élargie | k |
|---|-----------------|------------|---------------------|---------------------|---|
| 1 | 0.0000 g        | 0.0000 g   | 0.0000 g            | 0.17 mg             | 2 |
| 2 | 50.0000 g       | 50.0001 g  | 0.0001 g            | 0.22 mg             | 2 |
| 3 | 99.9999 g       | 100.0000 g | 0.0001 g            | 0.28 mg             | 2 |
| 4 | 149.9999 g      | 149.9999 g | 0.0000 g            | 0.38 mg             | 2 |
| 5 | 200.0001 g      | 200.0000 g | -0.0001 g           | 0.42 mg             | 2 |



The uncertainty stated is the expanded uncertainty at calibration obtained by multiplying the standard combined uncertainty by the coverage factor k – which can be larger than 2 according to EURAMET cg-18. The value of the measurand lies within the assigned range of values with a probability of approximately 95%. The user is responsible for maintaining environmental conditions and the settings of the weighing instrument when it was calibrated.

#### **Test Equipment**

Tous les poids utilisés pour le contrôle métrologique sont retraçables aux étalons Nationaux et Internationaux. Les poids ont été calibrés et certifiés par un laboratoire de calibration accrédité.

#### Jeu de Poids 1: OIML E2

 Weight Set Number:
 434
 Date d'Émission:
 13-Mar-2020

 # Certificat:
 01124860-1
 Date de Calibration Due:
 28-Feb-2021

#### Remarques

N/D

#### **End of Accredited Section**

The information below and any attachments to this calibration certificate are not part of the accredited calibration.

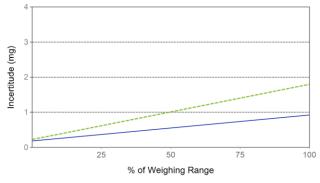


#### Incertitude de Mesure du dispositif de pesage en opération

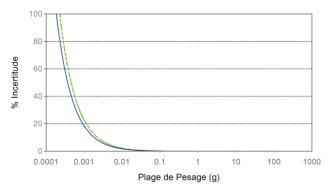
Stated is the expanded uncertainty with k=2 in use. The formula shall be used for the estimation of the uncertainty under consideration of the errors of indication. The value R represents the net load indication in the unit of measure of the device.

Coefficient de température pour l'évaluation de l'incertitude de mesure en opération: 3.0 · 10<sup>-6</sup> / K

Plage d'opération sur le site pour l'évaluation de l'incertitude de mesure en opération: 5 °F


#### Linéarisation de l'Équation d'Incertitude

| Plage |   | Plage       | Tel que Trouvé                     | Tel que Laissé                                                |  |
|-------|---|-------------|------------------------------------|---------------------------------------------------------------|--|
|       | 1 | 0 g - 210 g | $U_1$ = 0.23 mg + 0.00749 mg/g · R | $U_1 = 0.18 \text{ mg} + 0.00352 \text{ mg/g} \cdot \text{R}$ |  |


To optimize the stability of the linearization, besides of the zero load only increasing measurement points with a test load of 5% of the measurement range or larger are taken for the calculation of the linear equation.

#### Absolute and Relative Measurement Uncertainty in Use for Various Net Indications (Examples)

| Indication Net | Tel que Trouvé |          | Tel que | Laissé   |
|----------------|----------------|----------|---------|----------|
| 0.0210 g       | 0.23 mg        | 1.1%     | 0.18 mg | 0.86%    |
| 0.2100 g       | 0.23 mg        | 0.11%    | 0.18 mg | 0.086%   |
| 2.1000 g       | 0.25 mg        | 0.012%   | 0.19 mg | 0.0089%  |
| 21.0000 g      | 0.39 mg        | 0.0018%  | 0.25 mg | 0.0012%  |
| 210.0000 g     | 1.8 mg         | 0.00086% | 0.92 mg | 0.00044% |







# GWP® Certificate

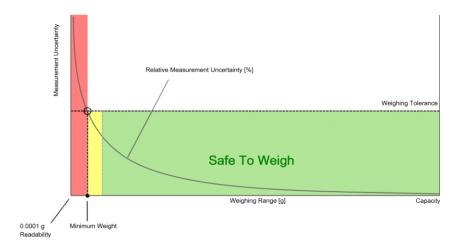


No Pass/Fail statement is possible because one or more of the process requirements are not specified.

Tests Performed:






# **Process Requirements**

Weighing Tolerance: Not Specified

Smallest Net Weight: Not Specified

Facteur de Sécurité: \*Not specified, default = 2

#### Safe Weighing Range



Since the weighing tolerance is not specified, only a generic behavior curve is shown.



# **Poids Minimum**

#### As Found Minimum Weight Table

|           | Poids minimum pour différentes tolérances de pesage et facteurs de sécurité |           |           |           |           |  |  |  |  |  |
|-----------|-----------------------------------------------------------------------------|-----------|-----------|-----------|-----------|--|--|--|--|--|
|           | Facteur de Sécurité                                                         |           |           |           |           |  |  |  |  |  |
| Tolérance | 1                                                                           | 2         | 3         | 5         | 10        |  |  |  |  |  |
| 0.1%      | 0.22778 g                                                                   | 0.45903 g | 0.69382 g | 1.17436 g | 2.44377 g |  |  |  |  |  |
| 0.2%      | 0.11346 g                                                                   | 0.22778 g | 0.34297 g | 0.57598 g | 1.17436 g |  |  |  |  |  |
| 0.5%      | 0.04528 g                                                                   | 0.09070 g | 0.13626 g | 0.22778 g | 0.45903 g |  |  |  |  |  |
| 1%        | 0.02262 g                                                                   | 0.04528 g | 0.06798 g | 0.11346 g | 0.22778 g |  |  |  |  |  |
| 2%        | 0.01131 g                                                                   | 0.02262 g | 0.03395 g | 0.05663 g | 0.11346 g |  |  |  |  |  |
| 5%        | 0.00452 g                                                                   | 0.00905 g | 0.01357 g | 0.02262 g | 0.04528 g |  |  |  |  |  |

#### As Left Minimum Weight Table

|           | Poids minimum pour différentes tolérances de pesage et facteurs de sécurité |           |           |           |           |  |  |  |  |  |
|-----------|-----------------------------------------------------------------------------|-----------|-----------|-----------|-----------|--|--|--|--|--|
|           | Facteur de Sécurité                                                         |           |           |           |           |  |  |  |  |  |
| Tolérance | 1                                                                           | 2         | 3         | 5         | 10        |  |  |  |  |  |
| 0.1%      | 0.18444 g                                                                   | 0.37018 g | 0.55725 g | 0.93542 g | 1.90502 g |  |  |  |  |  |
| 0.2%      | 0.09206 g                                                                   | 0.18444 g | 0.27715 g | 0.46355 g | 0.93542 g |  |  |  |  |  |
| 0.5%      | 0.03678 g                                                                   | 0.07362 g | 0.11051 g | 0.18444 g | 0.37018 g |  |  |  |  |  |
| 1%        | 0.01839 g                                                                   | 0.03678 g | 0.05519 g | 0.09206 g | 0.18444 g |  |  |  |  |  |
| 2%        | 0.00919 g                                                                   | 0.01839 g | 0.02758 g | 0.04599 g | 0.09206 g |  |  |  |  |  |
| 5%        | 0.00368 g                                                                   | 0.00735 g | 0.01103 g | 0.01839 g | 0.03678 g |  |  |  |  |  |

À ces valeurs de poids net minimum, l'incertitude de mesure du dispositif est égale ou inférieure à 1/1 (pas de facteur de sécurité), 1/2, 1/3, 1/5 ou 1/10 de la tolérance requise. Ces valeurs sont calculées avec k=2 et basées sur la formule linéaire de l'incertitude de mesure du dispositif de pesage en opération.

The safety factor for As Found is always 1. This implies no safety factor. As Found testing looks at the behavior of the instrument from the past until test occurred. For the past, it is necessary to know that the tolerance was met, but not the safety factor. The safety factor is a proactive measure to apply for future measurements.

#### Notes on minimum weight values in above table:

- 1. If "N/A" is shown above, no appropriate value could be calculated.
- 2. METTLER TOLEDO is not responsible for the definition of the process requirements.

## Résultats de Mesure

#### **Results Summary**

|          | Répétabilité | Excentricité | Erreur d'indication |
|----------|--------------|--------------|---------------------|
| As Found | N/D          | N/D          | N/D                 |
| As Left  | N/D          | N/D          | N/D                 |





= Safety Factor not met

# **METTLER TOLEDO Service**

#### Répétabilité

Charge de Test: 100 g

|           |               | Tel que Trouvé |        | Tel que Laissé |        |
|-----------|---------------|----------------|--------|----------------|--------|
| Tolérance | Control Limit | Std. Deviation | Result | Std. Deviation | Result |
| 0.1%      | N/D           |                | N/D    | 0.00008 g      | N/D    |
| 0.2%      | N/D           |                | N/D    |                | N/D    |
| 0.5%      | N/D           | 0.00044 ~      | N/D    |                | N/D    |
| 1%        | N/D           | 0.00011 g      | N/D    |                | N/D    |
| 2%        | N/D           |                | N/D    |                | N/D    |
| 5%        | N/D           |                | N/D    |                | N/D    |

An assessment cannot be made because the smallest net weight is not defined.

The weighing tolerance is met if the standard deviation is less than or equal to the corresponding control limit.

#### Excentricité

Charge de Test: 100 g

|           |               | Tel que Trou | ıvé      | Tel que Lais | sé       |
|-----------|---------------|--------------|----------|--------------|----------|
| Tolérance | Control Limit | Deviation    | Result   | Deviation    | Result   |
| 0.1%      | 0.0500 g      |              | <b>✓</b> |              | <b>✓</b> |
| 0.2%      | 0.1000 g      |              | <b>✓</b> |              | <b>✓</b> |
| 0.5%      | 0.2500 g      | 0.0000       | <b>✓</b> | 0.0000       | <b>✓</b> |
| 1%        | 0.5000 g      | 0.0002 g     | <b>✓</b> | 0.0000 g     | <b>✓</b> |
| 2%        | 1.0000 g      |              | <b>✓</b> |              | <b>✓</b> |
| 5%        | 2.5000 g      |              | <b>~</b> |              | <b>✓</b> |

The weighing tolerance is met if the deviation is less than or equal to the corresponding control limit.

#### **Erreur d'indication**

#### Tel que Trouvé

|                 |           | Control limits for various weighing tolerances |          |          |          |          |          |
|-----------------|-----------|------------------------------------------------|----------|----------|----------|----------|----------|
| Reference Value | Error     | 0.1%                                           | 0.2%     | 0.5%     | 1%       | 2%       | 5%       |
| 0.0000 g        | 0.0000 g  | N/D                                            | N/D      | N/D      | N/D      | N/D      | N/D      |
| 50.0000 g       | 0.0000 g  | 0.0250 g                                       | 0.0500 g | 0.1250 g | 0.2500 g | 0.5000 g | 1.2500 g |
| 99.9999 g       | -0.0002 g | 0.0500 g                                       | 0.1000 g | 0.2500 g | 0.5000 g | 1.0000 g | 2.5000 g |
| 149.9999 g      | -0.0005 g | 0.0750 g                                       | 0.1500 g | 0.3750 g | 0.7500 g | 1.5000 g | 3.7500 g |
| 200.0001 g      | -0.0008 g | 0.1000 g                                       | 0.2000 g | 0.5000 g | 1.0000 g | 2.0000 g | 5.0000 g |
| Resul           | lt        | <b>✓</b>                                       | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |

#### Pièce jointe au Certificat de Calibration:

CA0003-041-030920-ACC-USL



#### Tel que Laissé

|                 |           | Control limits for various weighing tolerances |          |          |          |          |          |
|-----------------|-----------|------------------------------------------------|----------|----------|----------|----------|----------|
| Reference Value | Error     | 0.1%                                           | 0.2%     | 0.5%     | 1%       | 2%       | 5%       |
| 0.0000 g        | 0.0000 g  | N/D                                            | N/D      | N/D      | N/D      | N/D      | N/D      |
| 50.0000 g       | 0.0001 g  | 0.0250 g                                       | 0.0500 g | 0.1250 g | 0.2500 g | 0.5000 g | 1.2500 g |
| 99.9999 g       | 0.0001 g  | 0.0500 g                                       | 0.1000 g | 0.2500 g | 0.5000 g | 1.0000 g | 2.5000 g |
| 149.9999 g      | 0.0000 g  | 0.0750 g                                       | 0.1500 g | 0.3750 g | 0.7500 g | 1.5000 g | 3.7500 g |
| 200.0001 g      | -0.0001 g | 0.1000 g                                       | 0.2000 g | 0.5000 g | 1.0000 g | 2.0000 g | 5.0000 g |
| Resul           | lt        | <b>~</b>                                       | <b>~</b> | <b>~</b> | <b>✓</b> | <b>~</b> | <b>~</b> |

The weighing tolerance is met if the error (of indication) for each test point is less than or equal to the corresponding control limit for that particular weighing tolerance. Results at or close to the zero point cannot be assessed.



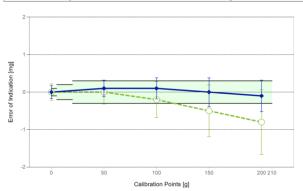
# Handbook 44 Tolerance Assessment (Entretien)

Les mesures du certificat de calibration joint ont été évaluées selon les tolérances définies par NIST HB44.

Tel que Trouvé

Tel que Laissé










#### Weighing Device

| Range | Max. Capacity | Readability (d) | Verification Scale Interval (e) | Class |
|-------|---------------|-----------------|---------------------------------|-------|
| 1     | 210 g         | 0.0001 g        | 0.0001 g                        | I     |



#### **Test Load Tolérance** From То 0.0000 g 0.0000 g 0.000025 g 0.0001 g 5.0000 g 0.0001 g 5.0001 g 20.0000 g 0.0002 g

0.0003 g

210.0000 g

Tolerances according to NIST Handbook 44

20.0001 g Tel que Trouvé

Tel que Laissé

- Tolérance

#### **Eccentricity and Repeatability**

| Test                         | Test Load | Tolérance | As Found           |          | As Left            |          |
|------------------------------|-----------|-----------|--------------------|----------|--------------------|----------|
|                              |           |           | Max. Error / Range | Result   | Max. Error / Range | Result   |
| Excentricité (Maximum Error) | 100 g     | 0.0003 g  | 0.0002 g           | <b>✓</b> | 0.0001 g           | <b>~</b> |
| Excentricité (Plage)         | 100 g     | 0.0003 g  | 0.0002 g           | <b>/</b> | 0.0000 g           | <b>/</b> |
| Répétabilité (Maximum Error) | 100 g     | 0.0003 g  | 0.0003 g           | <b>/</b> | 0.0002 g           | <b>/</b> |
| Répétabilité (Plage) 100 g   |           | 0.0003 g  | 0.0003 g           | <b>/</b> | 0.0002 g           | <b>/</b> |

Max. Error: Maximum of the absolute values of the individual errors.

Range: Difference between largest and smallest measurement value.

#### **Error of Indication**

| Deference Value | Taláranas       | As Found  |                     | As Left  |                     |          |
|-----------------|-----------------|-----------|---------------------|----------|---------------------|----------|
|                 | Reference Value | Tolérance | Error of Indication | Result   | Error of Indication | Result   |
| 1               | 0.0000 g        | 0.0001 g  | 0.0000 g            | <b>✓</b> | 0.0000 g            | ✓        |
| 2               | 50.0000 g       | 0.0003 g  | 0.0000 g            | <b>✓</b> | 0.0001 g            | <b>✓</b> |
| 3               | 99.9999 g       | 0.0003 g  | -0.0002 g           | <b>✓</b> | 0.0001 g            | <b>✓</b> |
| 4               | 149.9999 g      | 0.0003 g  | -0.0005 g           | ×        | 0.0000 g            | <b>✓</b> |
| 5               | 200.0001 g      | 0.0003 g  | -0.0008 g           | ×        | -0.0001 g           | <b>✓</b> |

Page 1 of 1 Version Logicielle: 1.22.0.155 © METTLER TOLEDO Le document a été fourni par voie électronique.



Tél. (514) 631-6653 Fax (514) 631-6122 info@ulrich.ca www.ulrich.ca







#### CALIBRATION CERTIFICATE

Certificate no.:

769847

Identification:

**SBI-212** 

Description:

THERMO-HYGROMETER, AMPROBE TH-3

Manufacturer:

TH-3

Model no.: Serial no.:

100906351

**AMPROBE** 

Calibration date:

September 10, 2020

Certificate issued: September 10, 2020

Interval:

12 months

Due date:

September 10, 2021

Procedure no.:

MET/CAL

**Environment:** 

CLAS Type 2 Laboratory

Temperature:

23 ± 2°C

**Humidity:** 

35 - 55% RH

Metrologist:

**NFS** 

Property of:

SBI

250 RUE DE COPENHAGUE

ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3

Approved by:

David Llorens, Quality Manager

This calibration certificate is issued in accordance with the applicable requirements of ISO/IEC 17025 and Ulrich Metrology's quality manual QM-09 Revision 9. Measurement results provided are traceable to either the National Research Council Canada (NRC), the National Institute of Standards and Technology (NIST), a national laboratory of another country signatory to the CIPM Mutual Recognition Arrangement (MRA), or a calibration laboratory accredited by an accrediting body with which Canada has an equivalence agreement.

#### **CALIBRATION STANDARDS**

See notes below.

#### MEASUREMENT UNCERTAINTY

The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted otherwise. For measurement results associated with the conformance to a tolerance, the uncertainty in the measurement system did not exceed 25% (4:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the report.

#### **CALIBRATION DATA**

See next page for measurement results.

Notes:

9V battery replaced.



Tél. (514) 631-6653 Fax (514) 631-6122 info@ulrich.ca www.ulrich.ca

#### CALIBRATION DATA

Certificate no.:

769847

Identification:

SBI-212

Description:

THERMO-HYGROMETER

Serial no.:

100906351

Procedure:

Amprobe TH-3: 2500ST-LT-M

**CALIBRATION STANDARDS** 

Identification

Description

Manufacturer

Model no.

Result:

PASS

Condition: FOUND-LEFT

Cal. Date Due Date

1304953

**HUMIDITY GENERATOR** 

THUNDER SCIENTIFIC

2500ST-LT

2019/07/23 2021/01/31

**MEASUREMENT RESULTS (Per MET/CAL)** 

| -                                      | TRUE   | TEST   | ACCEPTANCE | LIMITS | PASS/ |     |
|----------------------------------------|--------|--------|------------|--------|-------|-----|
| PARAMETER                              | VALUE  | RESULT | LOW        | HIGH   | FAIL  | TUR |
| TEMPERATURE CALIBRATION                |        |        |            |        |       |     |
| 23°C                                   |        |        |            |        |       |     |
| 23.10degC                              |        | 23.60  | 22.30      | 23.90  | PASS  |     |
| RELATIVE HUMIDITY CALIBRATION A 20% RH | T 23°C |        |            |        |       |     |
| 20.00%                                 |        | 20.90  | 17.00      | 23.00  | PASS  |     |
| 50% RH                                 |        |        |            |        |       |     |
| 50.00%                                 |        | 49.90  | 47.00      | 53.00  | PASS  |     |
| 80% RH                                 |        |        |            |        |       |     |
| 79.94%                                 |        | 77.00  | 76.94      | 82.94  | PASS  |     |

End of Test Data

# ETTLER TOLEDO





Accredited by the American Association for Laboratory Accreditation (A2LA)

ISO 17025 Registered ANSI/NCSL Z540-1 Accredited

### Service Business Unit Industrial 1900 Polaris Parkway Columbus, OH 43240

1-800-METTLER

**Mettler Toledo** 

# Certificat de Calibration de Précision

**Accuracy Calibration Certificate** 

### Client

Compagnie: SBI Fabricant De Poeles Adresse: 250 Rue de Copenhague Saint-Augustin-De-Desmaures Ville: Gabrielle Santerre Contact: Zip/Code Postal: G3A 2H3 État/Province: Quebec

### **Weighing Device**

| Manufacturier: | Ohaus      | Type d'Instrument:   | Weighing Instrument   |
|----------------|------------|----------------------|-----------------------|
| Modèle:        | FD15       | # Outil:             | SBI-222 BALANCE BENCH |
| No. Série:     | B144397174 | Modèle Indicateur:   | N/D                   |
| Building:      | N/D        | Terminal Serial No.: | N/D                   |
| Floor:         | N/D        | Terminal Asset No.:  | N/D                   |
| Room:          | N/D        |                      |                       |

| Plage | Capacité Max | Lisibilité (d) |  |  |
|-------|--------------|----------------|--|--|
| 1     | 15000 g      | 1 g            |  |  |

### **Procedure**

Instruction de Calibration: EURAMET cg-18 v. 4.0 (11/2015) Instruction de travail METTLER TOLEDO: 30260953 Rev1.31

Ce certificat de calibration contient des mesures pour les calibrations Tel que Trouvé et Tel que Laissé.

The sensitivity/span of the weighing instrument was adjusted before As Left calibration with an external weight.

|                | Tempe          | erature      | <b>_</b>                      |
|----------------|----------------|--------------|-------------------------------|
| Tel que Trouvé | Start: 22.0 °C | End: 22.0 °C | Environmental the accuracy of |
| Tel que Laissé | Start: 22.0 °C | End: 22.0 °C |                               |

Il conditions have been verified to ensure of the calibration.

This certificate is issued in accordance with the conditions of accreditation granted by A2LA, which is based on ISO/IEC 17025. A2LA has assessed the measurement capability of the laboratory and its traceability to recognized national standards.

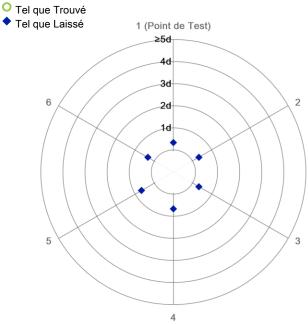
09-Mar-2020 Date calibration Tel que Trouvé: Date calibration Tel que Laissé: 09-Mar-2020 09-Mar-2020 Date d'Émission: Requested Next Calibration Date: 31-Mar-2021

Authorized A2LA Signatory:

Dany Careau

Page 1 of 4 Version Logicielle: 1.22.0.155 © METTLER TOLEDO




# Résultats de Mesure

### Répétabilité

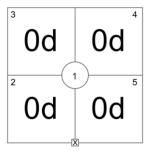
### Charge de Test: 10000 g

|   | Tel que Trouvé | Tel que Laissé |  |  |
|---|----------------|----------------|--|--|
| 1 | N/D            | 10000 g        |  |  |
| 2 | N/D            | 10000 g        |  |  |
| 3 | N/D            | 10000 g        |  |  |
| 4 | N/D            | 10001 g        |  |  |
| 5 | N/D            | 10001 g        |  |  |
| 6 | N/D            | 10000 g        |  |  |

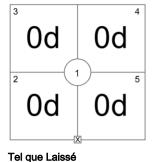




The "d" in the graph represents the readability of the range/interval in which the test was performed.


The results of this graph are based upon the absolute values of the differences from the mean value.

# Excentricité


### Charge de Test: 5000 g

| Position | Tel que Trouvé | Tel que Laissé |
|----------|----------------|----------------|
| 1        | 5001 g         | 5000 g         |
| 2        | 5001 g         | 5000 g         |
| 3        | 5001 g         | 5000 g         |
| 4        | 5001 g         | 5000 g         |
| 5        | 5001 g         | 5000 g         |

| Déviation<br>Maximale | 0 g | 0 g |
|-----------------------|-----|-----|
|-----------------------|-----|-----|

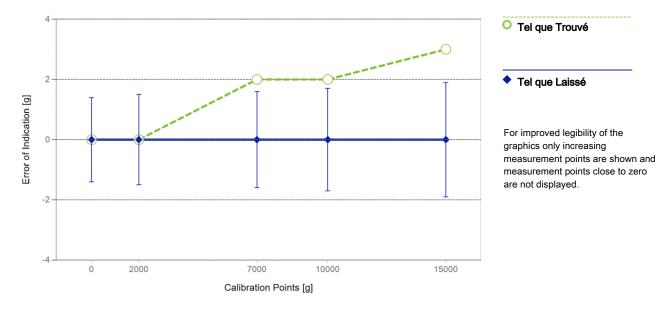






The "d" in the graph represents the readability of the range/interval in which the test was performed.

### **Erreur d'indication**


## Tel que Trouvé

|   | Reference Value | Indication | Erreur d'indication | Incertitude Élargie | k   |
|---|-----------------|------------|---------------------|---------------------|-----|
| 1 | 0 g             | 0 g        | 0 g                 | N/D                 | N/D |
| 2 | 2000 g          | 2000 g     | 0 g                 | N/D                 | N/D |
| 3 | 7000 g          | 7002 g     | 2 g                 | N/D                 | N/D |
| 4 | 10000 g         | 10002 g    | 2 g                 | N/D                 | N/D |
| 5 | 15000 g         | 15003 g    | 3 g                 | N/D                 | N/D |

Version Logicielle: 1.22.0.155 © METTLER TOLEDO Page 2 of 4

#### Tel que Laissé

|   | Reference Value | Indication | Erreur d'indication | Incertitude Élargie | k    |
|---|-----------------|------------|---------------------|---------------------|------|
| 1 | 0 g             | 0 g        | 0 g                 | 1.4 g               | 2.37 |
| 2 | 2000 g          | 2000 g     | 0 g                 | 1.5 g               | 2.28 |
| 3 | 7000 g          | 7000 g     | 0 g                 | 1.6 g               | 2.28 |
| 4 | 10000 g         | 10000 g    | 0 g                 | 1.7 g               | 2.13 |
| 5 | 15000 g         | 15000 g    | 0 g                 | 1.9 g               | 2.13 |



The uncertainty stated is the expanded uncertainty at calibration obtained by multiplying the standard combined uncertainty by the coverage factor k – which can be larger than 2 according to EURAMET cg-18. The value of the measurand lies within the assigned range of values with a probability of approximately 95%. The user is responsible for maintaining environmental conditions and the settings of the weighing instrument when it was calibrated.

### **Test Equipment**

Tous les poids utilisés pour le contrôle métrologique sont retraçables aux étalons Nationaux et Internationaux. Les poids ont été calibrés et certifiés par un laboratoire de calibration accrédité.

### Jeu de Poids 1: OIML M1

 Weight Set Number:
 22940
 Date d'Émission:
 12-Jul-2019

 # Certificat:
 M19-0315
 Date de Calibration Due:
 12-Jul-2020

### Remarques

N/D

#### **End of Accredited Section**

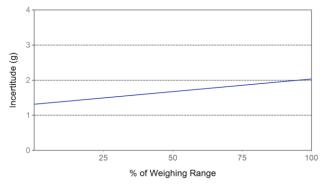
The information below and any attachments to this calibration certificate are not part of the accredited calibration.

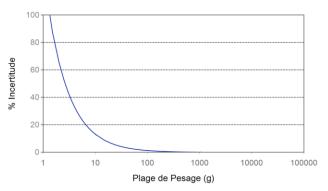


# Incertitude de Mesure du dispositif de pesage en opération

Stated is the expanded uncertainty with k=2 in use. The formula shall be used for the estimation of the uncertainty under consideration of the errors of indication. The value R represents the net load indication in the unit of measure of the device.

Coefficient de température pour l'évaluation de l'incertitude de mesure en opération: 10.0 · 10<sup>-6</sup> / K


### Linéarisation de l'Équation d'Incertitude


| Plage T |               | Tel que Trouvé | Tel que Laissé                                               |
|---------|---------------|----------------|--------------------------------------------------------------|
| 1       | 0 g - 15000 g | N/A            | $U_1 = 1317 \text{ mg} + 0.0480 \text{ mg/g} \cdot \text{R}$ |

To optimize the stability of the linearization, besides of the zero load only increasing measurement points with a test load of 5% of the measurement range or larger are taken for the calculation of the linear equation.

### Absolute and Relative Measurement Uncertainty in Use for Various Net Indications (Examples)

| Indication Net | Tel que Trouvé |     | Tel que Laissé |        |  |
|----------------|----------------|-----|----------------|--------|--|
| 15 g           | N/A            | N/A | 1.3 g          | 8.8%   |  |
| 150 g          | N/A            | N/A | 1.3 g          | 0.88%  |  |
| 1500 g         | N/A            | N/A | 1.4 g          | 0.093% |  |
| 7500 g         | N/A            | N/A | 1.7 g          | 0.022% |  |
| 15000 g        | N/A            | N/A | 2.0 g          | 0.014% |  |



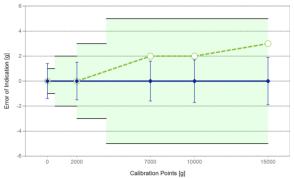


Tel que Trouvé

Tel que Laissé

Version Logicielle: 1.22.0.155 © METTLER TOLEDO Page 4 of 4




# Handbook 44 Tolerance Assessment (Entretien)

Les mesures du certificat de calibration joint ont été évaluées selon les tolérances définies par NIST HB44.



## Weighing Device

| Range      | ge Max. Capacity Readability (d)         |     | Verification Sca | Verification Scale Interval (e) |           |  |  |  |
|------------|------------------------------------------|-----|------------------|---------------------------------|-----------|--|--|--|
| 1          | 15000 g                                  | 1 g | 1                | g                               | III       |  |  |  |
| 6          | Tolerances according to NIST Handbook 44 |     |                  |                                 |           |  |  |  |
| 4          | Test Load                                |     |                  |                                 |           |  |  |  |
| <b>5</b> 2 |                                          |     | From             | То                              | Tolérance |  |  |  |





O Tel que Trouvé

Tel que Laissé

- Tolérance

# **Eccentricity and Repeatability**

|                              |           |           | As Found           |          | As Left            |          |
|------------------------------|-----------|-----------|--------------------|----------|--------------------|----------|
| Test                         | Test Load | Tolérance | Max. Error / Range | Result   | Max. Error / Range | Result   |
| Excentricité (Maximum Error) | 5000 g    | 5 g       | 1 g                | <b>~</b> | 0 g                | <b>~</b> |
| Excentricité (Plage)         | 5000 g    | 5 g       | 0 g                | <b>/</b> | 0 g                | <b>~</b> |
| Répétabilité (Maximum Error) | 10000 g   | 5 g       | N/D                | N/D      | 1 g                | <b>✓</b> |
| Répétabilité (Plage)         | 10000 g   | 5 g       | N/D                | N/D      | 1 g                | <b>/</b> |

**Max. Error:** Maximum of the absolute values of the individual errors. **Range:** Difference between largest and smallest measurement value.

### **Error of Indication**

|   | Reference Value Tolérance |           | As Found            |          | As Left             |          |  |
|---|---------------------------|-----------|---------------------|----------|---------------------|----------|--|
|   | Reference value           | Tolerance | Error of Indication | Result   | Error of Indication | Result   |  |
| 1 | 0 g                       | 1 g       | 0 g                 | <b>✓</b> | 0 g                 | <b>✓</b> |  |
| 2 | 2000 g                    | 2 g       | 0 g                 | <b>✓</b> | 0 g                 | <b>✓</b> |  |
| 3 | 7000 g                    | 5 g       | 2 g                 | <b>✓</b> | 0 g                 | <b>✓</b> |  |
| 4 | 10000 g                   | 5 g       | 2 g                 | <b>✓</b> | 0 g                 | <b>/</b> |  |
| 5 | 15000 g                   | 5 g       | 3 g                 | <b>✓</b> | 0 g                 | <b>✓</b> |  |

Version Logicielle: 1.22.0.155 © METTLER TOLEDO Page 1 of 1

# METTLER TOLEDO

Certificate No: 01037944A-1

METTLER-TOLEDO, LLC

201 Wolf Dr Thorofare NJ 08086 1-800-METTLER



# Mass Calibration Certificate

### **Customer Information**

Customer Name:

Purchase Order:

Stove Builder International, Inc.

City:

Address:

250 de Copenhauge St.-Augustin-de-Desmaures State / Province:

QC

220309982

Zip / Postal Code:

G3A 2H3

# Measurement and Test Equipment Identification

Serial Number:

B316238717

Date Received:

03-OCT-2018

Manufacturer:

Mettler Toledo

Condition:

Good

Asset Number:

SBI-237

Tolerance Class:

OIML R111 Class E2

# **Environmental Conditions**

Temperature: 21.51 °C

Barometric Pressure: 770.05 mm Hg

Relative Humidity: 50 %RH

The standards used to perform this calibration have been compared to reference mass standards that are traceable to the SI through the National Institute of Standards and Technology under Test No 684/289871-17.

The weights calibrated for this report have been calibrated in accordance with the calibration laboratory's process. The calibration performed meets the criteria as described in the current revisions of ASTM E617 and OIML R111. This calibration also meets specifications as outlined in ISO/IEC 17025, ANSI/NCSL Z540-1-1994, and applicable documents.

This certificate may not be partially reproduced, except with prior written permission of the issuing laboratory. This certificate must not be used by the customer to claim product endorsement by NIST, NVLAP, or any other agency of the J.S. government.

Calibration Date:

09-OCT-2018

Next Calibration Due:

09-OCT-2023

Calibration Technician:

Robotic Calibration

Signature:

oseph Moran, Metrology Manager

Approved Signatory

10-OCT-2018

# As Found Data

| Nominal      | Serial Number | True Mass | Conv. Mass | Uncertainty | Tolerance | Density |
|--------------|---------------|-----------|------------|-------------|-----------|---------|
| Value&Suffix |               | (g)       | (g)        | (mg, k = 2) | (mg)      | (g/cm³) |
| 100 mg       | B316238717    | 0.0999983 | 0.0999983  | 0.0025      | 0.0160    | 8.00    |

# As Left Data

| Nominal      | Serial Number | True Mass | Conv. Mass | Uncertainty | Tolerance | Density |
|--------------|---------------|-----------|------------|-------------|-----------|---------|
| Value&Suffix |               | (g)       | (g)        | (mg, k = 2) | (mg)      | (g/cm³) |
| 100 mg       | B316238717    | 0.0999983 | 0.0999983  | 0.0025      | 0.0160    | 8.00    |

# **Standards and Comparators Used**

| Nominal<br>Value&Suffix | Serial Number | Standard<br>Set No. | Cal<br>Due | Compa<br>Use |     | Cal<br>Due | Procedure<br>Used |
|-------------------------|---------------|---------------------|------------|--------------|-----|------------|-------------------|
| 100 mg                  | B316238717    | A031                | 07/01/19   | A5XL         | 131 | 01/01/19   | Multi A-B         |
| Comments                |               |                     |            |              |     |            |                   |

No remarks

### **Definitions**

**Nominal Value** - The value as labeled on the weight or defined by shape in accordance with OIML R111 for milligram weights.

True Mass - The mass value of the weight if measured in a vacuum.

**Conventional Mass** - For a mass at 20 °C, "Conventional Mass" is the mass of a reference standard of density 8000 kg/m³ which it balances in air with a density of 1.2 kg/m³. This value should be referenced when testing the accuracy of a weighing device using any of the nominal values contained in this certificate. The As Found results will equal the As Left in cases where no adjustment or replacement was required.

**Uncertainty** - All Uncertainty values are reported at approximately 95% confidence level (k=2). The uncertainty value does not include a component for the affects due to magnetism.

**Tolerance** - The acceptable range of deviation (positive and negative) from the nominal value, including the uncertainty, as defined by ASTM and OIML for the respective classes.

**Density** - The assumed density of the material used by the manufacturer.

Calibration Process - This calibration was performed in the Level I Mass Metrology Laboratory at 201 Wolf Dr Thorofare, New Jersey 08086 unless otherwise noted in Comments.

**OOT** - The As Found measurement result combined with the uncertainty exceeded the tolerance for the specified weight class.

A - Weight was adjusted after As Found testing to within the appropriate tolerance class.

R - The received weight was replaced due to an out of tolerance condition and the weight was not adjustable or the weight for this nominal value was missing.



MICRO PRECISION CALIBRATION, INC. 22835 INDUSTRIAL PLACE **GRASS VALLEY CA 95949** 530-268-1860

# **Certificate of Calibration**



Cert No. 551220083500445

**Customer:** 

STOVE BUILDERS INTERNATIONAL INC.

**PORTES 11-12** 

MPC Control #:

Asset ID:

Date: Mar 3, 2020

250 DE COPENHAGUE

SAINT-AUGUSTIN-DE-DESMAURES QC G3A 2H3

Work Order #:

SAC-70107380

Purchase Order #:

63318

Serial Number:

16425450039

Department:

N/A

Gage Type:

DIGITAL VANE/HOT-WIRE ANEMOMETER

Performed By:

JACK WERTZ III

Manufacturer: TPI, INC.

DA0650

SBI-241

Received Condition: IN TOLERANCE

Model Number: 575 Returned Condition: IN TOLERANCE

Size: N/A

Cal. Date:

March 02, 2020

68.0°F / 40.0% Temp/RH:

Cal. Interval:

12 MONTHS

Location:

Calibration performed at MPC facility

Cal. Due Date:

March 02, 2021

**Calibration Notes:** 

See attached calibration data. (1 page)

### Standards Used to Calibrate Equipment

| 1.D.   | Description.                              | Model   | Serial     | Manufacturer               | Cal. Due Date | Traceability #  |
|--------|-------------------------------------------|---------|------------|----------------------------|---------------|-----------------|
| CJ5100 | WIND TUNNEL WITH CONTROLLER               | JS-500  | 375/305    | INTERACTIVE<br>INSTRUMENTS | Oct 31, 2021  | 551220083300219 |
| DA8367 | PRECISION PLATINUM RESISTANCE THERMOMETER | 8167-25 | 180322     | LEEDS & NORTHRUP<br>CO.    | Oct 31, 2022  | 551220083240044 |
| DF8059 | SPRT W/ CASE DIGITAL MULTIMETER           | 34401A  | US36090404 | HEWLETT PACKARD            | Sep 30, 2020  | 551220083194555 |
| DS2399 | AIR VELOCITY TRANSDUCER                   | 8455-03 | 56020622   | TSI                        | Oct 3, 2021   | 800406957       |

### **Procedures Used in this Event**

Procedure Name

Description

MPC-AIR-001 Rev. 01

Air Velocity, Temperature and Flow Meters, General, rev01, Feb-11-2020

Calibrating Technician:

JACK WERTZ III

Jack R. Wat It

QC Approval:

MARVIN ILAO

Statements of Pase or Fall Conformance: The uncertainty of measurement has been taken into account when determining compilance with specification, as per ILAC-G8:03/2009. All measurements and test results guard banded to ensure the probability of false-accept does not exceed 2% in compilance with ANSI/NCSL Z540.3-2008.

The status of compilance with the acceptance criteria is reported as:

PASS - Compilant with specification;

FAIL - Not compliant with specification

FAIL - Not complaint with specification,
FAIL - Not complaint with specification and the specified (derance.
FAIL\* - The measured value is not within the acceptance limits. However, a portion of the expanded uncertainty of measurement at 95% is within the specified (derance.
FAIL\* - The measured value is within acceptance limits. However, a portion of the expanded uncertainty of measurement at 95% exceeds the specified (derance.
The expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%, unless otherwise stated. This calibration report complies with ISO/IEC 17025;2017 and ANSINCSL 2540.3 Method 6-Quard Bands based on Test Uncertainty Ratio. Calibration cycles and resulting due dates were submitted/approved by the customer. Any numl factors may cause an instrument to drift out of Loterance before the next scheduled calibration. Recalibration cycles should be based on frequency of use, environmental conditions and customer's established systematic accuracy. All standards are traceable to St through the Valibration of Standards and Technology (VisiTs) and/or recognized national confidence in the proof of the standard and the proof of the standard submitted of the proof of the standard submitted of the proof of the standard of the standard submitted of the proof of the standard submitted approval of the Issuing MP Calibration Laboratory.



# Calibration Report of TPI 575 Vane/Hotwire Air Velocity Meter

| IPC Control #: | DA0650  | Serial Number:    | 16425450039    |
|----------------|---------|-------------------|----------------|
| Asset ID:      | SBI-241 | Calibration Date: | March 02, 2020 |

# **Velocity Measurement**

| Range         | Nominal  | Lower<br>Limit | As Found | As Left  | Upper<br>Limit | Result            | Uncertainty (±) |
|---------------|----------|----------------|----------|----------|----------------|-------------------|-----------------|
|               | 5.0 m/s  | 4,7 m/s        | 4,9 m/s  | 4.9 m/s  | 5.3 m/s        | PASS              | 0.15 m/s        |
| Amylaraba     | 10.0 m/s | 9.7 m/s        | 9,9 m/s  | 9.9 m/s  | 10.4 m/s       | PASSz             | 0.29 m/s        |
| 0,2 to 20 m/s | 15.0 m/s | 14.6 m/s       | 14.9 m/s | 14.9 m/s | 15.4 m/s       | PASS <sup>2</sup> | 0.44 m/s        |
|               | 19.0 m/s | 18.6 m/s       | 18.8 m/s | 18.8 m/s | 19.4 m/s       | PASS <sup>2</sup> | 0.38 m/s        |

| Range         | Nominal  | Lower<br>Limit | As Found | As Left  | Upper<br>Limit | Result            | Uncertainty (±) |
|---------------|----------|----------------|----------|----------|----------------|-------------------|-----------------|
|               | 6.3 m/s  | 5.8 m/s        | 6.3 m/s  | 6.3 m/s  | 6.7 m/s        | PASS              | 0,18 m/s        |
| afform - I an | 12.5 m/s | 12.0 m/s       | 12.3 m/s | 12,3 m/s | 13.1 m/s       | PASS <sup>z</sup> | 0,36 m/s        |
| 0.4 to 25 m/s | 18.8 m/s | 18.1 m/s       | 18.9 m/s | 18.9 m/s | 19,4 m/s       | PASS              | 0.38 m/s        |
|               | 23.8 m/s | 23.0 m/s       | 23.9 m/s | 23.9 m/s | 24.5 m/s       | PASS              | 0.48 m/s        |

| Range         | Nominal | Lower<br>Limit | As Found | As Left | Upper<br>Limit | Result | Uncertainty (±) |
|---------------|---------|----------------|----------|---------|----------------|--------|-----------------|
| J. STIFF LY   | 20.0 °C | 19.3 ℃         | 20.2 °C  | 20.2 °C | 20.7 °C        | PASS   | 0.0090 °C       |
|               | 40.0 °C | 39.1 °C        | 40.2 °C  | 40.2 °C | 40.9 °C        | PASS   | 0.0090 °C       |
| -20°C to 80°C | 60.0 °C | 58.9 °C        | 60.1 °C  | 60.1 °C | 61_1 °C        | PASS   | 0.0090 °C       |
|               | 76.0 °C | 74.7 °C        | 76.2 °C  | 76.2 ℃  | 77.3 °C        | PASS   | 0.0090 °C       |

### Statements of Pass or Fail Conformance

The uncertainty of measurement has been taken into account when determining compliance with specification, as per ILAC-G8:03/2009. All measurements and test results guard banded to ensure the probability of false-accept does not exceed 2% in compliance with ANSI/NCSL Z540.3-2006.

### The status of compliance with the acceptance criteria is reported as:

PASS - Compliant with specification

FAIL - Not compliant with specification.

FAIL<sup>2</sup> - The measured value is not within the acceptance limits. However, a portion of the expanded uncertainty of measurement at 95% is within the specified tolerance.

PASS<sup>Z</sup> - The measured value is within acceptance limits. However, a portion of the expanded uncertainty of measurement at 95% exceeds the specified tolerance.

The expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%, unless otherwise stated.

This calibration report complies with ISO/IEC 17025:2017 and ANSI/NCSL Z540.3 Method 6-Guard Bands based on Test Uncertainty Ratio.

- End of Calibration Report -



# **CERTIFICATE OF CALIBRATION**

### 





Certificate Number: 2020005339

Page 1 of 2

Manufacturer:

Dwyer Instruments Inc.

Model:

MS-121-LCD

Description:

Digital Pressure Gauge

Serial:

E51U01003410

ID:

SBI-247

Customer:

STOVE BUILDER INTERNATIONAL INC.

250 RUE DE COPENHAGUE

ST-AUGUSTIN-DE-DESMAURES QC

G3A 2H3

RMA:

AC20071072

Workorder:

2020005339

Barcode: Received Conditions: AL0015068-P

Calibration Date:

In Tolerance

Callbration Due:

17-Jul-2020 17-Jul-2021

Temperature:

22.39°C

Humidity:

55.3%RH

55.3

STATEMENT OF UNCERTAINTY: The reported expanded uncertainty of measurement is stated as the standard measurement uncertainty multiplied by the coverage factor K = 2, which for a normal distribution corresponds to a coverage probability of approximately 95 percent. Alpha Controls & Instrumentation Inc. certifies this instrument was calibrated on the date shown using standards traceable to NIST/NRC or accepted intrinsic standards and in compliance with ISO/IEC-17025:2017 and ANSI/NCSL Z540-1.

Any statement of compliance is made without taking measurement uncertainty into account and is based on UUT performance against required tolerance only. The customer must ensure equipment calibrated meets the intended use.

Tolerance is based on manufacturer specification if not stated otherwise. Calibration results relate to items calibrated only.

This certificate shall not be reproduced except in full without written approval of Alpha Controls and Instrumentation Inc.

#### STANDARDS USED

| Description             | Model        | ID         | Cal Date    | Due Date    |
|-------------------------|--------------|------------|-------------|-------------|
| Multimeter              | Fluke 8845A  | ELC-MTR-04 | 09-Jan-2020 | 09-Jan-2021 |
| Low Pressure Calibrator | Ruska 7250LP | PRE-CAL-06 | 17-Nov-2019 | 17-Nov-2020 |

Notes:

Transmitter was calibrated in vertical position.

Performed by:

Sree Chukka

(digitally signed on 17-Jul-2020 1:17 pm)

QA Reviewed by:

Slava Peciurov

Lab Manager

(digitally signed on 17-Jul-2020 2:17 pm)

| Procedure: Dwyer MS-121-LCD 0 to 0.1;0.5 inH2O/7520lp 8845A (1.0.A) |              |              |               |               |              |        | nd / Left (Pass) |
|---------------------------------------------------------------------|--------------|--------------|---------------|---------------|--------------|--------|------------------|
| est Description                                                     | True Value   | Test Results | Tolerance     | Lower Limit   | Upper Limit  | Status | Uncertainty      |
| Range: 0 to 0.5 inH2O                                               |              |              |               |               |              |        |                  |
| Output signal: 4 to 20 mA                                           |              |              |               |               |              |        |                  |
| PRESSURE TEST                                                       |              |              |               |               |              |        |                  |
| Display Reading                                                     |              |              |               |               |              | 0      |                  |
| Output @ 0.0000 inH2O, mA                                           |              |              |               |               |              | 4.03   |                  |
| 0,0000 inH2O                                                        | 0,0000 inH2O | 0.0009 inH2O | ±0.0050 inH2O | -0.0050 inH2O | 0.0050 inH2O | Pass   | 0.00015 inH      |
| Display Reading                                                     |              |              |               |               |              | 0.1238 |                  |
| Output @ 0,1250 inH2O, mA                                           |              |              |               |               |              | 7.982  |                  |
| 0.1250 inH2O                                                        | 0.1250 inH2O | 0.1244 inH2O | ±0,0050 inH2O | 0.1200 inH2O  | 0.1300 inH2O | Pass   | 0,00015 inH      |
| Display Reading                                                     |              |              |               |               |              | 0.2485 |                  |
| Output @ 0.2500 inH2O, mA                                           |              |              |               |               |              | 11.982 |                  |
| 0.2500 inH2O                                                        | 0.2500 inH2O | 0.2494 inH2O | ±0.0050 inH2O | 0,2450 inH2O  | 0.2550 inH2O | Pass   | 0.00015 inH      |
| Display Reading                                                     |              |              |               |               |              | 0.3730 |                  |
| Output @ 0.3750 inH2O, mA                                           |              |              |               |               |              | 15.941 |                  |
| 0.3750 inH2O                                                        | 0.3750 inH2O | 0.3732 inH2O | ±0.0050 inH2O | 0.3700 inH2O  | 0.3800 inH2O | Pass   | 0.00015 inH      |
| Display Reading                                                     |              |              |               |               |              | 0.4976 |                  |
| Output @ 0,5000 inH2O, mA                                           |              |              |               |               |              | 19.925 |                  |
| 0,5000 inH2O                                                        | 0.5000 inH2O | 0,4977 inH2O | ±0,0050 inH2O | 0,4950 inH2O  | 0,5050 inH2O | Pass   | 0.00015 inH      |
| Display Reading                                                     |              |              |               |               |              | 0.3760 |                  |
| Output @ 0,3750 inH2O, mA                                           |              |              |               |               |              | 16,037 |                  |
| 0.3750 inH2O                                                        | 0.3750 inH2O | 0.3762 inH2O | ±0.0050 inH2O | 0.3700 inH2O  | 0.3800 inH2O | Pass   | 0.00015 inH:     |
| Display Reading                                                     |              |              |               |               |              | 0.2517 |                  |
| Output @ 0.2500 inH2O, mA                                           |              |              |               |               |              | 12.046 |                  |
| 0.2500 inH2O                                                        | 0.2500 inH2O | 0.2514 inH2O | ±0.0050 inH2O | 0.2450 inH2O  | 0,2550 inH2O | Pass   | 0.00015 inH      |
| Display Reading                                                     |              |              |               |               |              | 0.1262 |                  |
| Output @ 0.1250 inH2O, mA                                           |              |              |               |               |              | 8.036  |                  |
| 0.1250 inH2O                                                        | 0.1250 inH2O | 0.1261 inH2O | ±0.0050 inH2O | 0.1200 inH2O  | 0.1300 inH2O | Pass   | 0.00015 inH      |
| Display Reading                                                     |              |              |               |               |              | 0.0012 |                  |
| Output @ 0.0000 inH2O, mA                                           |              |              |               |               |              | 4.040  |                  |
| 0.000 inH2O                                                         | 0.0000 inH2O | 0.0013 inH2O | ±0.0050 inH2O | -0.0050 inH2O | 0.0050 inH2O | Pass   | 0.00015 inH      |

END OF CERTIFICATE



# CERTIFICATE OF CALIBRATION







Certificate Number: 2020005338

Page 1 of 3

Manufacturer:

Dwyer Instruments Inc.

Model:

MS-121-LCD

Description:

Digital Pressure Gauge

Serial: ID: E52U01007512

Customer:

STOVE BUILDER INTERNATIONAL INC.

250 RUE DE COPENHAGUE

ST-AUGUSTIN-DE-DESMAURES QC

G3A 2H3

SBI-254

RMA:

AC20071072

Workorder: Barcode: 2020005338

Received Conditions:

AL0015074-P
Out of Tolerance

Calibration Date:

17-Jul-2020

Calibration Due:

17-Jul-2021

Temperature:

Humidity:

22.75°C

56.1%RH

STATEMENT OF UNCERTAINTY: The reported expanded uncertainty of measurement is stated as the standard measurement uncertainty multiplied by the coverage factor K = 2, which for a normal distribution corresponds to a coverage probability of approximately 95 percent. Alpha Controls & Instrumentation Inc. certifies this instrument was calibrated on the date shown using standards traceable to NIST/NRC or accepted intrinsic standards and in compliance with ISO/IEC-17025:2017 and ANSI/NCSL Z540-1.

Any statement of compliance is made without taking measurement uncertainty into account and is based on UUT performance against required tolerance only. The customer must ensure equipment calibrated meets the intended use.

Tolerance is based on manufacturer specification if not stated otherwise. Calibration results relate to items calibrated only.

This certificate shall not be reproduced except in full without written approval of Alpha Controls and Instrumentation Inc.

| STANDARDS | USED |
|-----------|------|
|           |      |

| Description             | Model        | ID         | Cal Date    | Due Date    |
|-------------------------|--------------|------------|-------------|-------------|
| Multimeter              | Fluke 8845A  | ELC-MTR-04 | 09-Jan-2020 | 09-Jan-2021 |
| Low Pressure Calibrator | Ruska 7250LP | PRE-CAL-06 | 17-Nov-2019 | 17-Nov-2020 |

Notes:

Adjusted trim pots.

Performed by:

Sree Chukka

Technician

(digitally signed on 17-Jul-2020 2:10 pm)

QA Reviewed by:

Slava Peciurov

Lab Manager

(digitally signed on 17-Jul-2020 2:16 pm)

| est Description                           | True Value            | Test Results         | Tolerance        | Lower Limit    | Upper Limit    | Status | Uncertain     |
|-------------------------------------------|-----------------------|----------------------|------------------|----------------|----------------|--------|---------------|
| 5 0 0 0 5 1 1100                          |                       |                      | 10.0101100       | EOWO! EIIIIK   | оррог шин      | Olatus | Oncertail     |
| Range: 0 to 0.5 inH2O                     |                       |                      |                  |                |                |        |               |
| Output signal: 4 to 20 mA PRESSURE TEST   |                       |                      |                  |                |                |        |               |
| Display Reading                           |                       |                      |                  |                |                |        |               |
| Output @ 0.0000 inH2O, mA                 |                       |                      |                  |                |                | 0      |               |
| 0.0000 inH2O                              | 0.0000 inH2O          | 0.0004 inH2O         | ±0.0050 inH2O    | -0.0050 inH2O  | 0.0050 :-1100  | 4.013  | 0.000451      |
| Display Reading                           | 0.0000 111120         | 0,0004 1111120       | ±0.0030 IIIA2O   | -0.0030 INH2O  | 0.0050 inH2O   | Pass   | 0.00015 in    |
| Output @ 0.1250 inH2O, mA                 |                       |                      |                  |                |                | 0.1223 |               |
| 0.1250 inH2O                              | 0.1250 inH2O          | 0.1223 inH2O         | ±0.0050 inH2O    | 0.1200 inH2O   | 0.4200 (-1.00  | 7.915  | 0.00045       |
| Display Reading                           | 0.1230 WII 120        | 0.1223 111120        | ±0.0050 IIIH2O   | 0.1200 INH2O   | 0.1300 inH2O   | Pass   | 0,00015 in    |
| Output @ 0.2500 inH2O, mA                 |                       |                      |                  |                |                | 0.2439 |               |
| 0.2500 inH2O                              | 0.2500 inH2O          | 0.2436 inH2O         | ±0.0050 inH2O    | 0.2450 inH2O   | 0.0550 (~1100  | 11.794 |               |
| Display Reading                           | 0.2000 117 120        | 0.2430 111120        | 10.0030 11/11/20 | 0.2430 INFIZO  | 0.2550 inH2O   | Fail   | 0.00015 in    |
| Output @ 0.3750 inH2O, mA                 |                       |                      |                  |                |                | 0.3679 |               |
| 0.3750 inH2O                              | 0.3750 inH2O          | 0.3677 inH2O         | ±0.0050 inH2O    | 0.2700 := U20  | 0.2200 :-1120  | 15.767 | 0.000454      |
| Display Reading                           | 0.0700 111120         | 0.3077 111120        | ±0.0030 IIIH2O   | 0.3700 inH2O   | 0.3800 inH2O   | Fail   | 0,00015 in    |
| Output @ 0.5000 inH2O, mA                 |                       |                      |                  |                |                | 0.4912 |               |
| 0.5000 inH2O                              | 0.5000 inH2O          | 0,4909 inH2O         | ±0.0050 inH2O    | 0.4950 inH2O   | 0.5050:-1100   | 19:709 | 0.000451      |
| Display Reading                           | 0.0000 1111120        | 0.4303 111120        | ±0,0000 IIIH2O   | 0,4950 IIIHZO  | 0.5050 inH2O   | Fail   | 0.00015 in    |
| Output @ 0.3750 inH2O, mA                 |                       |                      |                  |                |                | 0,3699 |               |
| 0.3750 inH2O                              | 0.3750 inH2O          | 0.3691 inH2O         | ±0.0050 inH2Q    | 0,3700 inH2O   | 0.3800 (~1.130 | 15.811 | 0.00045       |
| Display Reading                           | 0.0700 1111120        | 0.3037 111120        | 10.0030 ##120    | 0.3700 IIIH2O  | 0.3800 inH2O   | Fail   | 0.00015 in    |
| Output @ 0.2500 inH2O, mA                 |                       |                      |                  |                |                | 0,2463 |               |
| 0.2500 inH2O                              | 0.2500 inH2O          | 0.2462 inH2O         | ±0.0050 inH2O    | 0.2450 inH2O   | 0.2550 in H2O  | 11.879 | 0.00045       |
| Display Reading                           | 0.2000 111 120        | 0.2402 1111 120      | 10.0030 IIIH2O   | 0.2450 INH2O   | 0.2550 inH2O   | Pass   | 0.00015 in    |
| Output @ 0.1250 inH2O, mA                 |                       |                      |                  |                |                | 0,1250 |               |
| 0.1250 inH2O                              | 0.1250 inH2O          | 0.1250 inH2O         | ±0.0050 inH2O    | 0.4200 in U2O  | 0.4300 : 1100  | 8.001  | 0.00045:      |
| Display Reading                           | 0.1230 111 120        | 0.1230 INITZO        | ±0.0030 INH2O    | 0.1200 inH2O   | 0.1300 inH2O   | Pass   | 0.00015 inl   |
| Output @ 0.0000 inH2O, mA                 |                       |                      |                  |                |                | 0.0012 |               |
| 0.000 inH2O                               | 0.0000 inH2O          | 0.0015 inH2O         | ±0.0050 inH2O    | -0.0050 inH2O  | 0.0050 inH2O   | 4.048  | 0.00015 :     |
|                                           | 0,0000 111120         | 0.0010 111120        | ±0,0000 mm 120   | -0 0030 IIIH2O | 0.0050 INH2O   | Pass   | 0.00015 inf   |
| ocedure: Dwyer MS-121-LCI                 | O 0 to 0.1;0.5 inH2O/ | 7520lp 8845A (1.0.A) |                  |                |                |        | As Left (Pass |
| Description                               | True Value            | Test Results         | Tolerance        | Lower Limit    | Upper Limit    | Status | Uncertain     |
| Range: 0 to 0.5 inH2O                     |                       |                      |                  |                |                |        |               |
| Output signal: 4 to 20 mA                 |                       |                      |                  |                |                |        |               |
| PRESSURE TEST                             |                       |                      |                  |                |                |        |               |
| Display Reading                           |                       |                      |                  |                |                | 0.0012 |               |
| Output @ 0.0000 inH2O, mA                 |                       |                      |                  |                |                | 4-021  |               |
| 0.0000 inH2O                              | 0.0000 inH2O          | 0.0007 inH2O         | ±0.0050 inH2O    | -0.0050 inH2O  | 0.0050 inH2O   | Pass   | 0.00015 inl   |
| Display Reading                           |                       |                      |                  |                |                | 0.1257 |               |
|                                           |                       |                      |                  |                |                | 8.019  |               |
| Output @ 0.1250 inH2O, mA                 |                       |                      | 10.0050 :-1100   | 0.1200 inH2O   | 0.1300 inH2O   | Dasa   | 0.00015 in    |
| Output @ 0.1250 inH2O, mA<br>0.1250 inH2O | 0.1250 inH2O          | 0.1256 inH2O         | ±0.0050 inH2O    | 0-1200 INFI2O  | 0.1300 IND2O   | Pass   | 0,00013111    |
|                                           | 0.1250 inH2O          | 0.1256 inH2O         | ±0.0050 InH2O    | 0,1200 INH2O   | 0.1300 INH2O   | 0.2493 | 0,00013111    |

| Test Description          | True Value   | Test Results | Tolerance     | Lower Limit   | Upper Limit  | Status | Uncertainty   |
|---------------------------|--------------|--------------|---------------|---------------|--------------|--------|---------------|
| 0.2500 inH2O              | 0.2500 inH2O | 0.2486 inH2O | ±0,0050 inH2O | 0.2450 inH2O  | 0.2550 inH2O | Pass   | 0.00015 inH2O |
| Display Reading           |              |              |               |               |              | 0.3748 |               |
| Output @ 0,3750 inH2O, mA |              |              |               |               |              | 15.987 |               |
| 0.3750 inH2O              | 0,3750 inH2O | 0,3746 inH2O | ±0.0050 inH2O | 0.3700 inH2O  | 0.3800 inH2O | Pass   | 0.00015 inH2O |
| Display Reading           |              |              |               |               |              | 0.4998 |               |
| Output @ 0.5000 inH2O, mA |              |              |               |               |              | 19.972 |               |
| 0.5000 inH2O              | 0.5000 inH2O | 0.4991 inH2O | ±0.0050 inH2O | 0.4950 inH2O  | 0.5050 inH2O | Pass   | 0.00015 inH2O |
| Display Reading           |              |              |               |               |              | 0.3762 |               |
| Output @ 0.3750 inH2O, mA |              |              |               |               |              | 16.021 |               |
| 0.3750 inH2O              | 0.3750 inH2O | 0.3757 inH2O | ±0.0050 inH2O | 0.3700 inH2O  | 0.3800 inH2O | Pass   | 0.00015 inH2O |
| Display Reading           |              |              |               |               |              | 0.2515 |               |
| Output @ 0,2500 inH2O, mA |              |              |               |               |              | 12.001 |               |
| 0.2500 inH2O              | 0.2500 inH2O | 0,2500 inH2O | ±0.0050 inH2O | 0.2450 inH2O  | 0.2550 inH2O | Pass   | 0.00015 inH2O |
| Display Reading           |              |              |               |               |              | 0.1270 |               |
| Output @ 0.1250 inH2O, mA |              |              |               |               |              | 8.058  |               |
| 0.1250 inH2O              | 0,1250 inH2O | 0,1268 inH2O | ±0.0050 inH2O | 0.1200 inH2O  | 0.1300 inH2O | Pass   | 0,00015 inH2O |
| Display Reading           |              |              |               |               |              | 0.0005 |               |
| Output @ 0.0000 inH2O, mA |              |              |               |               |              | 4.013  |               |
| 0,000 inH2O               | 0,0000 inH2O | 0.0004 inH2O | ±0.0050 inH2O | -0.0050 inH2O | 0.0050 inH2O | Pass   | 0.00015 inH2O |

END OF CERTIFICATE

|  |  |  | 20 |  |
|--|--|--|----|--|
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |
|  |  |  |    |  |



# **CERTIFICATE OF ANALYSIS**

Customer: SBI FABRICANT DE POELES

INTERNATIONAL INC

250 RUE DE COPENHAGUE

SAINT-AUGUSTIN-DE-DESMAURES QC

G3A 2H3

**Analysis Date:** 

3/26/2020 11:21:38AM

Product code:

A1310737

Grade:

CERTIFIED

Size: CGA#:

7AL 590

Servitrax barcode No:

Work order number:

T2UMTNM 1301047

Pressure:

1450 psig

Volume: Expiry date:

03/26/2023

.58 M3

| COMPONENTS      | NOMINAL<br>CONCENTRATION | ANALYSIS<br>RESULTS |
|-----------------|--------------------------|---------------------|
| CARBON DIOXIDE  | 16.0000 % Molar          | 16.1 % Molar        |
| CARBON MONOXIDE | 3.0000 % Molar           | 2.99 % Molar        |
| DXYGEN          | 18.0000 % Molar          | 17.9 % Molar        |
| NITROGEN        | BALANCE                  | BALANCE             |

Analysis performed by:

ROSS CRICHTON - LAB TECHNICIAN

This Air Liquide Canada mixture is traceable to NIST

### METHOD OF ANALYSIS:

Method of analysis is based on principles of gas chromatography and as documented in Air Liquide Canada operating procedure, where applicable, FID, TCD, PDHID, FT-IR, FPD,NO/NOx and SO2 chemilluminescence, hygrometer, and electrochemical cells and paramagnetic cell. Detectors were used in conjunction with packed or capillary columns calibrated flow meters and dilution calibrated system.

### ANALYTICAL ACCURACY:

| Qualitiy  | Concentiration                 | Blend Tolerance           | AA                      |
|-----------|--------------------------------|---------------------------|-------------------------|
| PRIMARY   | 5%-50%<br>0.5%-5%<br>1ppm-0.5% | +/-1%<br>+/-2%<br>+/-5%   | +/-1%                   |
| CERTIFIED | 5%-50%<br>0.5%-5%<br>1ppm-0.5% | +/-5%<br>+/-10%<br>+/-20% | +/-2%<br>+/-2%<br>+/-5% |
| UNANALYZE | 5%-50%<br><5%                  | +/-10%<br>+/-20%          |                         |

This mixture was certified by a combination of weight and analysis (depending on component) using scales certified against weights traceable to the Institute for National Measurement Standards (INMS) of the National Research Council of Canada (NRCC), Report # W-021221-13857( MTL) and W-35174-20727(Calgary) or calibration standards prepared in that manner.

# How to contact us & order



E-mail within your region:

specgas.atlantic@airliquide.com specgas.qc@airliquide.com

specgas on@airliquide.com specgas ab@airliquide.com

specgas midwest@airliquide.com specgas pacific@airliquide.com















# **CERTIFICATE OF ANALYSIS**

Customer: SBI FABRICANT DE POELES

INTERNATIONAL INC

250 RUE DE COPENHAGUE

SAINT-AUGUSTIN-DE-DESMAURES QC

G3A 2H3

**Analysis Date:** 

3/31/2020 2:27:55PM

Servitrax barcode No:

T2M5LHF

Product code:

A1310736

Work order number:

1301048

Grade:

**CERTIFIED** 

Pressure:

2000 psig

Size: CGA#: 7AL 590

Volume:

.9 M3

Expiry date:

03/31/2023

| COMPONENTS      | NOMINAL<br>CONCENTRATION | ANALYSIS<br>RESULTS |
|-----------------|--------------------------|---------------------|
| CARBON DIOXIDE  | 16.0000 % Molar          | 16.0 % Molar        |
| CARBON MONOXIDE | 5,500.0000 ppm Molar     | 5569 ppm Molar      |
| OXYGEN          | 18.0000 % Molar          | 18.0 % Molar        |
| NITROGEN        | BALANCE                  | BALANCE             |

Analysis performed by:

This Air Liquide Canada mixture is traceable to NIST

### METHOD OF ANALYSIS:

Method of analysis is based on principles of gas chromatography and as documented in Air Liquide Canada operating procedure, where applicable, FID, TCD, PDHID, FT-IR, FPD,NO/NOx and SO2 chemiluminescence, hygrometer, and electrochemical cells and paramagnetic cell. Detectors were used in conjunction with packed or capillary columns calibrated flow meters and dilution calibrated system.

### ANALYTICAL ACCURACY:

| Qualitiy  | Concentiration                 | Blend Tolerance           | AA                      |
|-----------|--------------------------------|---------------------------|-------------------------|
| PRIMARY   | 5%-50%<br>0.5%-5%<br>1ppm-0.5% | +/-1%<br>+/-2%<br>+/-5%   | +/-1%                   |
| CERTIFIED | 5%-50%<br>0.5%-5%<br>1ppm-0.5% | +/-5%<br>+/-10%<br>+/-20% | +/-2%<br>+/-2%<br>+/-5% |
| UNANALYZE | 5%-50%<br><5%                  | +/-10%<br>+/-20%          |                         |

This mixture was certified by a combination of weight and analysis (depending on component) using scales certified against weights traceable to the Institute for National Measurement Standards (INMS) of the National Research Council of Canada (NRCC), Report # W-021221-13857( MTL) and W-35174-20727(Calgary) or calibration standards prepared in that manner.

### How to contact us & order



E-mail within your region:

specgas.atlantic@airliquide.com specgas.qc@airliquide.com

specgas.on@airliquide.com specgas ab@airliquide.com specgas midwest@airliquide.com specgas.pacific@airliquide.com









# **CERTIFICATE OF ANALYSIS**

Customer: SBI FABRICANT DE POELES

INTERNATIONAL INC

250 RUE DE COPENHAGUE

SAINT-AUGUSTIN-DE-DESMAURES QC

G3A 2H3

Analysis Date:

9/11/2019 8:34:56AM

Product code:

A0923375

Grade: Size: **CERTIFIED** 

CGA#:

7AL 580 :34:56AM Servitrax barcode No:

Work order number:

T2L7XUG 1191003

Pressure:

2000 psig

Volume: Expiry date: 0.85 M3 09/11/2022

| COMPONENTS      | NOMINAL<br>CONCENTRATION | ANALYSIS<br>RESULTS |
|-----------------|--------------------------|---------------------|
| CARBON DIOXIDE  | 8,0000 % Molar           | 8.03 % Molar        |
| CARBON MONOXIDE | 600.0000 ppm Molar       | 616 ppm Molar       |
| OXYGEN          | 4.0000 % Molar           | 4.02 % Molar        |
| NITROGEN        | BALANCE                  | BALANCE             |

Analysis performed by:

This Air Liquide Canada mixture is traceable to NIST **METHOD OF ANALYSIS:** 

Aymen Oueslati

Method of analysis is based on principles of gas chromatography and as documented in Air Liquide Canada operating procedure, where applicable, FID, TCD, PDHID, FT-IR, FPD,NO/NOx and SO2 chemiluminescence, hygrometer, and electrochemical cells and paramagnetic cell. Detectors were used in conjunction with packed or capillary columns calibrated flow meters and dilution calibrated system.

### **ANALYTICAL ACCURACY:**

| Qualitiy  | Concentiration                 | Blend Tolerance           | AA                      |
|-----------|--------------------------------|---------------------------|-------------------------|
| PRIMARY   | 5%-50%<br>0.5%-5%<br>1ppm-0.5% | +/-1%<br>+/-2%<br>+/-5%   | +/-1%                   |
| CERTIFIED | 5%-50%<br>0.5%-5%<br>1ppm-0.5% | +/-5%<br>+/-10%<br>+/-20% | +/-2%<br>+/-2%<br>+/-5% |
| UNANALYZE | 5%-50%<br><5%                  | +/-10%<br>+/-20%          |                         |

This mixture was certified by a combination of weight and analysis (depending on component) using scales certified against weights traceable to the Institute for National Measurement Standards (INMS) of the National Research Council of Canada (NRCC), Report # W-021221-13857(MTL) and W-35174-20727(Calgary) or calibration standards prepared in that manner.

#### How to contact us & order



E-mail within your region:

specgas.atlantic@airliquide.com specgas.qc@airliquide.com specgas on@airliquide.com specgas.ab@airliquide.com specgas midwest@airliquide.com specgas pacific@airliquide.com













# CERTIFICATE OF CALIBRATION

### 





Certificate Number: 2020005340

Page 1 of 2

Manufacturer:

Dwyer Instruments Inc.

Model: Description: 626-06-GH-P1-E1-S1 Pressure Transmitter

Serial:

N/A

ID:

SBI-294

Customer:

STOVE BUILDER INTERNATIONAL INC.

250 RUE DE COPENHAGUE

ST-AUGUSTIN-DE-DESMAURES QC

G3A 2H3

RMA:

AC20071072

Workorder:

2020005340

Barcode:

AL00023151-P

Received Conditions:

In Tolerance

Calibration Date: Calibration Due: 17-Jul-2020 17-Jul-2021

Temperature:

21.96°C

Humidity:

57%RH

STATEMENT OF UNCERTAINTY: The reported expanded uncertainty of measurement is stated as the standard measurement uncertainty multiplied by the coverage factor K = 2, which for a normal distribution corresponds to a coverage probability of approximately 95 percent. Alpha Controls & Instrumentation Inc. certifies this instrument was calibrated on the date shown using standards traceable to NIST/NRC or accepted intrinsic standards and in compliance with ISO/IEC-17025:2017 and ANSI/NCSL Z540-1.

Any statement of compliance is made without taking measurement uncertainty into account and is based on UUT performance against required tolerance only. The customer must ensure equipment calibrated meets the intended use.

Tolerance is based on manufacturer specification if not stated otherwise. Calibration results relate to items calibrated only.

This certificate shall not be reproduced except in full without written approval of Alpha Controls and Instrumentation Inc.

#### STANDARDS USED

 Description
 Model
 ID
 Cal Date
 Due Date

 Multimeter
 Fluke 8845A
 ELC-MTR-04
 09-Jan-2020
 09-Jan-2021

 Pressure Controller/Calibrator
 DH Instruments PPC3
 PRE-CAL-04
 16-Jun-2020
 16-Jun-2021

Notes:

Unit was calibrated in vertical position.

Tolerance specified by customer.

Unit is not adjustable.

Performed by:

Sree Chukka

(digitally signed on 17-Jul-2020 10:31 am)

QA Reviewed by:

Slava Peciurov

Lab Manager

(digitally signed on 17-Jul-2020 2:18 pm)

| Procedure: Pressure Tran          | smitter: psi/4-20mA: CAL | VER /PPC3,8845 (1.1 | .A)         |             |             | FOUND-LEFT (Pass) |             |
|-----------------------------------|--------------------------|---------------------|-------------|-------------|-------------|-------------------|-------------|
| Test Description                  | True Value               | Test Results        | Tolerance   | Lower Limit | Upper Limit | Status            | Uncertainty |
| Calibrated in the vertical positi | ion.                     |                     |             |             |             |                   |             |
| Range: 0 to 5 psi                 |                          |                     |             |             |             |                   |             |
| Output: 4-20 mA                   |                          |                     |             |             |             |                   |             |
| PRESSURE TEST                     |                          |                     |             |             |             |                   |             |
| Output=4.045 mA                   |                          |                     |             |             |             |                   |             |
| 0.0000 psi                        | 0.0000 psi               | 0.014 psi           | ±0.0600 psi | -0.060 psi  | 0.060 psi   | Pass              | 4,5e-003 ps |
| Output=8.023 mA                   |                          |                     |             |             |             |                   |             |
| 1.2500 psi                        | 1.2500 psi               | 1,257 psi           | ±0.0600 psi | 1.190 psi   | 1.310 psi   | Pass              | 5.8e-003 ps |
| Output=12.015 mA                  |                          |                     |             |             |             |                   |             |
| 2.5000 psi                        | 2.5000 psi               | 2.505 psi           | ±0.0600 psi | 2.440 psi   | 2.560 psi   | Pass              | 7.0e-003 ps |
| Output=16.031 mA                  |                          |                     |             |             |             |                   |             |
| 3.7500 psi                        | 3.7500 psi               | 3.760 psi           | ±0.0600 psi | 3.690 psi   | 3.810 psi   | Pass              | 8.2e-003 ps |
| Output=20.059 mA                  |                          |                     |             |             |             |                   |             |
| 5.0000 psi                        | 5.0000 psi               | 5.018 psi           | ±0.0600 psi | 4.940 psi   | 5.060 psi   | Pass              | 9,5e-003 ps |
| Output=16 mA                      |                          |                     |             |             |             |                   |             |
| 3.7500 psi                        | 3.7500 psi               | 3.750 psi           | ±0_0600 psi | 3,690 psi   | 3.810 psi   | Pass              | 8,2e-003 ps |
| Output=11.981 mA                  |                          |                     |             |             |             |                   |             |
| 2.5000 psi                        | 2.5000 psi               | 2.494 psi           | ±0.0600 psi | 2.440 psi   | 2.560 psi   | Pass              | 7.0e-003 ps |
| Output=8.019 mA                   |                          |                     |             |             |             |                   |             |
| 1.2500 psi                        | 1.2500 psi               | 1,255 psi           | ±0.0600 psi | 1.190 psi   | 1.310 psi   | Pass              | 5.8e-003 ps |
| Output=4.096 mA                   |                          |                     |             |             |             |                   |             |
| 0.0000 psi                        | 0.0000 psi               | 0.030 psi           | ±0.0600 psi | -0.060 psi  | 0.060 psi   | Pass              | 4.6e-003 ps |

END OF CERTIFICATE



# CERTIFICATE OF CALIBRATION

### 





Certificate Number: 2020005341

Page 1 of 2

Manufacturer:

Dwyer Instruments Inc.

Model:

626-06-GH-PA-E1-S1

Description:

Pressure Transmitter

Serial: ID: N/A SBI-297

ID.

STOVE BUILDER INTERNATIONAL INC.

Customer: STOVE

ST-AUGUSTIN-DE-DESMAURES QC

250 RUE DE COPENHAGUE

G3A 2H3

RMA:

AC20071072

Workorder: Barcode: 2020005341 AL00023422-P

Received Conditions:

In Tolerance

Callbration Date:

17-Jul-2020

Callbration Due:

17-Jul-2021

Temperature: Humidity: 22.11°C

56.6%RH

STATEMENT OF UNCERTAINTY: The reported expanded uncertainty of measurement is stated as the standard measurement uncertainty multiplied by the coverage factor K = 2, which for a normal distribution corresponds to a coverage probability of approximately 95 percent. Alpha Controls & Instrumentation Inc. certifies this instrument was calibrated on the date shown using standards traceable to NIST/NRC or accepted intrinsic standards and in compliance with ISO/IEC-17025:2017 and ANSI/NCSL Z540-1.

Any statement of compliance is made without taking measurement uncertainty into account and is based on UUT performance against required tolerance only. The customer must ensure equipment calibrated meets the intended use.

Tolerance is based on manufacturer specification if not stated otherwise. Calibration results relate to items calibrated only.

This certificate shall not be reproduced except in full without written approval of Alpha Controls and Instrumentation Inc.

### STANDARDS USED

| Description                    | Model               | ID         | Cal Date    | Due Date    |
|--------------------------------|---------------------|------------|-------------|-------------|
| Multimeter                     | Fluke 8845A         | ELC-MTR-04 | 09-Jan-2020 | 09-Jan-2021 |
| Pressure Controller/Calibrator | DH Instruments PPC3 | PRE-CAL-04 | 16-Jun-2020 | 16-Jun-2021 |

Notes:

Unit calibrated in vertical position.
Tolerance specified by customer.

Unit is not adjustable.

Performed by:

Sree Chukka

Technician

(digitally signed on 17-Jul-2020 11:05 am)

QA Reviewed by:

Slava Peciurov

Lab Manager

(digitally signed on 17-Jul-2020 2:18 pm)

Quality Management System is assessed and registered by Intertek as conforming to the requirements of ISO9001

| Procedure: Pressure Transi         | Procedure: Pressure Transmitter: psi/4-20mA: CAL VER /PPC3,8845 (1.1.A) |              |             |             |             |        |              |  |
|------------------------------------|-------------------------------------------------------------------------|--------------|-------------|-------------|-------------|--------|--------------|--|
| Test Description                   | True Value                                                              | Test Results | Tolerance   | Lower Limit | Upper Limit | Status | Uncertainty  |  |
| Calibrated in the vertical positio | n.                                                                      |              |             |             |             |        |              |  |
| Range: 0 to 5 psi                  |                                                                         |              |             |             |             |        |              |  |
| Output: 4-20 mA                    |                                                                         |              |             |             |             |        |              |  |
| PRESSURE TEST                      |                                                                         |              |             |             |             |        |              |  |
| Output=4.051 mA                    |                                                                         |              |             |             |             |        |              |  |
| 0.0000 psi                         | 0.0000 psi                                                              | 0,016 psi    | ±0.0300 psi | -0.030 psi  | 0,030 psi   | Pass   | 4.6e-003 ps  |  |
| Output=8.023 mA                    |                                                                         |              |             |             |             |        | •            |  |
| 1.2500 psi                         | 1,2500 psi                                                              | 1,257 psi    | ±0.0300 psi | 1.220 psi   | 1,280 psi   | Pass   | 5.8e-003 ps  |  |
| Output=12.017 mA                   |                                                                         |              |             |             |             |        |              |  |
| 2.5000 psi                         | 2.5000 psi                                                              | 2.505 psi    | ±0.0300 psi | 2.470 psi   | 2,530 psi   | Pass   | 7.0e-003 ps  |  |
| Output=16.027 mA                   |                                                                         |              |             |             |             |        | ·            |  |
| 3.7500 psi                         | 3,7500 psi                                                              | 3.758 psi    | ±0.0300 psi | 3.720 psi   | 3.780 psi   | Pass   | 8,2e-003 ps  |  |
| Output=20.058 mA                   |                                                                         |              |             |             |             |        |              |  |
| 5.0000 psi                         | 5.0000 psi                                                              | 5.018 psi    | ±0.0300 psi | 4.970 psi   | 5.030 psi   | Pass   | 9.5e-003 ps  |  |
| Output=16.027 mA                   |                                                                         |              |             |             |             |        | ·            |  |
| 3.7500 psi                         | 3,7500 psi                                                              | 3.759 psi    | ±0,0300 psi | 3.720 psi   | 3.780 psi   | Pass   | 8,2e-003 ps  |  |
| Output=12.011 mA                   |                                                                         |              |             |             |             |        |              |  |
| 2.5000 psi                         | 2,5000 psi                                                              | 2,503 psi    | ±0.0300 psi | 2.470 psi   | 2,530 psi   | Pass   | 7.0e-003 ps  |  |
| Output=8.01 mA                     |                                                                         |              |             |             |             |        |              |  |
| 1.2500 psi                         | 1.2500 psi                                                              | 1.253 psi    | ±0.0300 psi | 1.220 psi   | 1,280 psi   | Pass   | 5.8e-003 ps  |  |
| Output=4.026 mA                    |                                                                         |              |             |             |             |        |              |  |
| 0.0000 psi                         | 0.0000 psi                                                              | 0.008 psi    | ±0.0300 psi | -0.030 psi  | 0.030 psi   | Pass   | 4.5e-003 psi |  |

END OF CERTIFICATE



# CERTIFICATE OF CALIBRATION

### 





Certificate Number: 2020005343

Page 1 of 2

Manufacturer:

Dwyer Instruments Inc.

Model: Description: 628-00C-GH-P1-E1-S1 Pressure Transmitter

Serial:

N/A

ID:

SBI-301

Customer:

STOVE BUILDER INTERNATIONAL INC.

250 RUE DE COPENHAGUE

ST-AUGUSTIN-DE-DESMAURES QC

G3A 2H3

RMA:

AC20071072

Workorder: Barcode:

2020005343 AL00023153-P

Received Conditions:

In Tolerance

Calibration Date: Callbration Due:

27-Jul-2020

Temperature:

27-Jul-2021

Humldity:

22.78°C

68%RH

STATEMENT OF UNCERTAINTY: The reported expanded uncertainty of measurement is stated as the standard uncertainty multiplied by the coverage factor K = 2, which for a normal distribution corresponds to a coverage probability of approximately 95 percent. Alpha Controls & Instrumentation Inc. certifies this instrument was calibrated on the date shown using standards traceable to NIST/NRC or accepted intrinsic standards and in compliance with ISO/IEC-17025:2017 and ANSI/NCSL Z540-1.

Any statement of compliance is made without taking measurement uncertainty into account and is based on UUT performance against required tolerance only. The customer must ensure equipment calibrated meets the intended use.

Tolerance is based on manufacturer specification if not stated otherwise. Calibration results relate to items calibrated only.

This certificate shall not be reproduced except in full without written approval of Alpha Controls and Instrumentation Inc.

#### STANDARDS USED

| Description                    | Model               | ID         | Cal Date    | Due Date    |
|--------------------------------|---------------------|------------|-------------|-------------|
| Pressure Controller/Calibrator | DH Instruments PPC3 | PRE-CAL-04 | 16-Jun-2020 | 16-Jun-2021 |
| Reference Pressure Monitor     | Fluke RPM4          | PRE-MTR-04 | 13-May-2020 | 13-May-2021 |

Notes:

Unit was calibrated in vertical position.

Unit cannot be adjusted. Tolerance specified by customer.

Performed by:

Sree Chukka

QA Reviewed by:

Slava Peciurov

Technician (digitally signed on 27-Jul-2020 9:35 am)

Lab Manager (digitally signed on 27-Jul-2020 10:30 am)

| Procedure: Pressure/Vacuu | m: CAL VER /DHI PPC | C3 (2.3.A)   |           |             |             | FOUND-LEFT (Pass) |             |  |
|---------------------------|---------------------|--------------|-----------|-------------|-------------|-------------------|-------------|--|
| Test Description          | True Value          | Test Results | Tolerance | Lower Limit | Upper Limit | Status            | Uncertainty |  |
| PRESSURE TEST             |                     |              |           |             |             |                   |             |  |
| MEASUREMENT UNITS: inHg   |                     |              |           |             |             |                   |             |  |
| OUT = 4.925 mA            |                     |              |           |             |             |                   |             |  |
| -28.500                   | -28.500             | -28.26       | ±0,400    | -28,90      | -28.10      | Pass              | 6,1e-003    |  |
| OUT = 7.843 mA            |                     |              |           |             |             |                   |             |  |
| -23.000                   | -23.000             | -22.79       | ±0.400    | -23.40      | -22.60      | Pass              | 6.1e-003    |  |
| OUT = 11.035 mA           |                     |              |           |             |             |                   |             |  |
| -17.000                   | -17.000             | -16.81       | ±0.400    | -17.40      | -16.60      | Pass              | 6.1e-003    |  |
| OUT = 14.248 mA           |                     |              |           |             |             |                   |             |  |
| -11.000                   | -11.000             | -10.79       | ±0.400    | -11.40      | -10.60      | Pass              | 6.1e-003    |  |
| OUT = 16.941 mA           |                     |              |           |             |             |                   |             |  |
| -6.000                    | -6.000              | -5.74        | ±0.400    | -6.40       | -5.60       | Pass              | 6.1e-003    |  |
| OUT = 20.145 mA           |                     |              |           |             |             |                   |             |  |
| 0.000                     | 0.000               | 0,27         | ±0.400    | -0_40       | 0.40        | Pass              | 6,1e-003    |  |
| OUT = 16.963 mA           |                     |              |           |             |             |                   |             |  |
| -6.000                    | -6.000              | -5.69        | ±0.400    | -6.40       | -5.60       | Pass              | 6.1e-003    |  |
| OUT = 14.305 mA           |                     |              |           |             |             |                   |             |  |
| -11.000                   | -11.000             | -10.68       | ±0.400    | -11.40      | -10.60      | Pass              | 6.1e-003    |  |
| OUT = 11.11 mA            |                     |              |           |             |             |                   |             |  |
| -17:000                   | -17.000             | -16.67       | ±0.400    | -17.40      | -16.60      | Pass              | 6.1e-003    |  |
| OUT = 7.913 mA            |                     |              |           |             |             |                   |             |  |
| -23.000                   | -23.000             | -22.66       | ±0.400    | -23.40      | -22.60      | Pass              | 6.1e-003    |  |
| OUT = 4.961 mA            |                     |              |           |             |             |                   |             |  |
| -28.500                   | -28.500             | -28.19       | ±0.400    | -28.90      | -28.10      | Pass              | 6.1e-003    |  |

END OF CERTIFICATE



# **CERTIFICATE OF CALIBRATION**

### 





Certificate Number: 2020005342

Page 1 of 2

Manufacturer:

Dwyer Instruments Inc.

Model:

628-00C-GH-P1-E1-S1 Pressure Transmitter

Description: Serial:

N/A

ID:

SBI-305

Customer:

STOVE BUILDER INTERNATIONAL INC.

250 RUE DE COPENHAGUE

ST-AUGUSTIN-DE-DESMAURES QC

G3A 2H3

RMA:

AC20071072

Workorder: Barcode: 2020005342

AL00023737-P

Received Conditions:

In Tolerance

Calibration Date: Calibration Due: 27-Jul-2020 27-Jul-2021

Temperature:

22.82°C

Humidity:

69%RH

STATEMENT OF UNCERTAINTY: The reported expanded uncertainty of measurement is stated as the standard measurement uncertainty multiplied by the coverage factor K = 2, which for a normal distribution corresponds to a coverage probability of approximately 95 percent. Alpha Controls & Instrumentation Inc. certifies this instrument was calibrated on the date shown using standards traceable to NIST/NRC or accepted intrinsic standards and in compliance with ISO/IEC-17025:2017 and ANSI/NCSL Z540-1.

Any statement of compliance is made without taking measurement uncertainty into account and is based on UUT performance against required tolerance only. The customer must ensure equipment calibrated meets the intended use.

Tolerance is based on manufacturer specification if not stated otherwise. Calibration results relate to items calibrated only.

This certificate shall not be reproduced except in full without written approval of Alpha Controls and Instrumentation Inc.

### STANDARDS USED

| Description                    | Model               | ID         | Cal Date    | Due Date    |
|--------------------------------|---------------------|------------|-------------|-------------|
| Pressure Controller/Calibrator | DH Instruments PPC3 | PRE-CAL-04 | 16-Jun-2020 | 16-Jun-2021 |
| Reference Pressure Monitor     | Fluke RPM4          | PRE-MTR-04 | 13-May-2020 | 13-May-2021 |

Notes:

Unit was calibrated in vertical position.

Unit cannot be adjusted. Tolerance specified by customer.

Performed by:

Sree Chukka

Technician

(digitally signed on 27-Jul-2020 9:29 am)

QA Reviewed by:

Slava Peciurov

Lab Manager

(digitally signed on 27-Jul-2020 10:30 am)

Quality Management System is assessed and registered by Intertek as conforming to the requirements of ISO9001

| Procedure: Pressure/Va | cuum: CAL VER /DHI PPC | 3 (2.3.A)    |           |             |             | FOUND-LEFT (Pass) |             |  |
|------------------------|------------------------|--------------|-----------|-------------|-------------|-------------------|-------------|--|
| Test Description       | True Value             | Test Results | Tolerance | Lower Limit | Upper Limit | Status            | Uncertainty |  |
| PRESSURE TEST          |                        |              |           |             |             |                   |             |  |
| MEASUREMENT UNITS: inH | g                      |              |           |             |             |                   |             |  |
| OUT = 4.882 mA         |                        |              |           |             |             |                   |             |  |
| -28.50                 | -28.50                 | -28.3        | ±0.40     | -28.9       | -28.1       | Pass              | 5.8e-002    |  |
| OUT = 7.813 mA         |                        |              |           |             |             |                   |             |  |
| -23.00                 | -23,00                 | -22.9        | ±0,40     | -23.4       | -22.6       | Pass              | 5,8e-002    |  |
| OUT = 11.004 mA        |                        |              |           |             |             |                   |             |  |
| -17.00                 | -17.00                 | -16.9        | ±0.40     | -17.4       | -16,6       | Pass              | 5.8e-002    |  |
| OUT = 14.207 mA        |                        |              |           |             |             |                   |             |  |
| -11.00                 | -11.00                 | -10.9        | ±0.40     | -11.4       | -10.6       | Pass              | 5.8e-002    |  |
| OUT = 16.902 mA        |                        |              |           |             |             |                   |             |  |
| -6.00                  | -6.00                  | -5.8         | ±0.40     | -6.4        | -5.6        | Pass              | 5.8e-002    |  |
| OUT = 20.117 mA        |                        |              |           |             |             |                   |             |  |
| 0,00                   | 0.00                   | 0.2          | ±0,40     | -0.4        | 0.4         | Pass              | 5.8e-002    |  |
| OUT = 16.935 mA        |                        |              |           |             |             |                   | Ψ.          |  |
| -6.00                  | -6.00                  | -5.8         | ±0.40     | -6.4        | -5.6        | Pass              | 5.8e-002    |  |
| OUT = 14.287 mA        |                        |              |           |             |             |                   |             |  |
| -11.00                 | -11.00                 | -10.7        | ±0.40     | -11.4       | -10.6       | Pass              | 5.8e-002    |  |
| OUT = 11.094 mA        |                        |              |           |             |             |                   |             |  |
| -17.00                 | -17.00                 | -16.7        | ±0.40     | -17.4       | -16.6       | Pass              | 5.8e-002    |  |
| OUT = 7.896 mA         |                        |              |           |             |             |                   |             |  |
| -23.00                 | -23.00                 | -22.7        | ±0.40     | -23.4       | -22.6       | Pass              | 5.8e-002    |  |
| DUT = 4.939 mA         |                        |              |           |             |             |                   |             |  |
| -28.50                 | -28.50                 | -28.2        | ±0.40     | -28.9       | -28.1       | Pass              | 5.8e-002    |  |

END OF CERTIFICATE

# METTLER TOLEDO

Certificate No: 01037944-1

METTLER-TOLEDO, LLC

201 Wolf Dr

Thorofare NJ 08086 1-800-METTLER



# Mass Calibration Certificate

### **Customer Information**

Customer Name:

Stove Builder International, Inc.

City:

Address:

250 de Copenhauge St.-Augustin-de-Desmaures State / Province:

QC

Purchase Order:

220309982

Zip / Postal Code:

G3A 2H3

# Measurement and Test Equipment Identification

Serial Number:

B739752165

Date Received:

03-OCT-2018

Manufacturer:

Mettler Toledo

Condition:

Good

Asset Number:

SBI-312

Tolerance Class:

OIML R111 Class E2

# **Environmental Conditions**

Temperature: 21.07 °C

Barometric Pressure: 769.28 mm Hg

Relative Humidity: 52 %RH

The standards used to perform this calibration have been compared to reference mass standards that are traceable to the SI through the National Institute of Standards and Technology under Test No 684/289871-17.

The weights calibrated for this report have been calibrated in accordance with the calibration laboratory's process. The calibration performed meets the criteria as described in the current revisions of ASTM E617 and OIML R111. This calibration also meets specifications as outlined in ISO/IEC 17025, ANSI/NCSL Z540-1-1994, and applicable documents.

This certificate may not be partially reproduced, except with prior written permission of the issuing laboratory. This certificate must not be used by the customer to claim product endorsement by NIST, NVLAP, or any other agency of the U.S. government.

Calibration Date:

09-OCT-2018

Next Calibration Due:

09-OCT-2023

Calibration Technician:

Robotic Calibration

Signature:

oseph Moran, Metrology Manager

Approved Signatory

10-OCT-2018

# **As Found Data**

| Nominal      | Serial Number | True Mass | Conv. Mass | Uncertainty | Tolerance | Density |
|--------------|---------------|-----------|------------|-------------|-----------|---------|
| Value&Suffix |               | (g)       | (g)        | (mg, k = 2) | (mg)      | (g/cm³) |
| 200 g        | B739752165    | 200.00009 | 200.00009  | 0.06        | 0.30      | 8.00    |

# As Left Data

| Nominal      | Serial Number | True Mass | Conv. Mass | Uncertainty | Tolerance | Density |
|--------------|---------------|-----------|------------|-------------|-----------|---------|
| Value&Suffix |               | (g)       | (g)        | (mg, k = 2) | (mg)      | (g/cm³) |
| 200 g        | B739752165    | 200.00009 | 200.00009  | 0.06        | 0.30      | 8.00    |

# Standards and Comparators Used

| Nominal<br>Value&Suffix | Serial Number | Standard<br>Set No. | Cal<br>Due | Comparator<br>Used |     | Cal<br>Due | Procedure<br>Used |
|-------------------------|---------------|---------------------|------------|--------------------|-----|------------|-------------------|
| 200 g                   | B739752165    | MS002               | 08/01/19   | A200XXL            | 132 | 01/01/19   | Multi A-B         |
| Comments                |               |                     |            |                    |     |            |                   |

### **Definitions**

**Nominal Value** - The value as labeled on the weight or defined by shape in accordance with OIML R111 for milligram weights.

True Mass - The mass value of the weight if measured in a vacuum.

**Conventional Mass** - For a mass at 20 °C, "Conventional Mass" is the mass of a reference standard of density 8000 kg/m³ which it balances in air with a density of 1.2 kg/m³. This value should be referenced when testing the accuracy of a weighing device using any of the nominal values contained in this certificate. The As Found results will equal the As Left in cases where no adjustment or replacement was required.

**Uncertainty** - All Uncertainty values are reported at approximately 95% confidence level (k=2). The uncertainty value does not include a component for the affects due to magnetism.

**Tolerance** - The acceptable range of deviation (positive and negative) from the nominal value, including the uncertainty, as defined by ASTM and OIML for the respective classes.

**Density** - The assumed density of the material used by the manufacturer.

Calibration Process - This calibration was performed in the Level I Mass Metrology Laboratory at 201 Wolf Dr Thorofare, New Jersey 08086 unless otherwise noted in Comments.

**OOT** - The As Found measurement result combined with the uncertainty exceeded the tolerance for the specified weight class.

A - Weight was adjusted after As Found testing to within the appropriate tolerance class.

R - The received weight was replaced due to an out of tolerance condition and the weight was not adjustable or the weight for this nominal value was missing.



# Calibration complies with ISO/IEC 17025, ANSI/NCSL Z540-1, and 9001



Cert. No.: 4199-11583105

# Traceable® Certificate of Calibration for Dial Barometer

Manufactured for and distributed by : Control Company 12554 Galveston Rd B230, Webster, TX 77598

Instrument Identification: SB1-331

Model: 4199,

S/N: 200586704

Manufacturer: Control Company

Standards/Equipment:

Description

Serial Number

**Due Date** 

NIST Traceable Reference

Digital Barometer

D4540001

01 Nov 2020

1000447551

**Certificate Information:** 

Technician: 57

Procedure: CAL-33

Cal Date: 01 Oct 2020

Cal Due Date: 01 Oct 2022

Test Conditions: 44.14%RH 23.01°C 1018mBar

Calibration Data: (New Instrument)

| Unit(s) | Nominal | As Found | In Tol | Nominal | As Left | In Tol | Min  | Max  | hantU | TUR  |
|---------|---------|----------|--------|---------|---------|--------|------|------|-------|------|
| mb/hPa  | N.A.    | N.A.     |        | 960.40  | 960     | Y      | 955  | 965  | 0.62  | >4:1 |
| mb/hPa  | N.A.    | N.A.     |        | 985.58  | 984     | Y      | 981  | 991  | 0.62  | >4:1 |
| mb/hPa  | N.A.    | N.A.     |        | 1015.85 | 1015    | Y      | 1011 | 1021 | 0.62  | >4:1 |

This certificate Indicates Traceability to standards provided by (NIST) National Institute of Standards and Technology and/or a National Standards Laboratory.

A Test Uncertainty Ratio of at least 4:1 is maintained unless otherwise stated and is calculated using the expanded measurement uncertainty. Uncertainty evaluation includes the instrument under test and is calculated in accordance with the ISO "Guide to the Expression of Uncertainty in Measurement: (GUM). The uncertainty represents an expanded uncertainty using a coverage factor k=2 to approximate a 95% confidence level. In tolerance conditions are based on test results falling within specified limits with no reduction by the uncertainty of the measurement. The results contained herein relate only to the item calibrated. This certificate shall not be reproduced except in full, without written approval of Control Company.

Nominal=Standard's Reading; As Left=Instrument's Reading; In Tol=In Tolerance; Min/Max=Acceptance Range; ± U=Expanded Measurement Uncertainty; TUR=Test Uncertainty Ratio; Accuracy=±(Max-Min)/2; Min=As Left Nominal(Rounded) – Tolerance; Max= As Left Nominal(Rounded) + Tolerance;

Rical Rodriguez

Nicol Rodriguez, Quality Manager

Marisa Elms, Technical Manager

Note:

### **Maintaining Accuracy:**

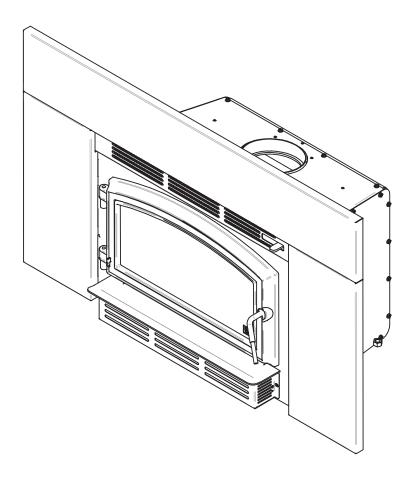
In our opinion once calibrated your Dial Barometer should maintain its accuracy. There is no exact way to determine how long calibration will be maintained. Dial Barometer change little, if any at all, but can be affected by aging, temperature, shock, and contamination.

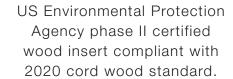
### **Recalibration:**

For factory calibration and re-certification traceable to National Institute of Standards and Technology contact Control Company.

Issue Date : 01 Oct 2020

CONTROL COMPANY 12554 Galveston RD Suite B230 Webster TX USA 77598 Phone 281 482-1714 Fax 281 482-9448 sales@control3.com www.traceable.com




# Product Specification Manual

# ARCHWAY 1500 INSERT

(SF00609 Model)







CONTACT LOCAL BUILDING OR FIRE OFFICIALS ABOUT RESTRICTIONS AND INSTALLATION INSPECTION REQUIREMENTS IN THE AREA.

READ THIS ENTIRE MANUAL BEFORE INSTALLATION AND USE OF THIS WOOD INSERT. FAILURE TO FOLLOW THESE INSTRUCTIONS COULD RESULT IN PROPERTY DAMAGE, BODILY INJURY OR EVEN DEATH.

# READ AND KEEP THIS MANUAL FOR REFERENCE

|  | Dealer:    |
|--|------------|
|  | Installer: |
|  |            |

#### CERTIFICATION PLATE



REFER TO INTERTEK'S DIRECTORY OF BUILDING PRODUCTS FOR DETAILED INSTRUCTIONS
SE RÉFÉRER AU RÉFERTOIRE DES PRODUITS HOMOLOGUÉS D'INTERTEK POUR PLUS D'INFORMATION

SOUTH THE RESTRICTIONS AND USE THE RESTRICTIONS AND USE THE RESTRICTIONS AND USE THE RESTRICTION AND USE THE RESTRICTION AND USE THE RESTRICTION AND USE THE RESTRICTION OF AND USE AUTORITÉS LOCALES DU BÂTIMENT ET DE LA PRÉVENTION DES MICHODIES AU SUJET DES RESTRICTIONS D'INSTALLATION DANS VOTRE SECTEUR,

STANDARDS / NORMES D'ESSAI:

Control number: 4002461 (July/Juillet 2021)

Certified to / Certifié selon ULC S628 Certified to / Certifié selon UL 1482 Certified to / Certifié selon UL 737 Certified to/Certifié selon CSA 8415,1-10 Certified to/Certifié selon ASTM E3053-17 Certified to/Certifié selon ASTM E2515-11 (R2017)

Serial Number No, de Série

MODEL / MODÈLE : ARCHWAY 1500

INSTALL AND USE ONLY IN ACCORDANCE WITH SBI STOVE BUILDER INTERNATIONAL INSTALLATION AND OPERATION INSTRUCTIONS. L'INSTALLATION ET L'OPERATION DOIT SE FAIRE SELON LES INSTRUCTIONS D'INSTALLATION ET D'UTILISATION DE SBI FABRICANT DE POÊLES INTERNATIONAL.

#### PREVENT HOUSE FIRES

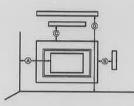
- · Install and use in accordance with the manufacturer's installation and operating instructions.
- Contact local building or fire officials about restrictions and installation inspection in your area.
- Use with solid wood fuel only. Do not use other fuels.
- For safety, keep screen doors or glass doors fully closed
- Do not overfire unit.
- Replace with only ceramic glass 4mm thick.
- Connect to a code-approved masonry chimney or listed factory-built fireplace chimney with a direct flue connector into the first chimney liner section.
- The non-combustible floor protection in front of the unit should extend 16 inches (406 mm) (USA), 18 inches (457 mm) (CANADA) without a R value even if the hearth elevation is equal with the combustible floor
- Do not connect this unit to a chimney serving another appliance.
- Install only in masonry fireplaces. Do not remove bricks or mortar from masonry fireplace
- Inspect and clean chimney frequently. Under certain conditions of use, creosote buildup may occur rapidly.
- Do not use grate or elevate fire. Build wood fire directly on hearth.
- This wood heater needs periodic inspection and repair for proper operation. Consult the owner's manual for further information. It is against US federal regulations to operate this wood heater in a manner inconsistent with the operating instructions in the owner's manual,

#### PRÉVENEZ LES INCENDIES

- Installer et utiliser conformément au manuel d'utilisation du fabricant. Contacter les autorités de votre localité ayant juridiction concernant les
- restrictions et inspection d'installation. Utiliser avec le bois seulement. Ne pas utiliser d'autres combustibles. Utiliser l'appareil la porte fermée ou ouverte avec le pare-étincelle en place uniquement. Ouvrir la porte ou retirer le pare-étincelle seulement lors du
- Ne pas raccorder à un conduit de fumée servant déjà pour un autre appareil.
- Remplacer la vitre seulement avec un verre céramique de 4mm d'épaisseur. Raccorder à une cheminée de maçonnerie respectant les codes ou à une
- cheminée préfabriquée homologuée, directement à la première section de cheminée gainée. La protection de plancher incombustible au devant de l'encastrable doit se
- prolonger de 16 pouces (406 mm) (USA), 18 pouces (457 mm) (CANADA), sans facteur d'isolation R au devant de l'encastrable même si l'âtre est égale au
- Installer seulement dans un foyer de maçonnerie. Ne pas enlever les briques ou le mortier du foyer de maçonnerie
- Inspecter et nettoyer la cheminée fréquemment. Dans certaines conditions, la formation de créosote peut être rapide.
- Ne pas utiliser de chenets ou de grilles pour élever le feu. Préparer le feu directement sur l'âtre.
- Cet appareil de chauffage requiert des instructions et réparations périodiques. Consulter le manuel de l'utilisateur pour plus d'information. Opérer cet appareil de chauffage de façon inconsistente par rapport au manuel de l'utilisateur consiste une violation de la loi fédérale (USA).

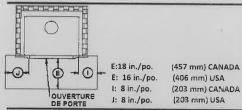
WARNING: This product can expose you to carbon monoxide, which is known to the State of California to cause cancer, birth defects or other reproductive harm (For more information go to www.p65warnings.ca.gov)

#### LISTED SOLID FUEL BURNING INSERT APPLIANCE


#### APPAREIL ENCASTRABLE À COMBUSTIBLE SOLIDE HOMOLOGUÉ

FOR USE WITH WOOD ONLY

POUR UTILISATION AVEC BOIS SEULEMENT


MINIMUM CLEARANCES TO COMBUSTIBLE MATERIALS / DÉGAGEMENTS MINIMUM AUX MATÉRIAUX COMBUSTIBLES

Floor - Ceiling / Plancher - Plafond: 72 in./po. (183 cm)



Blower / Ventilateur: 115VOLTS, 0.8 AMPS, 60Hz

- A Sidewall / Mur latéral
- D Combustible shelf (from floor) / D Tablette combustible (du sol) :
- B Combustible side surround / Parement latéral combustible :
- C Combustible top surround / Parement supérieur combustible :
- A: 16 in./po. in (406 mm)
- D: 34 in /po in (864 mm)
- B: 1 in./po.in (25 mm)
- C: 1 in./po. in (25 mm)



U.S. ENVIRONMENTAL PROTECTION AGENCY Certified to comply with 2020 particulate emission standards using cordwood. AGENCE DE PROTECTION DE L'ENVIRONNEMENT DES É.-U.

Conforme aux normes d'émission de particules de 2020 avec bûche de bois.

Weighted average emission rate / Moyenne pondérée des émissions: 1.5 g/h

Tested and certified in compliance with CFR 40 part 60, subpart AAA, section 60.534(a)(1(ii))

## CAUTION

- HOT WHILE IN OPERATION.
- DO NOT TOUCH. KEEP CHILDREN, CLOTHING AND FURNITURE AWAY.
- CONTACT MAY CAUSE SKIN BURNS. SEE NAME-PLATE AND INSTRUCTIONS.

#### ATTENTION

- . CHAUD EN FONCTIONNEMENT.
- NE PAS TOUCHER. GARDER LES ENFANTS, LES VÊTEMENTS ET LES MEUBLES ÉLOIGNÉS.
- UN CONTACT AVEC LA PEAU PEUT OCCASIONNER DES BRÛLURES. VOIR LES INSTRUCTIONS.

Made in St-Augustin-de-Desmaures (Qc), Canada Fabriqué à St-Augustin-de-Desmaures (Qc), Canada

24/05/2022 (#test) 27881



## **TABLE OF CONTENTS**

| 1. | Gene  | eral Information                                       | 6 |
|----|-------|--------------------------------------------------------|---|
|    | 1.1   | Performances                                           | 6 |
|    | 1.2   | Specifications                                         | 7 |
|    | 1.3   | Dimensions                                             | 8 |
|    | 1.4   | EPA Loading1                                           | 0 |
| 2. | Clear | rances to Combustible Material1                        | 1 |
|    | 2.1   | Minimum Masonry Opening and Clearances to Combustibles | 1 |
|    | 2.2   | Floor Protection1                                      | 2 |
|    | 2.3   | R Value1                                               | 3 |
| 3. | Insta | Iling Options on Your Product and Replacing Parts1     | 5 |
|    | 3.1   | Replacement and Adjustment1                            | 5 |
|    | 3.2   | Mandatory Installation1                                | 7 |
|    | 3.3   | Blower and Ash Lip Installation1                       | 8 |
|    | 3.4   | Faceplate and Trims Installation1                      | 9 |
|    | 3.5   | Optional Fresh Air Intake Kit Installation2            | 3 |
|    | 3.6   | Optional Fire Screen Installation2                     | 4 |
|    | 3.7   | Air Tubes and Baffle Installation2                     | 5 |
|    | 3.8   | Removal Instructions                                   | 8 |
|    | 3.9   | Exploded Diagram and Parts List2                       | 9 |

### 1. General Information

#### 1.1 Performances

Values are as measured per test method, except for the recommended heating area, firebox volume, maximum burn time and maximum heat output.

| Models                                                 | Archway 1500 (SF00609)                              |       |
|--------------------------------------------------------|-----------------------------------------------------|-------|
| Fuel Type                                              | Dry Cordwood                                        |       |
| Recommended heating area (sq. ft) <sup>1</sup>         | 250 to 1,500 ft <sup>2</sup> (23 to 13              | 9 m²) |
| Nominal firebox volume                                 | 1.2 ft <sup>3</sup> (0.034 m <sup>3</sup> )         |       |
| Loading volume EPA                                     | 1.03 ft <sup>3</sup> (0.0292 m <sup>3</sup> )       |       |
| Maximum burn time <sup>1</sup>                         | 7 hours                                             |       |
| Overall heat output rate (min. to max.) <sup>2 3</sup> | 8,471 BTU/h to 31,700 BTU/h<br>(2.48 kW to 9.29 kW) |       |
| Average overall efficiency <sup>3</sup> - Dry cordwood | 75 % (HHV) <sup>4</sup> 80 % (LHV) <sup>5</sup>     |       |
| Optimum efficiency <sup>6</sup>                        | 82 %                                                |       |
| Average particulate emissions rate <sup>7</sup>        | 1.5 g/h (EPA / CSA B415.1-10) <sup>8</sup>          |       |
| Average CO <sup>9</sup>                                | 35 g/h                                              |       |

<sup>&</sup>lt;sup>1</sup> Recommended heating area and maximum burn time may vary subject to location in home, chimney draft,heat loss factors, climate, fuel type and other variables. The recommended heated area for a given appliance is defined by the manufacturer as its capacity to maintain a minimum acceptable temperature in the designated area in case of a power failure.

<sup>&</sup>lt;sup>2</sup> The maximum heat output (dry cordwood) is based on a loading density varying between 15 lb/ft3 and 20 lb/ft3. Other performances are based on a fuel load prescribed by the standard. The specified loading density varies between 7 lb/ft³ and 12 lb/ft3. The moisture content is between 19% and 25%.

<sup>&</sup>lt;sup>3</sup> As measured per CSA B415.1-10 stack loss method.

<sup>&</sup>lt;sup>4</sup> Higher Heating Value of the fuel.

<sup>&</sup>lt;sup>5</sup> Lower Heating Value of the fuel.

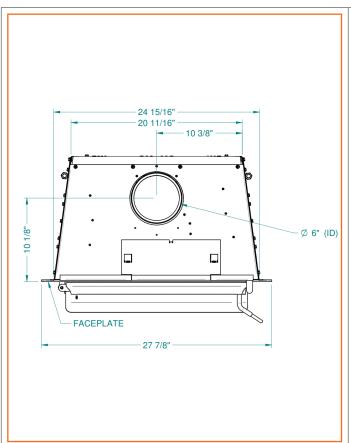
<sup>&</sup>lt;sup>6</sup> Optimum overall efficiency at a specific burn rate (LHV).

<sup>&</sup>lt;sup>7</sup> This appliance is officially tested and certified by an independent agency.

<sup>&</sup>lt;sup>8</sup> Tested and certified in compliance with CFR 40 part 60, subpart AAA, section 60.534(a)(1(ii) and ASTM E3053-17 based on the ALT-125 send by EPA on February 28<sup>th</sup>, 2018.

<sup>&</sup>lt;sup>9</sup> Carbon monoxide.

## 1.2 Specifications


| Maximum log length <sup>10</sup>                    | 17 in (432 mm) east-west             |
|-----------------------------------------------------|--------------------------------------|
| Flue outlet diameter                                | 6 in (150 mm)                        |
| Recommended connector pipe diameter                 | 6 in (150 mm)                        |
| Type of chimney                                     | ULC S635, CAN/ULC-S640, UL 1777      |
| Baffle material                                     | C-Cast or Vermiculite                |
| Approved for alcove installation                    | X                                    |
| Approved for mobile home installation <sup>11</sup> | X                                    |
| Type of door                                        | Simple, glazed, with cast iron frame |
| Type of glass                                       | Ceramic glass                        |
| Blower                                              | Included or Optional (up to XXX CFM) |
| Particulate emission standard <sup>12</sup>         | EPA / CSA B415.1-10                  |

<sup>&</sup>lt;sup>10</sup> North-south: ends of the logs visible, East-west: sides of the logs visible.

<sup>&</sup>lt;sup>11</sup> Mobile homes (Canada) or manufactured homes (USA): The US Department of Housing and Urban Development describes "manufactured homes" better known as "mobile homes" as follows; buildings built on fixed wheels and those transported on temporary wheels/axles and set on a permanent foundation. In Canada, a mobile home is a dwelling for which the manufacture and assembly of each component is completed or substantially completed prior to being moved to a site for installation on a foundation and connection to service facilities and which conforms to the CAN/CSAZ240 MH standard.

<sup>&</sup>lt;sup>12</sup> Tested and certified in compliance with CFR 40 part 60, subpart AAA, section 60.534(a)(1(ii) and ASTM E3053-17 based on the ALT-125 send by EPA on February 28th, 2018.

## 1.3 Dimensions



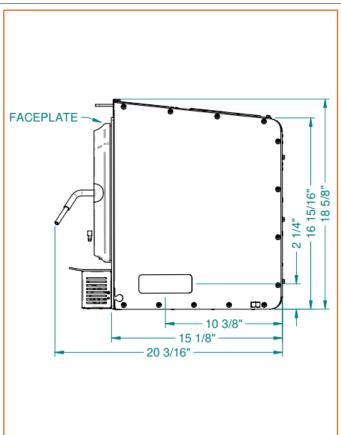
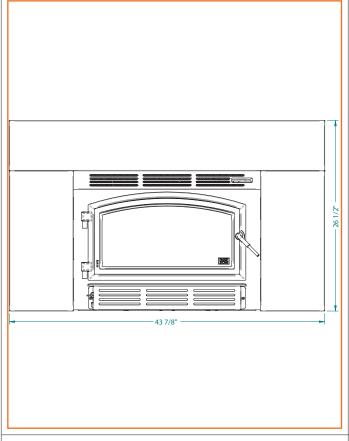




Figure 1: Top View

Figure 2: Side View



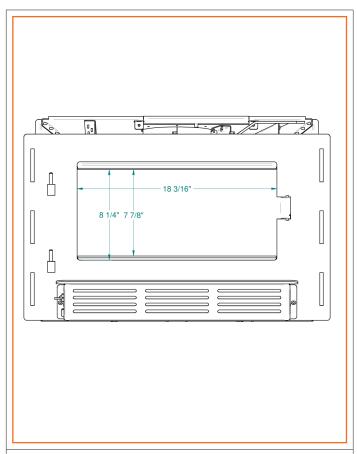
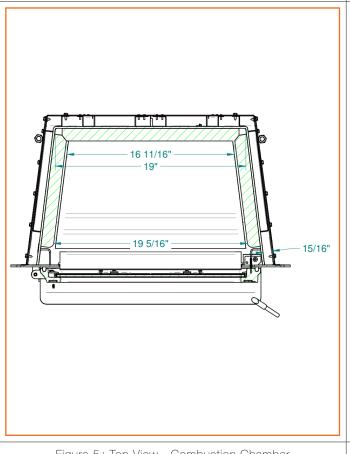
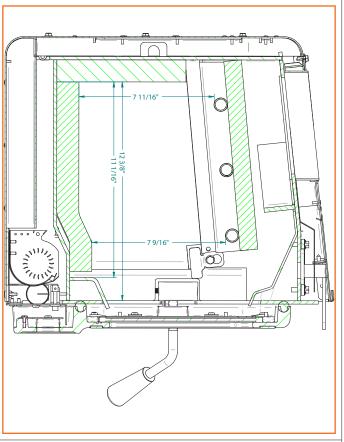
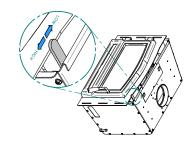




Figure 4: Door Opening









Figure 6: Side View - Combustion Chamber

#### 1.4 EPA Loading

The charging methods shown below are those that were used during emissions certification.

#### 1.4.1 Air control

The air control is located above the door on the right. To open the air control, push the air control handle completely to the right (High). This will increase the burn rate. To close the air control, push the air control handle completely to the left (Low). This will decrease the burn rate.



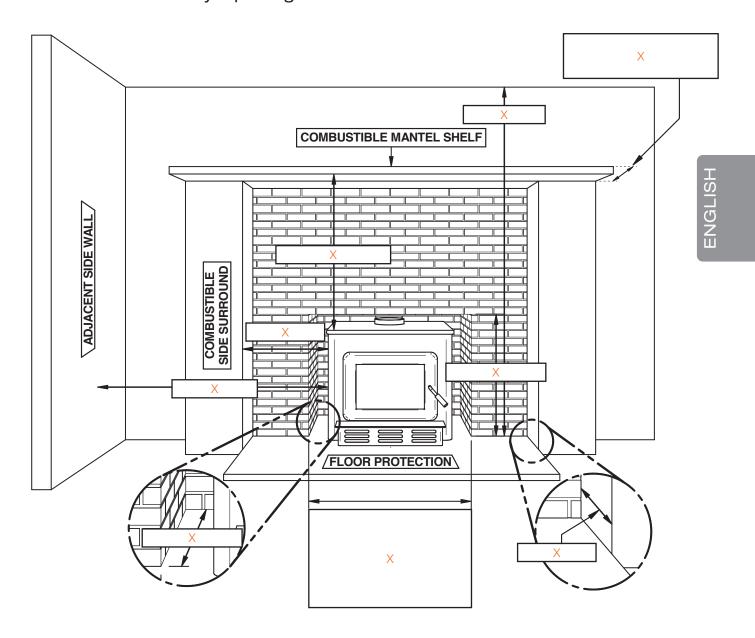
#### 1.4.2 High burn rate (primary air control open)

Open the air control completely. Criss cross 6 kindling wood pieces in the back of the firebox. Then, place six small pieces (2"x2") of wood on the kindling crossing them at the greatest possible angle. Criss cross ten others kindling wood pieces on the small pieces of wood. Tie knot with five sheets of paper and place them on top of the kindling wood. Light up the paper and let the door completely open for two

When the kindling and the small pieces of wood are almost completely burnt out and it is possible to break them into pieces, level the coal bed and put four logs in the firebox in an east-west orientation. Place a medium log (about 4"x4") in front of the combustion chamber and the biggest log (about 5"x5") in the back of the combustion chamber. Place the last two medium pieces on top of the two others in an orientation that points to the right. Do not leave space between the pieces. Let the door open ajar at 90° for 5 minutes and close the door.

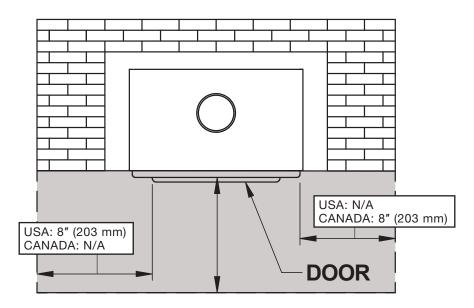
#### 1.4.3 Medium and low burn rate

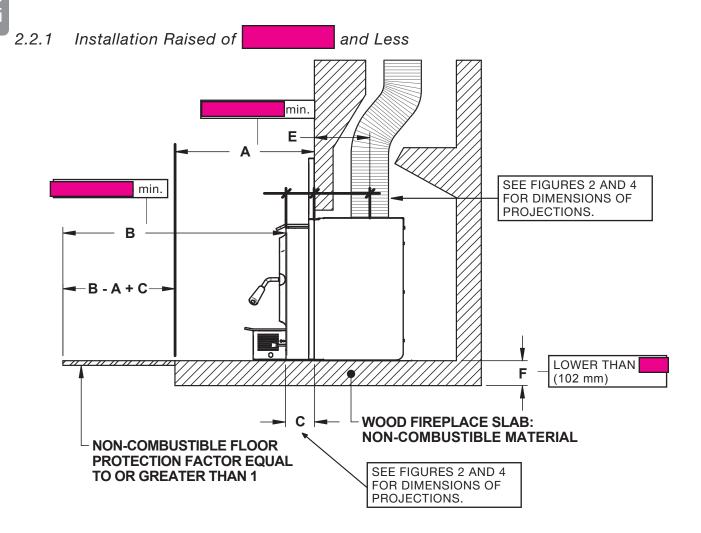
minutes. Close the door.


On a 2" coal bed that is still red, place five logs of approximatively 4"x4" or 3"x3" with an east-west orientation. Place two logs on the coal bed with approximatively 4" between them and the other three on top. There should be air space between each logs and between the logs and the bricks. Let the door ajar at 90° for 5 minutes and then close the door with the primary air control fully open. Leave to burn with the primary air control open for approximately 10 minutes and then close the primary air control completely for the low burn rate and halfway for the medium burn rate.

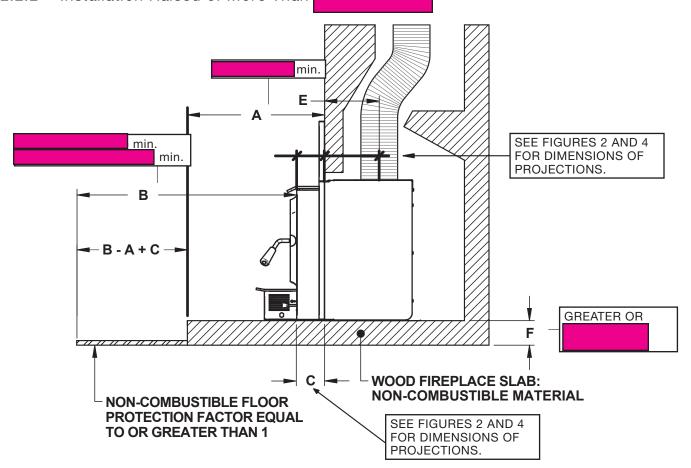
## 2. Clearances to Combustible Material

When the insert is installed so that its surfaces are at or beyond the minimum clearances specified, combustible surfaces will not overheat under normal and even abnormal operating conditions.


NO PART OF THE INSERT MAY BE LOCATED CLOSER TO THE COMBUSTIBLE THAN THE MINIMUM CLEARANCE FIGURES GIVEN.


## 2.1 Minimum Masonry Opening and Clearances to Combustibles




#### 2.2 Floor Protection

It is necessary to have a floor protection made of non-combustible materials that meets the measurements specified below.





## 2.2.2 Installation Raised of More Than



#### 2.3 R Value

There are two ways to calculate the R-value of the floor protection. First, by adding the R-values of materials used, or by the conversion if the K factor and thickness of the floor protection are given.

To calculate the total R value from R values of the materials used, simply add the R-values of materials. If the result is equal to or greater than the R-value requirements, the combination is acceptable. R-values of some selected materials are shown below.

Table 1: Thermal Characteristics of Common Floor Protection Materials<sup>13</sup>

| MATERIAL         | CONDUCTIVITY (K) PER INCH | RESISTANCE (R) PER INCH THICKNESS |
|------------------|---------------------------|-----------------------------------|
| Micore® 160      | 0.39                      | 2.54                              |
| Micore® 300      | 0.49                      | 2.06                              |
| Durock®          | 1.92                      | 0.52                              |
| Hardibacker®     | 1.95                      | 0.51                              |
| Hardibacker® 500 | 2.3                       | 0.44                              |
| Wonderboard®     | 3.23                      | 0.31                              |
| Cement mortar    | 5.00                      | 0.2                               |

| MATERIAL                            | CONDUCTIVITY (K) PER INCH | RESISTANCE (R) PER INCH THICKNESS |
|-------------------------------------|---------------------------|-----------------------------------|
| Common brick                        | 5.00                      | 0.2                               |
| Face brick                          | 9.00                      | 0.11                              |
| Marble                              | 14.3 – 20.00              | 0.07 - 0.05                       |
| Ceramic tile                        | 12.5                      | 0.008                             |
| Concrete                            | 1.050                     | 0.950                             |
| Mineral wool insulation             | 0.320                     | 3.120                             |
| Limestone                           | 6.5                       | 0.153                             |
| Ceramic board (Fibremax)            | 0.450                     | 2.2                               |
| Horizontal still air (1/8" thick)14 | 0.135                     | 0,920**                           |

#### **Exemple:**

Required floor protection R of 1.00. Proposed materials: four inches of brick and one inch of Durock® board:

Four inches of brick ( $R = 4 \times 0.2 = 0.8$ ) plus 1 inch of Durock® ( $R = 1 \times 0.52 = 0.52$ ).

$$0.8 + 0.52 = 1.32$$
.

This R value is larger than the required 1.00 and is therefore acceptable.

In the case of a known K and thickness of alternative materials to be used in combination, convert all K values to R by dividing the thickness of each material by its K value. Add R values of the proposed materials as shown in the previous example.

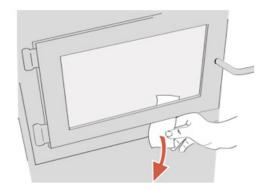
#### **Exemple:**

K value = 0.75

Thickness = 1

R value = Thickness/K = 1/0.75 = 1.33

<sup>&</sup>lt;sup>14</sup> Horizontal still air can't be «stack» to accumulate R-values; each layer must be separated with another non-combustible material.


## 3. Installing Options on Your Product and Replacing Parts

### 3.1 Replacement and Adjustment

#### 3.1.1 Door

Note: The images shown are for guidance only and may be different from your product, but the assembly remains the same.

In order for the insert to burn at its best efficiency, the door must provide a perfect seal with the firebox. Therefore, the gasket should be inspected periodically to check for a good seal. The tightness of the door seal can be verified by closing and latching the door on a strip of paper. The test must be performed all around the door. If the paper slips out easily anywhere, either adjust the door or replace the gasket.



### 3.1.2 Adjustment

The gasket seal may be improved with a simple latch mechanism adjustment:

- 1. Remove the split pin by pulling and turning it using pliers.
- 2. Turn the handle one counterclockwise turn to increase pressure.
- 3. Reinstall the split pin with a small hammer.

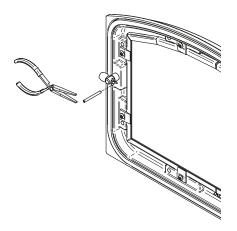
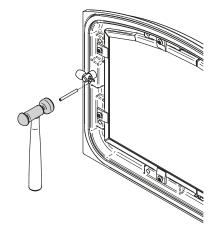
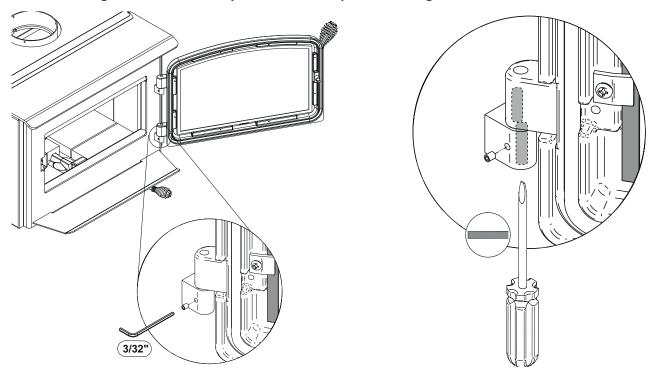
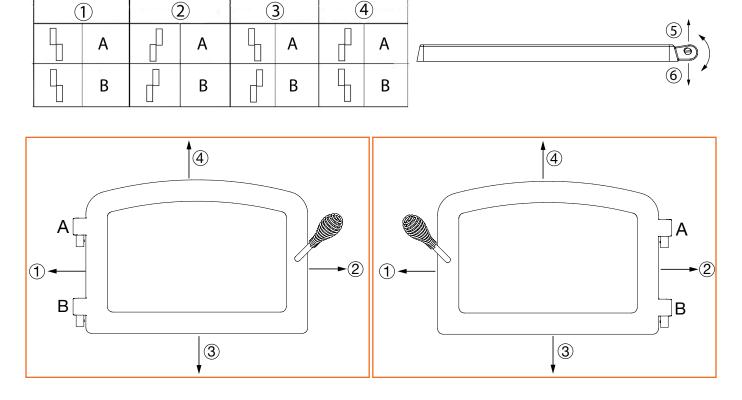



Figure 7: Removing the split pin

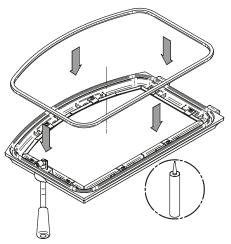





Figure 8: Installing the split pin

## 3.1.3 Door Alignment

To align, open the door and loosen the pressures screws located on the lower and upper hinges of the door using a 3/32" Allen key to free the adjustable hinge rods.




Using a flat screwdriver, turn the adjustable hinge rods in the direction shown to adjust the doors. Tighten all door hinge pressure screws when they are at the desired positions. Configurations 1-2-3-4-5-6, show in which direction these act on the adjustment of the door.



#### 3.1.4 Gasket

It is important to replace the gasket with another having the same diameter and density to maintain a good seal.

- 1. Remove the door and place it face-down on something soft like a cushion of rags or a piece of carpet.
- 2. Remove the old gasket from the door. Use a screwdriver to scrape the old gasket adhesive from the door gasket groove.
- 3. Apply a bead of approximately 3/16" (5 mm) of high temperature silicone in the door gasket groove. Starting from the middle, hinges side, press the gasket into the groove. The gasket must not be stretched during installation.
- 4. Leave about ½" (10 mm) long of the gasket when cutting and press the end into the groove. Tuck any loose fibers under the gasket and into the silicone.
- Close the door. Do not use the insert for 24 hours.



## 3.2 Mandatory Installation

• Empty the combustion chamber and install the air control handle (A) with the set screw (B) as shown below:

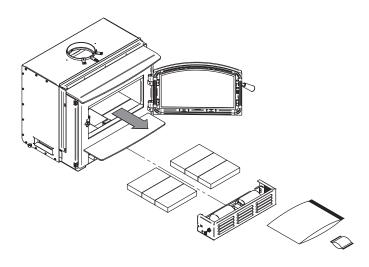



Figure 9: Empty the combustion chamber

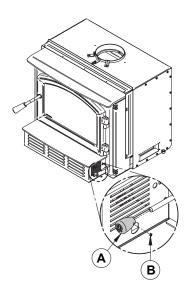



Figure 10: Installing the air control wood handle

• Install the combustion chamber side bricks as shown below.

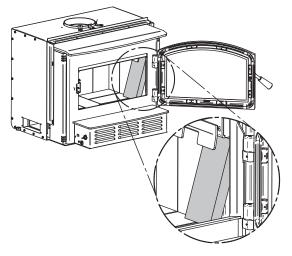
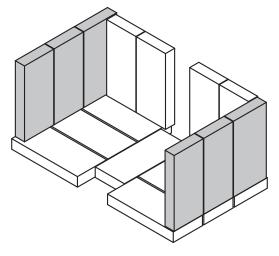
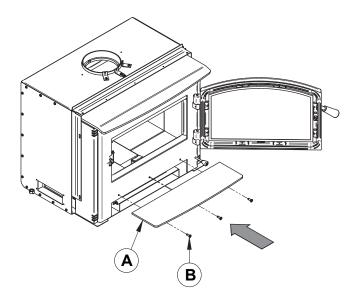
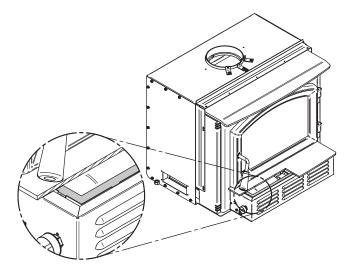



Figure 11: Install the Combustion Chamber Bricks

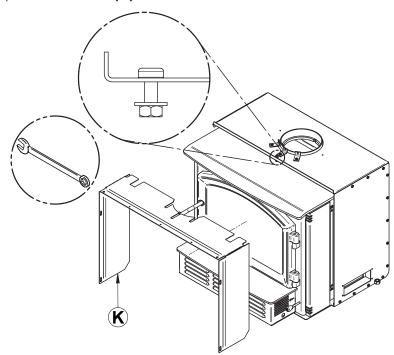





Figure 12: Combustion Chamber Bricks Layout

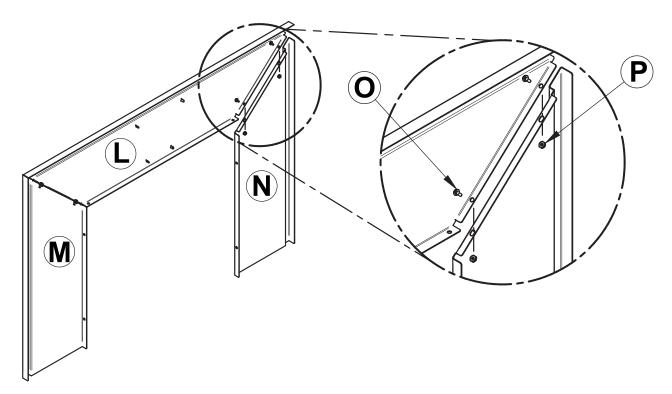
## 3.3 Blower and Ash Lip Installation

Note: The images shown are for guidance only and may be different from your product, but the assembly remains the same.

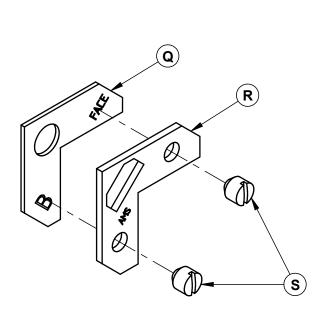
- 1. Install the ash lip (A) on the insert with three screws (B).
- 2. Center the blower on the ash lip and push it against the firebox. Then push it until it clips.

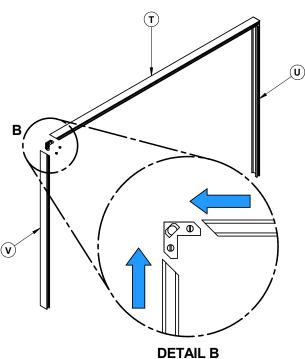




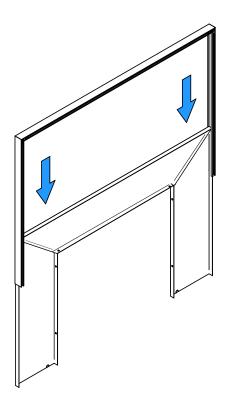


## 3.4 Faceplate and Trims Installation

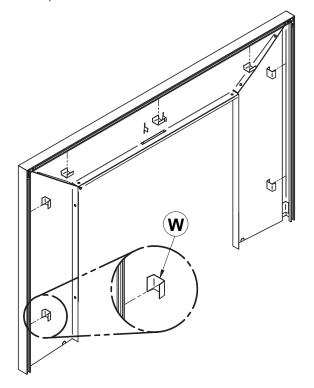
Note: The images shown are for guidance only and may be different from your product, but the assembly remains the same.


1. Remove the faceplate extension **(K)** secured between the firebox and the convection air jacket.

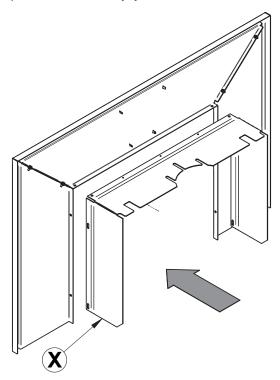



2. Lay the panels on a flat and non abrasive surface. Align the top panel holes **(L)** with the left **(N)** and right **(M)** panels. Secure together using the four bolts **(O)** and nuts **(P)** provided.

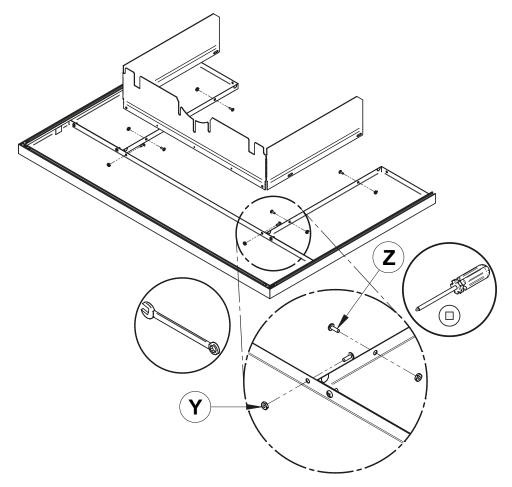




- 3. Partially thread the screws **(S)** on the trim's 4. corner bracket **(R)** then superimpose the corner brackets **(R)** and **(Q)** as shown.
- Insert the superimposed brackets (Q) and (R) in the groove of each decorative trim (T), (U) and (V). Align the corners of the angled side of each trim, and then tighten the screws (S) to secure the trims.





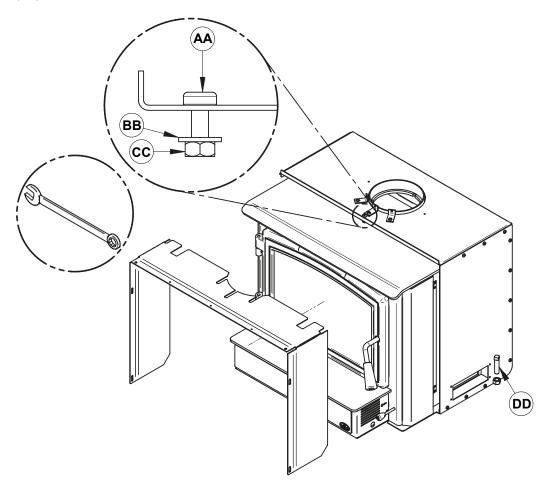

- 5. Align the trim assembly with the left and 6. right edge of the faceplate and slowly slide it down over the faceplate.
- Secure the trim to the faceplate by squeezing the eight trim retainers **(W)** between the inner edge of the trim and the front of the faceplate.






7. Align the holes of the faceplate extension (X) with the holes in the faceplate panels.



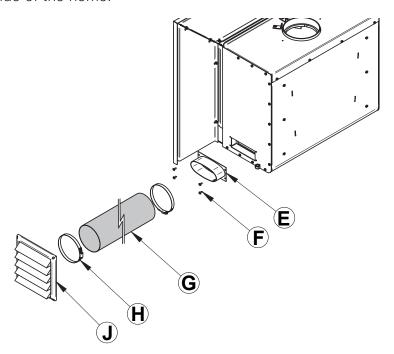

8. Screw them using bolts (Z) and nuts (Y) provided.



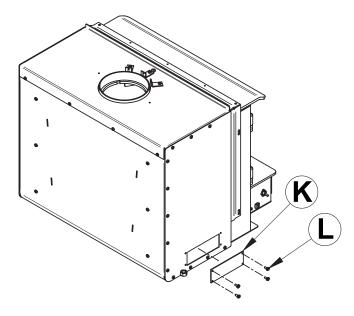
- 9. Center the insert into the fireplace opening.
- 10. Align the notch in the faceplate extension with the bolt **(CC)** welded to the air jacket located and slide the faceplate assembly just over the bolt's head and washer **(BB)**. Then push towards the fireplace.

If necessary, adjust the height of the insert using the levelling bolts (DD) on each side of the insert until the faceplate is properly seated on the floor of the hearth extension.

11. Once the faceplate is in place, secure the assembly by tightening nuts **(AA)** using a 7/16" (11 mm) open end wrench.




## 3.5 Optional Fresh Air Intake Kit Installation


Note: The images shown are for guidance only and may be different from your product, but the assembly remains the same.

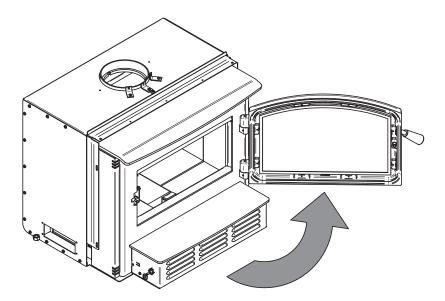
The fresh air intake kit may be installed on the right or left end side of the unit. The unused side must be covered by the plate provided in the user manual kit.

1. Install the fresh air intake adapter **(E)** with four screws **(F)** then secure the flexible pipe<sup>15</sup> **(H)** (not included) to the adapter using one of the pipe clamps **(G)**. Secure the other end of the pipe to the outside wall termination **(J)** using the other pipe clamp. The outside wall termination must be installed outside of the home.

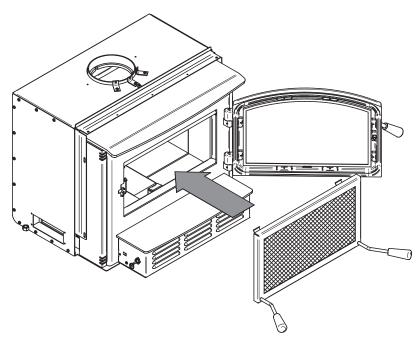


2. Install the plate **(K)** with four screws **(L)** on the unused side of the insert.



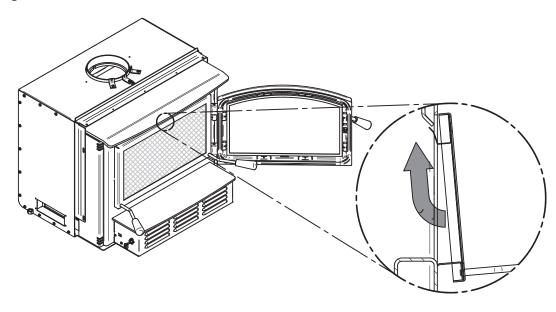

<sup>&</sup>lt;sup>15</sup> The pipe must be HVAC type, insulated, and must comply with ULC S110 and/or UL 181, Class 0 or Class 1.

## 3.6 Optional Fire Screen Installation


Note: The images shown are for guidance only and may be different from your product, but the assembly remains the same.

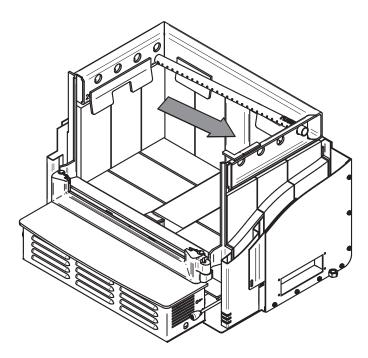
In the United States or in provinces with a particulate emissions limit (e.g.: US EPA), the use of open-door wood stoves with a rigid firescreen is prohibited.

1. Open the door.

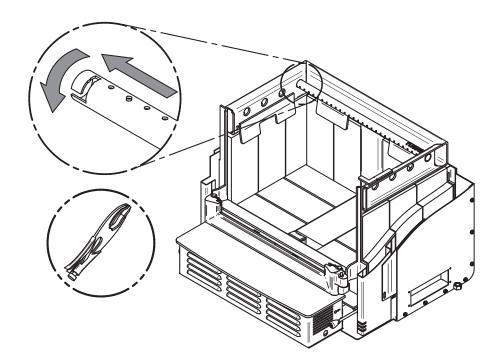



2. Hold the fire screen by the two handles and bring it close to the door opening.

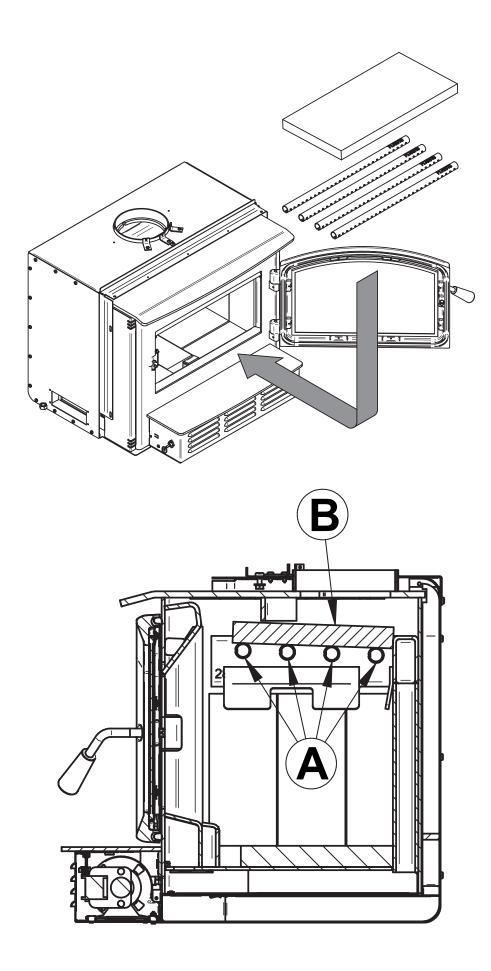



- 3. Lean the upper part of the fire screen against the top door opening making sure to insert the top fire screen brackets behind the primary air deflector.
- 4. Lift the fire screen upwards and push the bottom part towards the insert then let the fire screen rest on the bottom of the door opening.

Warning: Never leave the insert unattended while in use with the fire screen.



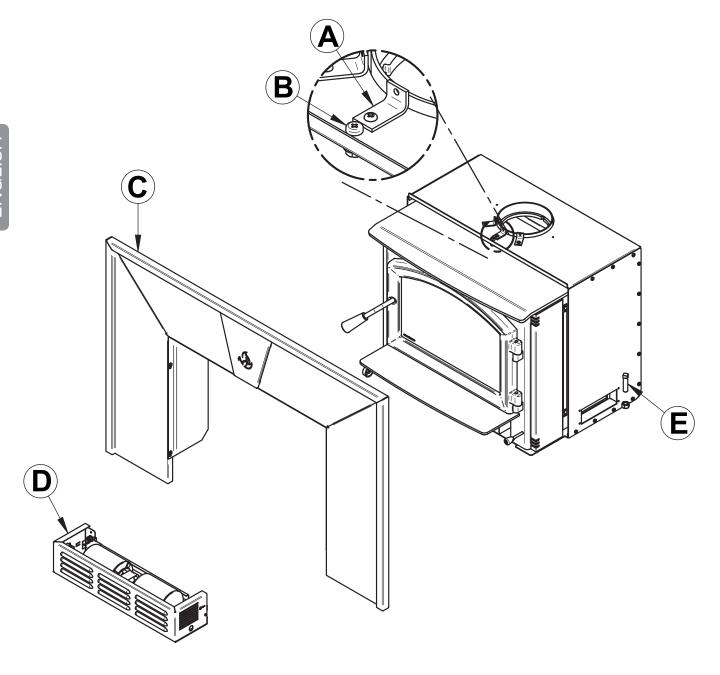

#### 3.7 Air Tubes and Baffle Installation

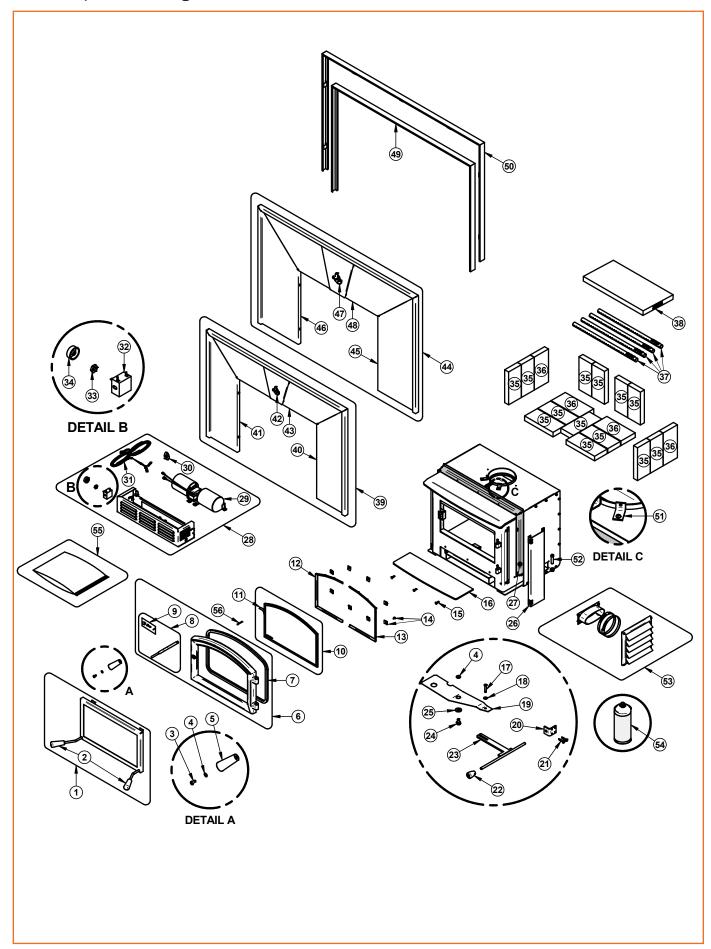

1. Starting with the rear tube, lean and insert the right end of the secondary air tube into the rear right channel hole. Then lift and insert the left end of the tube into the rear left channel.



- 2. Align the notch in the left end of the tube with the key of the left air channel hole. Using a « Wise grip » hold the tube and lock it in place by turning the tube as shown. Make sure the notch reaches the end of the key way.
- 3. Install the baffle.
- 4. Repeat steps 1 and 2 for the three other tubes.
- 5. To remove the tubes use the above steps in reverse order.




Note that secondary air tubes (A) can be replaced without removing the baffle board (B) and that all tubes are identical.




### 3.8 Removal Instructions

For inspecting purposes, the insert may need to be removed. To remove the insert, follow these instructions:

- Unscrew the faceplate fastener (B) holding the faceplate (C) on the insert.
- Remove faceplate (C) by pulling on it.
- Remove the blower assembly (D).
- Remove the three screws securing the pipe connector (A).
- Unscrew the bolts securing the insert to the floor on each side of the unit **(E)**.





IMPORTANT: THIS IS DATED INFORMATION. When requesting service or replacement parts for this unit, please provide the model number and the serial number. We reserve the right to change parts due to technology upgrades or availability. Contact an authorized dealer to obtain any of these parts. Never use substitute materials. Use of non-approved parts can result in poor performance and safety hazards.

| #  | Item    | Description                                                          | Qty |
|----|---------|----------------------------------------------------------------------|-----|
| 1  | AC01299 | FIRE SCREEN                                                          | 1   |
| 2  | 30569   | ROUND WOODEN HANDLE BLACK                                            | 2   |
| 3  | 30025   | 1/4-20 X 1/2" PAN-HEAD QUADREX BLACK SCREW                           | 1   |
| 4  | 30187   | STAINLESS WASHER ID 17/64" X OD 1/2"                                 | 2   |
| 5  | 30898   | ROUND WOODEN BLACK HANDLE DULL BLACK FINISH                          | 1   |
| 6  | SE24299 | SOLUTION 1.7 DOOR ASSEMBLY                                           | 1   |
| 7  | AC06500 | SILICONE AND 5/8" X 8' BLACK DOOR GASKET KIT                         | 1   |
| 8  | SE70698 | REPLACEMENT HANDLE WITH LATCH KIT                                    | 1   |
| 9  | AC09185 | DOOR LATCH KIT                                                       | 1   |
| 10 | SE23086 | ARCHED GLASS WITH GASKET                                             | 1   |
| 11 | AC06400 | 3/4" (FLAT) X 6' BLACK SELF-ADHESIVE GLASS GASKET                    | 1   |
| 12 | PL70655 | LEFT GLASS FRAME                                                     | 1   |
| 13 | PL70654 | RIGHT GLASS FRAME                                                    | 1   |
| 14 | SE53585 | GLASS RETAINER KIT WITH SCREWS (12 PER KIT)                          | 1   |
| 15 | 30507   | BLACK TORX SCREW WITH FLAT HEAD TYPE F 1/4-20 X 3/4"                 | 3   |
| 16 | SE70671 | ASH LIP ASSEMBLY                                                     | 1   |
| 17 | 30064   | 3/16" X 1" CLEVIS PIN                                                | 1   |
| 18 | 30059   | 5/32" ID PUSHNUT                                                     | 1   |
| 19 | PL70586 | DAMPER                                                               | 1   |
| 20 | PL65562 | AIR CONTRÔL DAMPER GUIDE                                             | 1   |
| 21 | 30160   | METAL SCREW #8 X 3/4" QUADREX SELF TAPPING TEK BLACK                 | 2   |
| 22 | 30102   | 1/4" CAST STEEL AIR CONTROL HANDLE INCLUDES MOUNTING SCREW           | 1   |
| 23 | SE65559 | AIR CONTROL ROD ASSEMBLY                                             | 1   |
| 24 | 30060   | THREAD-CUTTING SCREW 1/4-20 X 1/2" F HEX STEEL SLOT WASHER C102 ZINC | 1   |
| 25 | 30206   | ZINC WASHER 5/16"ID X 3/4"OD                                         | 1   |
| 26 | PL70672 | DECORATIVE PANEL                                                     | 2   |
| 27 | PL70587 | FACEPLATE EXTENSION                                                  | 1   |
| 28 | SE70668 | BLOWER ASSEMBLY                                                      | 1   |
| 29 | 44089   | DOUBLE CAGE BLOWER 144 CFM 115V - 60Hz - 1.1A                        | 1   |
| 30 | 44028   | CERAMIC THERMODISC F110-20F                                          | 1   |
| 31 | 60013   | POWER CORD 96" X 18-3 type SJT (50 pcs per carton)                   | 1   |
| 32 | 44080   | RHEOSTAT WITHOUT NUT (MODEL KBMS-13BV)                               | 1   |
| 33 | 44087   | RHEOSTAT NUT                                                         | 1   |

| #  | Item    | Description                                       | Qty |
|----|---------|---------------------------------------------------|-----|
| 34 | 44085   | RHEOSTAT KNOB                                     | 1   |
| 35 | 29011   | 4'' X 9" X 1 1/4" REFRACTORY BRICK HD             | 13  |
| 36 | 29020   | 4 1/2" X 9" X 1 1/4" REFRACTORY BRICK HD          | 4   |
| 37 | PL70516 | SECONDARY AIR TUBE                                | 4   |
| 38 | 21521   | C-CAST BAFFLE 1.25" X 18.875" X 9.5"              | 1   |
| 39 | AC01287 | REGULAR FACEPLATE (29" X 44")                     | 1   |
| 40 | PL70681 | REGULAR FACEPLATE RIGHT PANEL                     | 1   |
| 41 | PL70680 | REGULAR FACEPLATE LEFT PANEL                      | 1   |
| 42 | PL70682 | FACEPLATE DECORATION                              | 1   |
| 43 | PL70679 | REGULAR FACEPLATE TOP PANEL                       | 1   |
| 44 | AC01285 | LARGE FACEPLATE (32" X 50")                       | 1   |
| 45 | PL70701 | LARGE FACEPLATE RIGHT PANEL                       | 1   |
| 46 | PL70700 | LARGE FACEPLATE LEFT PANEL                        | 1   |
| 47 | PL70703 | FACEPLATE DECORATION                              | 1   |
| 48 | PL70702 | LARGE FACEPLATE TOP PANEL                         | 1   |
| 49 | OA10123 | BRUSHED NICKEL FACEPLATE TRIMS (29" X 44")        | 1   |
| 49 | OA10122 | BLACK FACEPLATE TRIMS (29" X 44")                 | 1   |
| 50 | OA10129 | BRUSHED NICKEL LARGE FACEPLATE TRIMS (32" X 50")  | 1   |
| 50 | OA10128 | BLACK LARGE FACEPLATE TRIMS (32" X 50")           | 1   |
| 51 | PL34052 | LINER FIXATION BRACKET                            | 3   |
| 52 | 30337   | SQUARE HEAD SET SCREW 1/2-13 X 1-3/4"             | 2   |
| 53 | AC01298 | 5"Ø FRESH AIR INTAKE KIT OVAL                     | 1   |
| 54 | AC05959 | METALLIC BLACK STOVE PAINT - 342 g (12oz) AEROSOL | 1   |
| 55 | SE45983 | SOLUTION 1.7 INSERT INSTRUCTIONS MANUAL KIT       | 1   |
| 56 | 30101   | SPRING TENSION PIN 5/32"Ø X 1 1/2"L               | 1   |

#### EMPIRE LIMITED LIFETIME WARRANTY

The warranty of the manufacturer extends only to the original retail purchaser and is not transferable. This warranty covers brand new products only, which have not been altered, modified nor repaired since shipment from factory. Proof of purchase (dated bill of sale), model name and serial number must be supplied when making any warranty claim to the EMPIRE dealer.

This warranty applies to normal residential use only. This warranty is void if the unit is used to burn material other than cordwood (for which the unit is not certified by EPA) and void if not operated according to the owner's manual. Damages caused by misuse, abuse, improper installation, lack of maintenance, over firing, negligence or accident during transportation, power failures, downdrafts, venting problems or under-estimated heating area are not covered by this warranty. The recommended heated area for a given appliance is defined by the manufacturer as its capacity to maintain a minimum acceptable temperature in the designated area in case of a power failure.

This warranty does not cover any scratch, corrosion, distortion, or discoloration. Any defect or damage caused by the use of unauthorized or other than original parts voids this warranty. An authorized qualified technician must perform the installation in accordance with the instructions supplied with this product and all local and national building codes. Any service call related to an improper installation is not covered by this warranty.

The manufacturer may require that defective products be returned or that digital pictures be provided to support the claim. Returned products are to be shipped prepaid to the manufacturer for investigation. Transportation fees to ship the product back to the purchaser will be paid by the manufacturer. Repair work covered by the warranty, executed at the purchaser's domicile by an authorized qualified technician requires the prior approval of the manufacturer. All parts and labour costs covered by this warranty are limited according to the table below.

The manufacturer, at its discretion, may decide to repair or replace any part or unit after inspection and investigation of the defect. The manufacturer may, at its discretion, fully discharge all obligations with respect to this warranty by refunding the wholesale price of any warranted but defective parts. The manufacturer shall, in no event, be responsible for any uncommon, indirect, consequential damages of any nature, which are in excess of the original purchase price of the product. A one-time replacement limit applies to all parts benefiting from lifetime coverage. This warranty applies to products purchased after March 1st 2019.

| DESCRIPTION                                                                                    |          | PPLICATION* |
|------------------------------------------------------------------------------------------------|----------|-------------|
| DESCRIPTION                                                                                    | PARTS    | LABOUR      |
| Combustion chamber (welds only) and cast iron door frame.                                      | Lifetime | 5 years     |
| Ceramic glass**, plating (manufacturing defect**) and convector air-mate.                      | Lifetime | N/A         |
| Surrounds, heat shields, ash drawer, steel legs, pedestal, trims (aluminum extrusions), C-Cast | 7 years  | N/A         |
| baffle**, vermiculite baffle**, secondary air tubes**, removable stainless steel combustion    |          |             |
| chamber, deflectors and supports.                                                              |          |             |
| Handle assembly, glass retainers and air control mechanism.                                    | 5 years  | 3 years     |
| Removable carbon steel combustion chamber components.                                          | 5 years  | N/A         |
| Standard and optional blower, heat sensors, switches, rheostat, wiring and electronics.        | 2 years  | 1 year      |
| Paint (peeling**), gaskets, insulation, ceramic fiber blankets, firebricks and other options.  | 1 year   | N/A         |
| All parts replaced under the warranty.                                                         | 90 days  | N/A         |

<sup>\*</sup>Subject to limitations above. \*\*Picture required.

Labour cost and repair work to the account of the manufacturer are based on a predetermined rate schedule and must not exceed the wholesale price of the replacement part.

Shall your unit or a components be defective, contact immediately your EMPIRE dealer. To accelerate processing of your warranty claim, make sure to have on hand the following information when calling:

- Your name, address and telephone number:
- Bill of sale and dealer's name;
- Installation configuration;

- Serial number and model name as indicated on the nameplate fixed to the back of your unit;
- Nature of the defect and any relevant information.

Before shipping your unit or defective component to our plant, you must obtain an Authorization Number from your EMPIRE dealer. Any merchandise shipped to our plant without authorization will be refused automatically and returned to sender.

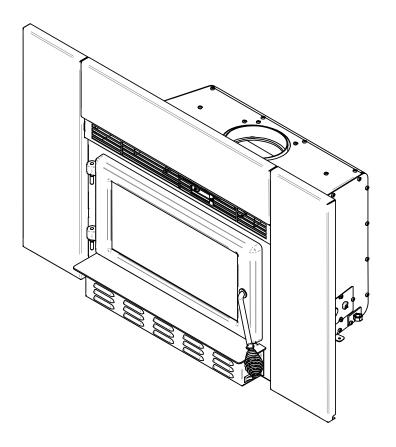
This document is available for free download on the manufacturer's website. It is a copyrighted document. Resale is strictly prohibited. The manufacturer may update this document from time to time and cannot be responsible for problems, injuries, or damages arising out of the use of information contained in any document obtained from unauthorized sources.



Empire Comfort Systems, Inc. 918 Freeburg Avenue Belleville, IL 62220 618 233.7420

https://www.empirestove.com/




## Wood Insert Owner's Manual

# Part 2 of 2

INSTALLATION AND OPERATION REQUIREMENTS

## BLUE RIDGE 150-I INSERT

(ESW0006 Model)



Safety tested according to ULC S628, UL 1482 and UL 737 by an accredited laboratory.

US Environmental Protection Agency phase II certified wood insert compliant with 2020 cord wood standard.



CONTACT LOCAL BUILDING OR FIRE OFFICIALS ABOUT RESTRICTIONS AND INSTALLATION INSPECTION REQUIREMENTS IN THE AREA.

READ THIS ENTIRE MANUAL BEFORE INSTALLATION AND USE OF THIS WOOD INSERT. FAILURE TO FOLLOW THESE INSTRUCTIONS COULD RESULT IN PROPERTY DAMAGE, BODILY INJURY OR EVEN DEATH.

## READ AND KEEP THIS MANUAL FOR REFERENCE

| ONLINE W                                           | /ARRANTY REGISTRATION                                                                                                                                                                                        |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| purchase invoice must be kept. The da              | varranty period, proof of purchase must be provided. The ite indicated on it establishes the warranty period. If it can libe determined by the date of manufacture of the product. er the warranty online at |
| https://www.englander-<br>Registering the warranty | stoves.com  will help to quickly find the information needed on the unit.                                                                                                                                    |
|                                                    |                                                                                                                                                                                                              |
| Dealer: _                                          |                                                                                                                                                                                                              |
| Installer:                                         |                                                                                                                                                                                                              |
| Phone Number:                                      |                                                                                                                                                                                                              |
| Serial Number:                                     |                                                                                                                                                                                                              |

#### CERTIFICATION PLATE



REFER TO INTERTEX'S DIRECTORY OF BUILDING PRODUCTS FOR DETAILED INSTRUCTIONS.

SE RÉFÉRER AU RÉPÉRT DIRE DES PRODUITS HOMOLOGUÉS D'INTERTEX POUR PLUS D'INFORMATION.

CONTACT LOCAL GUILDING DEPICALS ABOUT THE RESTRICTIONS AND INSTALLATION INSPECTION IN YOUR AREA. CONTACT LOCAL GUILDING DEPICALS AND BATIMENT ET DE LA PRÉVENTION DES INCERDIES AU SWET DES RESTRICTIONS D'INSTALLATION DANS VOTRE SECTEUR.

Control number: 4002461

Intertek STANDARDS / NORMES D'ESSAI!

Certified to / Certifié selon ULC 5628 Certified to / Certifié selon UL 1482 Certified to / Certifié selon UL 737

(July/Juillet 2021)

Certified to/Certifié selon CSA 8415.1-10. Certified to/Certifié selon ASTM E3053-17 Certified to/Certifié seion ASTM E2515-11 (R2017)

#### MODEL / MODÈLE : BLUE RIDGE 150-I

Serial Number No, de Série

INSTALL AND USE ONLY IN ACCORDANCE WITH SBI STOVE BUILDER INTERNATIONAL INSTALLATION AND OPERATION INSTRUCTIONS. L'INSTALLATION ET L'OPERATION DOIT SE FAIRE SELON LES

INSTRUCTIONS D'INSTALLATION ET D'UTILISATION DE SBI FABRICANT DE POÊLES INTERNATIONAL.

#### PREVENT HOUSE FIRES

- Install and use in accordance with the manufacturer's installation and operating instructions.
- Contact local building or fire officials about restrictions and installation inspection in your area.
- Use with solid wood fuel only, Do not use other fuels,
- For safety, keep screen doors or glass doors fully closed.
- Do not overfire unit.
- Replace with only ceramic glass 4mm thick,
- Connect to a code-approved masonry chimney or listed factory-built fireplace chimney with a direct flue connector into the first chimney liner section,
- The non-combustible floor protection in front of the unit should extend 16 inches (406 mm) (USA), 18 inches (457 mm) (CANADA) without a R value even
- if the hearth elevation is equal with the combustible floor. Do not connect this unit to a chimney serving another appliance
- Install only in masonry fireplaces. Do not remove bricks or mortar from nasonry fireplace.
- · Inspect and clean chimney frequently. Under certain conditions of use, creosote buildup may occur rapidly,
- Do not use grate or elevate fire. Build wood fire directly on hearth.
- This wood heater needs periodic inspection and repair for proper operation. Consult the owner's manual for further information. It is against US federal regulations to operate this wood heater in a manner inconsistent with the operating instructions in the owner's manual.

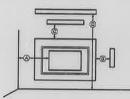
#### PRÉVENEZ LES INCENDIES

- Installer et utiliser conformément au manuel d'utilisation du fabricant. Contacter les autorités de votre localité ayant juridiction concernant les restrictions et inspection d'installation.
- Utiliser avec le bois seulement. Ne pas utiliser d'autres combustibles.
- Utiliser l'appareil la porte fermée ou ouverte avec le pare-étincelle en place uniquement. Ouvrir la porte ou retirer le pare-étincelle seulement lors du chargement.
- Ne pas raccorder à un conduit de fumée servant déjà pour un autre appareil.
- Remplacer la vitre seulement avec un verre céramique de 4mm d'épaisseur. Raccorder à une cheminée de maçonnerie respectant les codes ou à une
- cheminée préfabriquée homologuée, directement à la première section de cheminée gainée.
- La protection de plancher incombustible au devant de l'encastrable doit se prolonger de 16 pouces (406 mm) (USA), 18 pouces (457 mm) (CANADA), sans facteur d'isolation R au devant de l'encastrable même si l'âtre est égale au plancher combustible.
- Installer seulement dans un foyer de maçonnerie. Ne pas enlever les briques ou le mortier du foyer de maçonnerie.
- Inspecter et nettoyer la cheminée fréquemment. Dans certaines conditions, la formation de créosote peut être rapide.
- Ne pas utiliser de chenets ou de grilles pour élever le feu. Préparer le feu directement sur l'âtre.
- Cet appareil de chauffage requiert des instructions et réparations périodiques Consulter le manuel de l'utilisateur pour plus d'information. Opérer cet appareil de chauffage de façon inconsistente par rapport au manuel de l'utilisateur consiste une violation de la loi fédérale (USA)



WARNING: This product can expose you to carbon monoxide, which is known to the State of California to cause cancer, birth defects or other reproductive harm

(For more information go to www.p65warnings.ca.gov)


#### LISTED SOLID FUEL BURNING INSERT APPLIANCE APPAREIL ENCASTRABLE À COMBUSTIBLE SOLIDE HOMOLOGUÉ

FOR USE WITH WOOD ONLY

POUR UTILISATION AVEC BOIS SEULEMENT

MINIMUM CLEARANCES TO COMBUSTIBLE MATERIALS / DÉGAGEMENTS MINIMUM AUX MATÉRIAUX COMBUSTIBLES

Floor - Ceiling / Plancher - Plafond: 72 in./po. (183 cm)

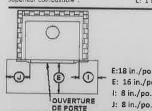


Blower / Ventilateur: 115VOLTS, 0.8 AMPS, 60:17

A - Sidewall / Mur latéral : D - Combustible shelf (from floor) /

A: 16 in./po, in (406 mm)

D - Tablette combustible (du sol) : B - Combustible side surround / Parement


D: 34 in./po.in (864 mm)

latéral combustible

B: 1 in./po.in (25 mm)

C - Combustible top surround / Parement supérieur combustible

C: 1 ln./po. in. (25 mm)



E:18 in./po. I: 8 in./po.

(457 mm) CANADA E: 16 in./po. (406 mm) USA

(203 mm) CANADA (203 mm) USA

U.S. ENVIRONMENTAL PROTECTION AGENCY Certified to comply with 2020 particulate emission standards using cordwood. AGENCE DE PROTECTION DE L'ENVIRONNEMENT DES É.-U. Conforme aux normes d'émission de particules de 2020 avec bûche

de bois. Weighted average emission rate / Moyenne pondérée des émissions: 1.5 g/h

Tested and certified in compliance with CFR 40 part 60, subpart AAA, section 60.534(a)(1(ii))

### CAUTION

- HOT WHILE IN OPERATION.
- DO NOT TOUCH. KEEP CHILDREN, CLOTHING AND FURNITURE AWAY.
- · CONTACT MAY CAUSE SKIN BURNS. SEE NAME-PLATE AND INSTRUCTIONS.

## ATTENTION

- CHAUD EN FONCTIONNEMENT.
- NE PAS TOUCHER. GARDER LES ENFANTS, LES VÊTEMENTS ET LES MEUBLES ÉLOIGNÉS.
- UN CONTACT AVEC LA PEAU PEUT OCCASIONNER DES BRÛLURES. VOIR LES INSTRUCTIONS.

Made in St-Augustin-de-Desmaures (Qc), Canada Fabriqué à St-Augustin-de-Desmaures (Qc), Canada



24/05/2022



# **TABLE OF CONTENTS**

| 1. | Gene       | ral Information                                        | . 6 |
|----|------------|--------------------------------------------------------|-----|
|    | 1.1        | Performances                                           | . 6 |
|    | 1.2        | Specifications                                         | . 7 |
|    | 1.3        | Dimensions                                             | . 8 |
|    | 1.4        | EPA Loading                                            | 10  |
| 2. | Clear      | ances to Combustible Material                          | 11  |
|    | 2.1        | Minimum Masonry Opening and Clearances to Combustibles | 11  |
|    | 2.2        | Floor Protection                                       | 12  |
|    | 2.3        | R Value                                                | 13  |
| 3. | Insta      | lling Options on Your Product and Replacing Parts      | 15  |
|    | 3.1        | Replacement and Adjustment                             |     |
|    | 3.2        | Removal of Refractory Stones                           | 17  |
|    | 3.3        | Connecting the Blower With a BX Wire                   | 18  |
|    | 3.4        | Changing the Side of the Blower Power Cord             | 21  |
|    | 3.5        | Blower Removal                                         | 24  |
|    | 3.6        | Removable Air Control Handle                           | 25  |
|    | 3.7        | Faceplate Removal                                      | 26  |
|    | 3.8        | Faceplate Decorative Panel Installation/Removal        | 27  |
|    | 3.9        | Door Overlay Installation                              | 28  |
|    | 3.10       | Optional Fresh Air Intake Kit Installation             | 29  |
|    | 3.11       | Optional Fire Screen Installation                      | 30  |
|    | 3.12       | Air Tubes and Baffle Installation                      |     |
|    | 3.13       | Removal Instructions                                   |     |
|    | 3.14       | Exploded Diagram and Parts List                        | 35  |
| 4. | <b>ENG</b> | _ANDER LIMITED LIFETIME WARRANTY                       | 38  |

### 1. General Information

#### 1.1 Performances

Values are as measured per test method, except for the recommended heating area, firebox volume, maximum burn time and maximum heat output.

| Models                                                 | Blue Ridge 150-I (ESW0006)                               |                         |  |
|--------------------------------------------------------|----------------------------------------------------------|-------------------------|--|
| Type of combustion                                     | Non-catalytic                                            |                         |  |
| Fuel Type                                              | Dry Cordwood                                             |                         |  |
| Recommended heating area (sq. ft) <sup>1</sup>         | 250 to 1,200 ft <sup>2</sup> (23 to 111 m <sup>2</sup> ) |                         |  |
| Nominal firebox volume                                 | 1.2 ft <sup>3</sup> (0.034 m <sup>3</sup> )              |                         |  |
| Loading volume EPA                                     | 1.03 ft <sup>3</sup> (0.0292 m <sup>3</sup> )            |                         |  |
| Maximum burn time <sup>1</sup> 7 hours                 |                                                          |                         |  |
| Overall heat output rate (min. to max.) <sup>2 3</sup> | 8,471 BTU/h to 31,700 B<br>(2.48 kW to 9.29 kW)          | TU/h                    |  |
| Average overall efficiency <sup>3</sup> - Dry cordwood | 75 % (HHV) <sup>4</sup>                                  | 80 % (LHV) <sup>5</sup> |  |
| Optimum efficiency <sup>6</sup>                        | 82 %                                                     |                         |  |
| Optimum heat transfert efficiency <sup>7</sup>         | 78 %                                                     |                         |  |
| Average particulate emissions rate <sup>8</sup>        | 1.5 g/h (EPA / CSA B415.1-10) <sup>9</sup>               |                         |  |
| Average CO <sup>10</sup>                               | 34 g/h                                                   |                         |  |

<sup>&</sup>lt;sup>1</sup> Recommended heating area and maximum burn time may vary subject to location in home, chimney draft,heat loss factors, climate, fuel type and other variables. The recommended heated area for a given appliance is defined by the manufacturer as its capacity to maintain a minimum acceptable temperature in the designated area in case of a power failure.

<sup>&</sup>lt;sup>2</sup> The maximum heat output (dry cordwood) is based on a loading density varying between 15 lb/ft3 and 20 lb/ft3. Other performances are based on a fuel load prescribed by the standard. The specified loading density varies between 7 lb/ft³ and 12 lb/ft³. The moisture content is between 19% and 25%.

<sup>&</sup>lt;sup>3</sup> As measured per CSA B415.1-10 stack loss method.

<sup>&</sup>lt;sup>4</sup> Higher Heating Value of the fuel.

<sup>&</sup>lt;sup>5</sup> Lower Heating Value of the fuel.

<sup>&</sup>lt;sup>6</sup> Optimum overall efficiency at a specific burn rate (LHV).

<sup>&</sup>lt;sup>7</sup> The optimum heat transfer efficiency is for the low burn rate and represents the appliance's ability to convert the energy contained in the wood logs into energy transferred to the room in the form of heat and does not take into account the chemical losses during combustion.

<sup>&</sup>lt;sup>8</sup> This appliance is officially tested and certified by an independent agency.

<sup>&</sup>lt;sup>9</sup> Tested and certified in compliance with CFR 40 part 60, subpart AAA, section 60.534(a)(1(ii) and ASTM E3053-17 based on the ALT-125 sent by EPA on February 28th, 2018.

<sup>&</sup>lt;sup>10</sup> Carbon monoxide.

## 1.2 Specifications

| Recommended log length                              | 16 in (406 mm) east-west             |
|-----------------------------------------------------|--------------------------------------|
| Maximum log length <sup>11</sup>                    | 17 in (432 mm) east-west             |
| Flue outlet diameter                                | 6 in (150 mm)                        |
| Recommended connector pipe diameter                 | 6 in (150 mm)                        |
| Type of chimney                                     | ULC S635, CAN/ULC-S640, UL 1777      |
| Minimum liner height                                | 12 feet                              |
| Baffle material                                     | C-Cast or equivalent                 |
| Approved for alcove installation                    | No                                   |
| Approved for mobile home installation <sup>12</sup> | No                                   |
| Type of door                                        | Simple, glazed, with cast iron frame |
| Type of glass                                       | Ceramic glass                        |
| Blower                                              | Included (up to 90 CFM)              |
| Particulate emission standard <sup>13</sup>         | EPA / CSA B415.1-10                  |
| USA Standard (Safety)                               | UL 1482, UL 737                      |
| Canada Standard (Safety)                            | ULC-S628                             |
|                                                     |                                      |

<sup>&</sup>lt;sup>11</sup> North-south: ends of the logs visible, East-west: sides of the logs visible.

<sup>&</sup>lt;sup>12</sup> Mobile homes (Canada) or manufactured homes (USA): The US Department of Housing and Urban Development describes "manufactured homes" better known as "mobile homes" as follows; buildings built on fixed wheels and those transported on temporary wheels/axles and set on a permanent foundation. In Canada, a mobile home is a dwelling for which the manufacture and assembly of each component is completed or substantially completed prior to being moved to a site for installation on a foundation and connection to service facilities and which conforms to the CAN/CSAZ240 MH standard.

<sup>&</sup>lt;sup>13</sup> Tested and certified in compliance with CFR 40 part 60, subpart AAA, section 60.534(a)(1(ii) and ASTM E3053-17 based on the ALT-125 sent by EPA on February 28th, 2018.

## 1.3 Dimensions

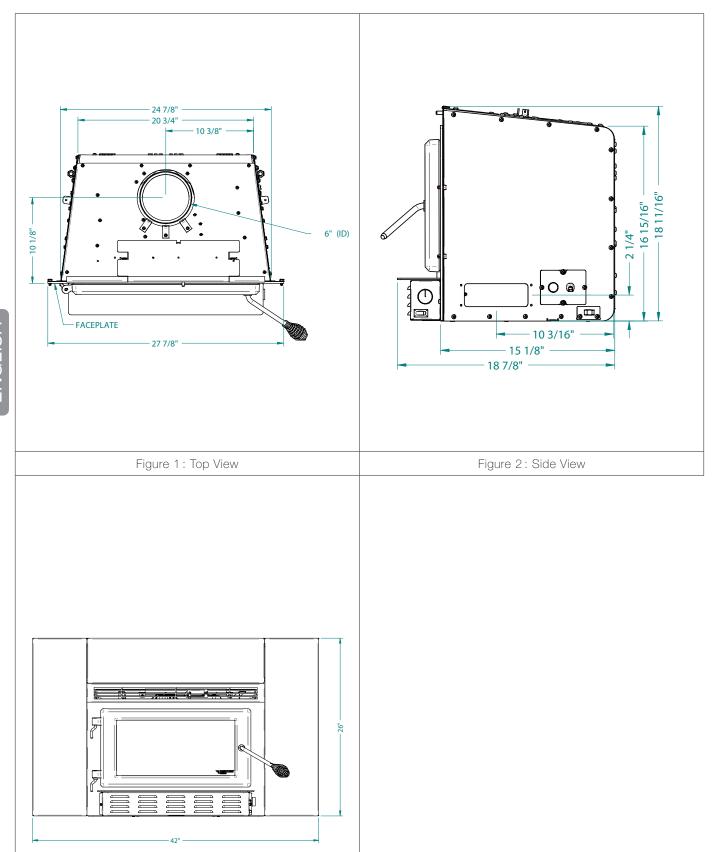



Figure 3: Front View

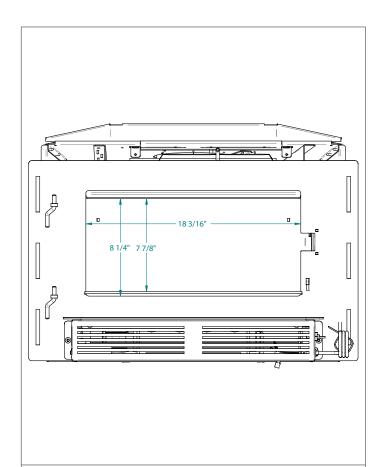
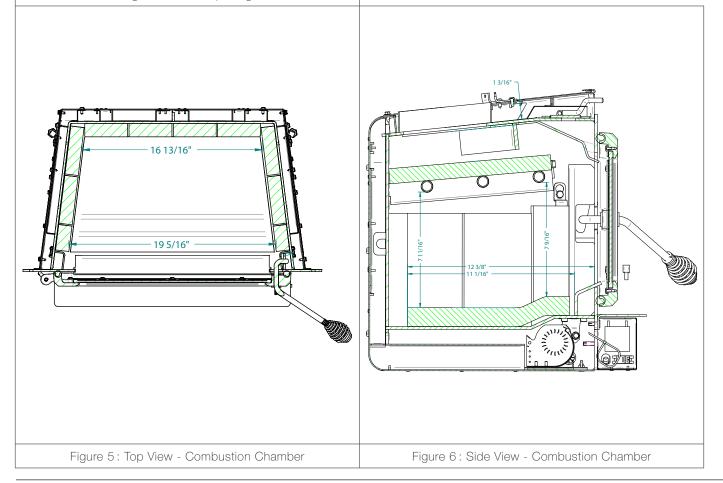
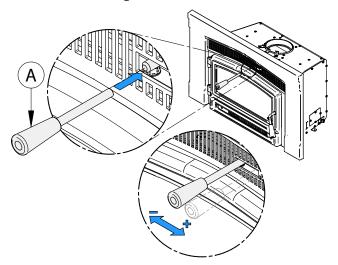




Figure 4: Door Opening




## 1.4 EPA Loading

The loading methods shown below are those that were used during emissions certification.

#### 1.4.1 Air control

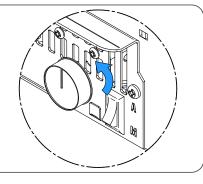
The air control is located above the door. To open the air control, insert the removable handle onto the air control and push the air control handle completely to the right (High). This will increase the burn rate. To close the air control, push the air control handle completely to the left (Low). This will decrease the burn rate. **Do not leave the handle on the air control after use, as it will get very hot.** 



# 1.4.2 High burn rate (primary air control open)

Open the air control completely. Criss cross 6 kindling wood pieces in the back of the firebox. Then, place six small pieces (2"x2") of wood on the kindling crossing them at the greatest possible angle. Criss cross ten others kindling wood pieces on the small pieces of wood. Tie knot with five sheets of paper and place them on top of the kindling wood. Light up the paper and let the door completely open for two minutes. Close the door.

When the kindling and the small pieces of wood are almost completely burnt out and it is possible to break them into pieces, level the coal bed and put four logs in the firebox in an east-west orientation. Place a medium log (about 4"x4") in front of the combustion chamber and the biggest log (about 5"x5") in the back of the combustion chamber. Place the last two medium pieces on top of the two others in an orientation that points to the right. Do not leave space between the pieces. Let the door open ajar at 90° for 5 minutes and close the door.


#### 1.4.3 Medium and low burn rate

On a 2" coal bed that is still red, place five logs of approximatively 4"x4" or 3"x3" with an east-west orientation. Place two logs on the coal bed with approximatively 4" between them and the other three on top. There should be air space between each logs and between the logs and the bricks. Let the door ajar at 90° for 5 minutes and then close the door with the primary air control fully open. Leave to burn with the primary air control open for approximately 10 minutes and then close the primary air control completely for the low burn rate and halfway for the medium burn rate.

### WARNING



Before opening the door completely to add wood to the insert, the fan must be turned OFF to avoid blowing ash outside the combustion chamber. Refer to section "5.1 Blower" of the owner's manual for how to turn OFF the fan.



## 2. Clearances to Combustible Material

When the insert is installed so that its surfaces are at or beyond the minimum clearances specified, combustible surfaces will not overheat under normal and even abnormal operating conditions.

# NO PART OF THE INSERT MAY BE LOCATED CLOSER TO THE COMBUSTIBLE THAN THE MINIMUM CLEARANCE FIGURES GIVEN.

## 2.1 Minimum Masonry Opening and Clearances to Combustibles

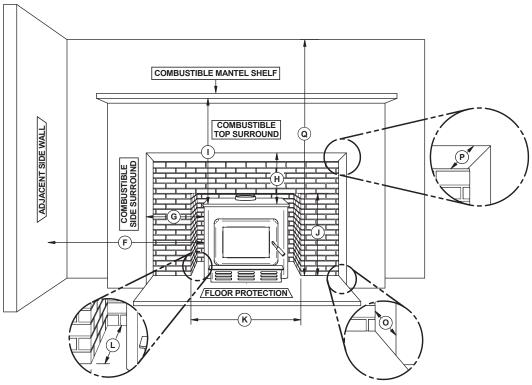



Figure 7 : Ouverture de l'âtre et dégagements aux combustibles

|   | MINIMUM CLEARANCES |  |
|---|--------------------|--|
| F | 16" (406 mm)       |  |
| I | 34" (864 mm)       |  |
| Q | 72" (183 cm)       |  |

|              | MAXIMUM THICKNESS |  |
|--------------|-------------------|--|
| O 3" (76 mm) |                   |  |
| Р            | 1.5" (38 mm)      |  |
| R            | 12" (305 mm)      |  |

|                        | MINIMUM MASONRY<br>OPENING |  |  |
|------------------------|----------------------------|--|--|
| J                      | 19" (483 mm)               |  |  |
| <b>K</b> <sup>14</sup> | 25" (635 mm)               |  |  |
| L                      | 15 ½" (394 mm)             |  |  |

|                                | FACADE<br>CLEARANCES |
|--------------------------------|----------------------|
| From combustible side surround | 1" (25 mm)           |
| From combustible top surround  | 1" (25 mm)           |

<sup>&</sup>lt;sup>14</sup> If a fresh air intake is required, it is recommended to add at least 4" to the width of the minimum opening of the hearth.

#### 2.2 Floor Protection

It is necessary to have a floor protection made of non-combustible materials that meets the measurements specified below.

**Table 1: Floor Protection** 

|                        | FLOOR PR     | OTECTION     |
|------------------------|--------------|--------------|
|                        | Canada       | USA          |
| <b>B</b> <sup>15</sup> | 18" (457 mm) | 16" (406 mm) |
| М                      | 8" (203 mm)  | N/A          |
| N                      | N/A          | 8" (203 mm)  |

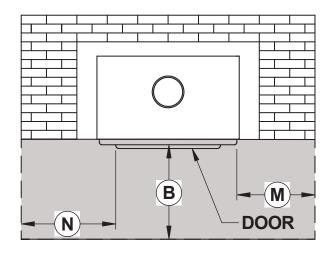



Figure 8: Floor Protection

To determine the need to add floor protection **(D)** beyond the hearth extension **(A)**, the following calculation must be done using the data in "Table 2: Data for Floor Protection Calculation" of this section: D = B - G, where G = A-C.

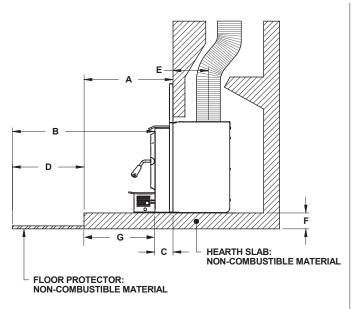



Figure 9: Additional Floor Protection - Raised Installation

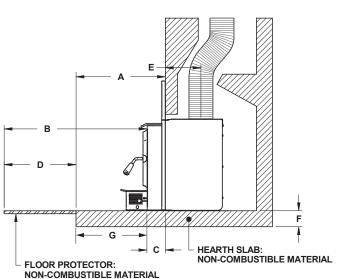



Figure 10: Additional Floor Protection - Not Raised Installation

**Table 2: Data for Floor Protection Calculation** 

|                     | Α                                 | В                       | С            | D                   | E                   | Air Jacket                        |
|---------------------|-----------------------------------|-------------------------|--------------|---------------------|---------------------|-----------------------------------|
| Minimum<br>Extended | Dimension of the hearth extension | See raised installation | 0"<br>(0 mm) | G = (A-C)<br>D=B- G | 10 1/8"<br>(257 mm) | flush with<br>fireplace<br>facing |

<sup>&</sup>lt;sup>15</sup>From door opening. The depth of the hearth extension in front of the insert is included in the calculation of the floor protector's dimensions.

If the value **(D)** is negative or zero, additional floor protection in front of the unit is not needed because the masonry fireplace hearth extension is long enough. If the value **(D)** is positive, an additional floor protection in front of the hearth extension at least equivalent to the result **(D)** must be added.

#### 2.3 R Value

There are two ways to calculate the R-value of the floor protection. First, by adding the R-values of materials used, or by the conversion if the K factor and thickness of the floor protection are given.

To calculate the total R value from R values of the materials used, simply add the R-values of materials. If the result is equal to or greater than the R-value requirements, the combination is acceptable. R-values of some selected materials are shown below.

Table 3: Thermal Characteristics of Common Floor Protection Materials<sup>16</sup>

| MATERIAL                                        | CONDUCTIVITY (K) PER INCH | RESISTANCE (R) PER INCH THICKNESS |
|-------------------------------------------------|---------------------------|-----------------------------------|
| Micore® 160                                     | 0.39                      | 2.54                              |
| Micore® 300                                     | 0.49                      | 2.06                              |
| Durock®                                         | 1.92                      | 0.52                              |
| Hardibacker®                                    | 1.95                      | 0.51                              |
| Hardibacker® 500                                | 2.3                       | 0.44                              |
| Wonderboard®                                    | 3.23                      | 0.31                              |
| Cement mortar                                   | 5.00                      | 0.2                               |
| Common brick                                    | 5.00                      | 0.2                               |
| Face brick                                      | 9.00                      | 0.11                              |
| Marble                                          | 14.3 – 20.00              | 0.07 - 0.05                       |
| Ceramic tile                                    | 12.5                      | 0.008                             |
| Concrete                                        | 1.050                     | 0.950                             |
| Mineral wool insulation                         | 0.320                     | 3.120                             |
| Limestone                                       | 6.5                       | 0.153                             |
| Ceramic board (Fibremax)                        | 0.450                     | 2.2                               |
| Horizontal still air (1/8" thick) <sup>17</sup> | 0.135                     | 0,920**                           |

#### **Exemple:**

Required floor protection R of 1.00. Proposed materials: four inches of brick and one inch of Durock® board:

Four inches of brick ( $R = 4 \times 0.2 = 0.8$ ) plus 1 inch of Durock® ( $R = 1 \times 0.52 = 0.52$ ).

<sup>&</sup>lt;sup>16</sup> Information as reported by manufacturers and other resources.

<sup>&</sup>lt;sup>17</sup> Horizontal still air can't be «stack» to accumulate R-values; each layer must be separated with another non-combustible material.

$$0.8 + 0.52 = 1.32$$
.

This R value is larger than the required 1.00 and is therefore acceptable.

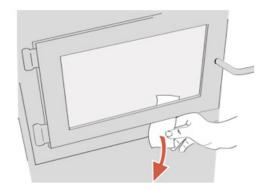
In the case of a known K and thickness of alternative materials to be used in combination, convert all K values to R by dividing the thickness of each material by its K value. Add R values of the proposed materials as shown in the previous example.

## **Exemple:**

K value = 0.75

Thickness = 1

R value = Thickness/K = 1/0.75 = 1.33


# 3. Installing Options on Your Product and Replacing Parts

## 3.1 Replacement and Adjustment

#### 3.1.1 Door

Note: The images shown are for guidance only and may be different from your product, but the assembly remains the same.

In order for the insert to burn at its best efficiency, the door must provide a perfect seal with the firebox. Therefore, the gasket should be inspected periodically to check for a good seal. The tightness of the door seal can be verified by closing and latching the door on a strip of paper. The test must be performed all around the door. If the paper slips out easily anywhere, either adjust the door or replace the gasket.



## 3.1.2 Adjustment

The gasket seal may be improved with a simple latch mechanism adjustment:

- 1. Remove the split pin by pulling and turning it using pliers.
- 2. Turn the handle one counterclockwise turn to increase pressure.
- 3. Reinstall the split pin with a small hammer.

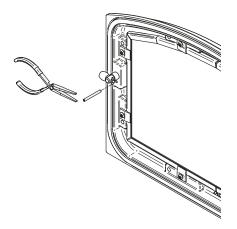
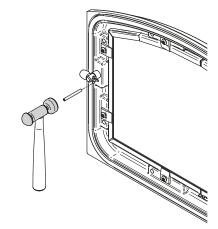
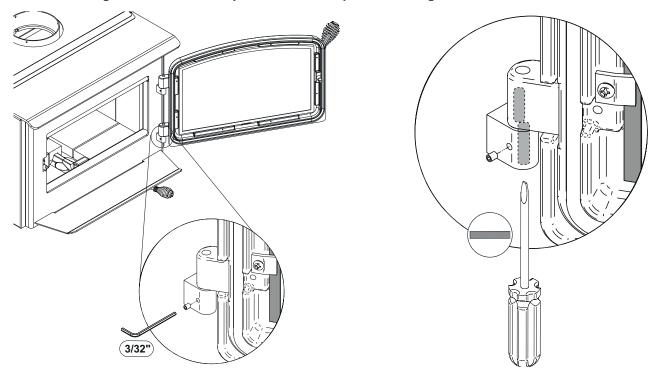
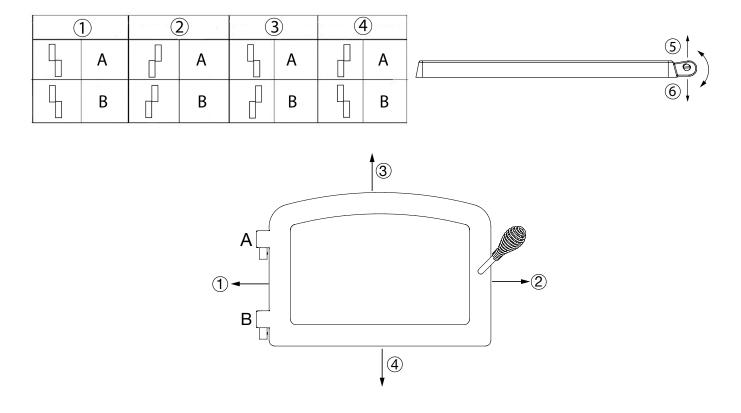



Figure 11: Removing the split pin

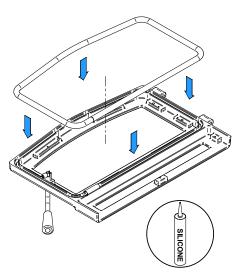





Figure 12: Installing the split pin

## 3.1.3 Door Alignment

To align, open the door and loosen the pressures screws located on the lower and upper hinges of the door using a 3/32" Allen key to free the adjustable hinge rods.




Using a flat screwdriver, turn the adjustable hinge rods in the direction shown to adjust the doors. Tighten all door hinge pressure screws when they are at the desired positions. Configurations 1-2-3-4-5-6, show in which direction these act on the adjustment of the door.



#### 3.1.4 Gasket

It is important to replace the gasket with another having the same diameter and density to maintain a good seal.

- 1. Remove the door and place it face-down on something soft like a cushion of rags or a piece of carpet.
- 2. Remove the old gasket from the door. Use a screwdriver to scrape the old gasket adhesive from the door gasket groove.
- 3. Apply a bead of approximately 3/16" (5 mm) of high temperature silicone in the door gasket groove. Starting from the middle, hinges side, press the gasket into the groove. The gasket must not be stretched during installation.
- 4. Leave about ½" (10 mm) long of the gasket when cutting and press the end into the groove. Tuck any loose fibers under the gasket and into the silicone.
- 5. Close the door. Do not use the insert for 24 hours.



# 3.2 Removal of Refractory Stones

1. Empty the combustion chamber.

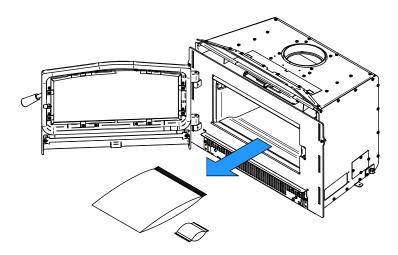



Figure 13: Empty the combustion chamber

2. Unscrew the two supports **(B)** of the refractory bricks from the sides. The stones can then be removed in the order shown in Figure 12.

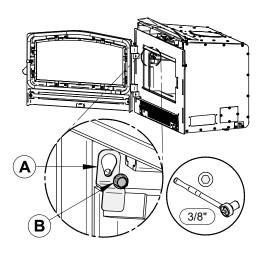



Figure 14: Install the Combustion Chamber Bricks

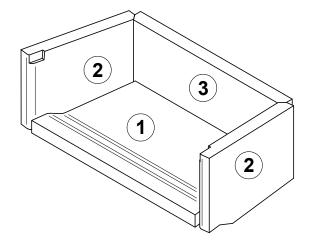
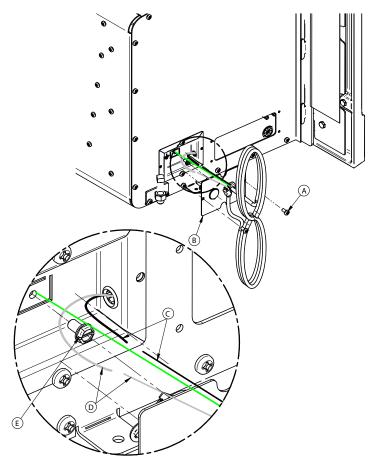
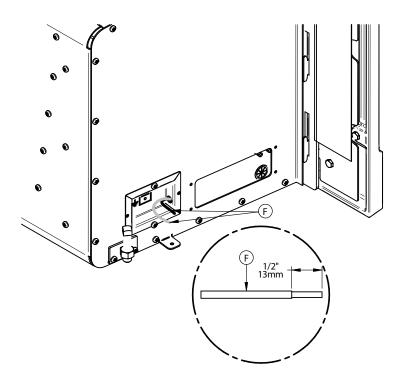


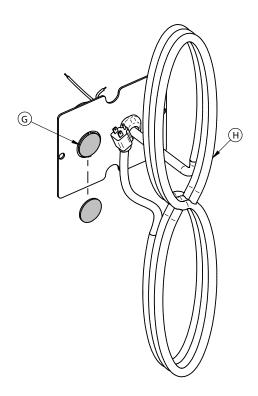

Figure 15: Stones scheme


## 3.3 Connecting the Blower With a BX Wire

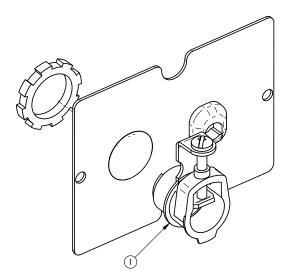



#### CAUTION RISK OF ELECTROCUTION.

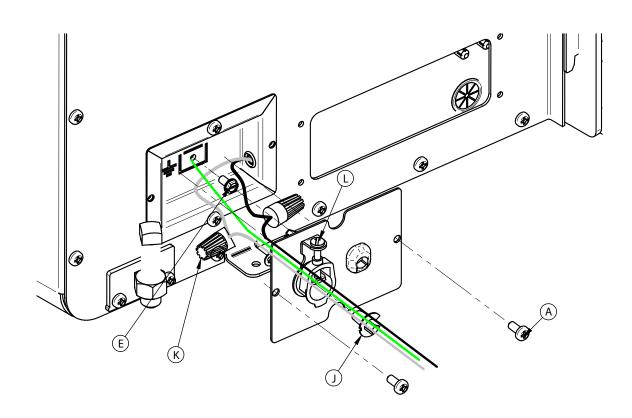
All electrical connections should be performed by a certified electrician.


- Remove the screws (A) to remove the plate (B) and gain access to the wires. Save the screws for later.
- 2. Disconnect the black **(C)** and white **(D)** wires.
- 3. Remove the ground screw **(E)** to remove the green wire. Save the screw for later.



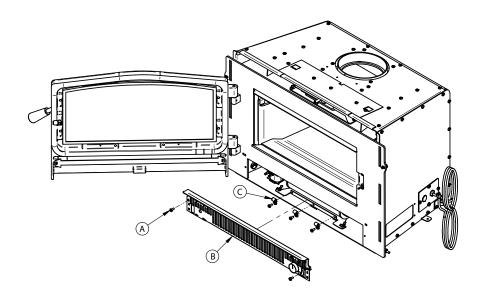

4. Strip a section of  $\frac{1}{2}$ " of the black and white wires **(F)** that are in the box attached to the insert.



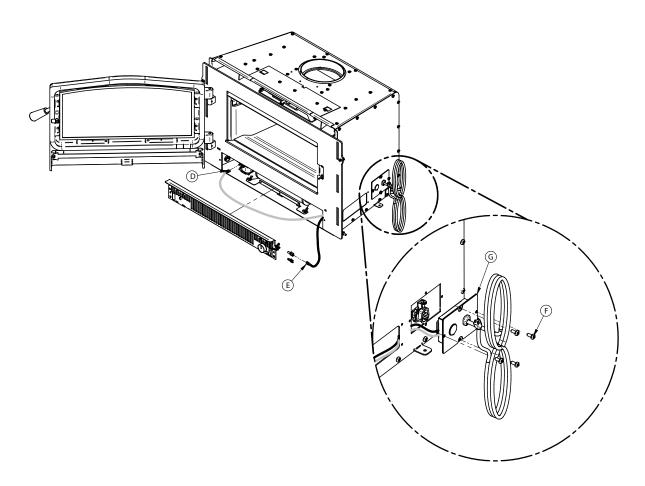

5. Remove the piece of metal **(G)** from the plate **(B)** obstructing the hole to the left of the power cord **(H)** using pliers or a screwdriver. Cut the power cord **(H)** on each side of the black clamp.



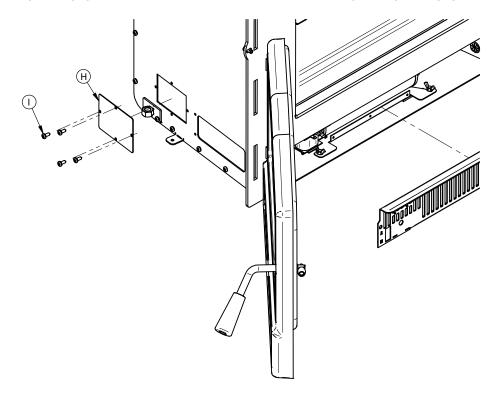
6. Install the connector (I) supplied with the manual kit in the hole formed in the plate (B) in step 5.



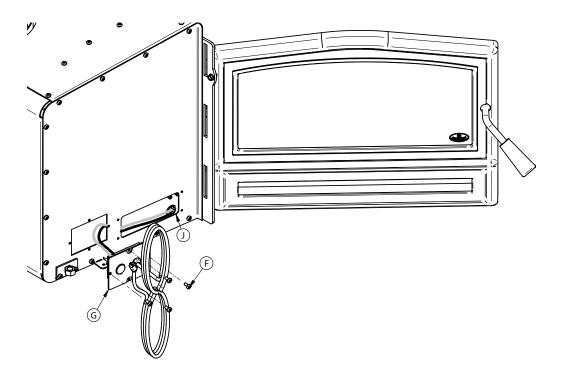

- 7. Pass the new wires through the connector (I) and install the sleeve (J) supplied with the manual kit on the BX wire.
- 8. Join the black and white wires using marettes **(K)** (not supplied) and secure the ground wire with the screw **(E)** kept in step 3.
- 9. Close the connection box by screwing in the plate (B) with the two screws (A) kept in step 1 and secure the BX wire by tightening the screw (L) of the connector (I).



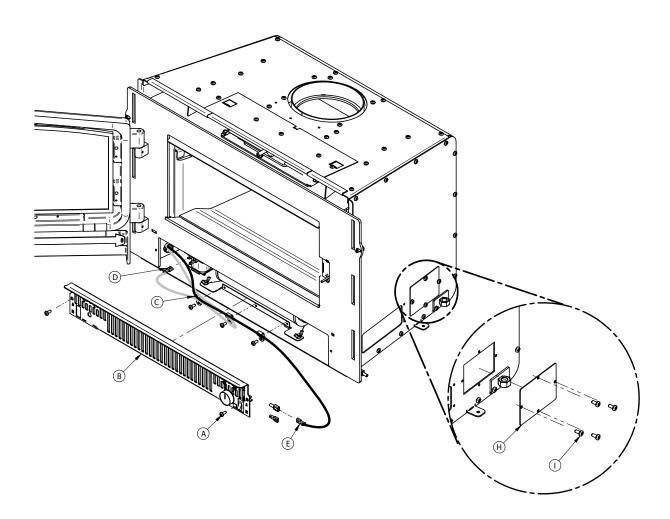

## 3.4 Changing the Side of the Blower Power Cord


1. Open the door and unscrew the screws (A) to remove the grille (B) in front of the fan. Then unscrew the three plastic grommets (C) located on the base of the fan. Remove the wires from the grommets. Keep the screws.



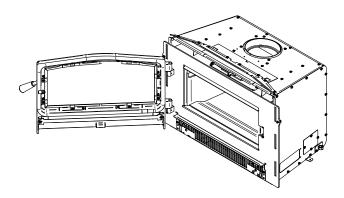

2. Disconnect the white wire **(D)** and the black wire **(E)** (follow the wires coming from the inside of the insert). Remove the four screws **(F)** that hold the connection box **(G)** to the insert and gently pull it out until the white and black wires come out of the insert. Keep the screws.

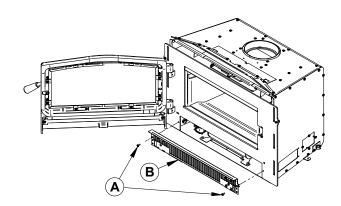



3. Unscrew the plate (H) on the other side of the insert. Keep the plate (H) and screws (I).

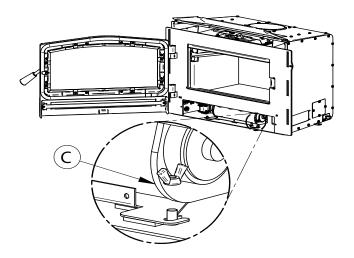


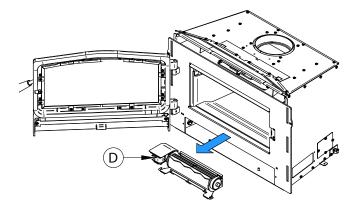
- 4. Pass the white **(D)** and black **(E)** wires through the hole formed in the previous step by pulling them towards the front of the insert. Then pass the wires through the grommet **(J)** located on the side at the front of the device.
- 5. Screw the connection box (G) with the four screws (F) kept in step 2.





- 6. Install the plate **(H)** with the screws **(I)** kept in step 3 to the initial location of the connection box **(G)**.
- 7. Pull the excess black and white wires into the insert to be able to connect them to their respective locations (the black wire is connected to the rheostat and the white wire is connected to the blower). An extension cable must be installed on the black wire to get to the rheostat (extension supplied with the manual kit).
- 8. Secure the excess wires using the three plastic grommets (C) removed in step 1.
- 9. Reinstall the grille (B) with the screws (A) kept in step 1.



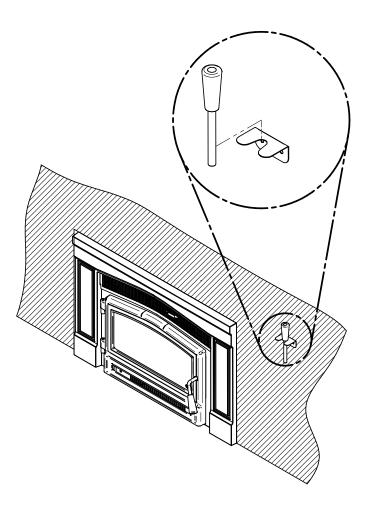

#### 3.5 Blower Removal


- 1. Open the insert door to gain access to the fan grille (B).
- 2. Remove the two screws (A) on each side of the grille (B) to be able to remove it.



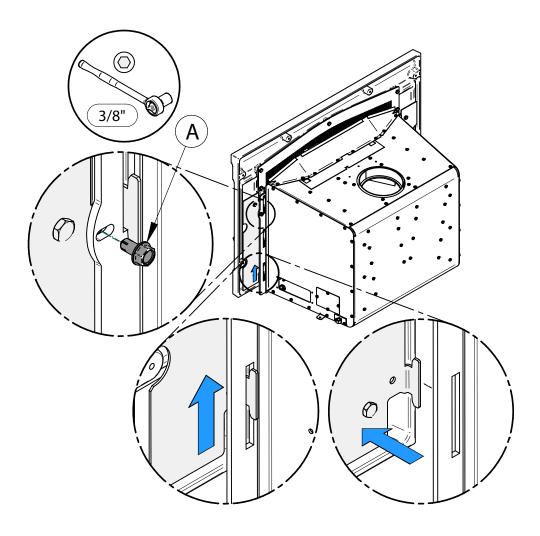


- 3. Unscrew the two wing nuts **(C)** on each 4. Take out the fan **(D)**. side of the fan.






## 3.6 Removable Air Control Handle

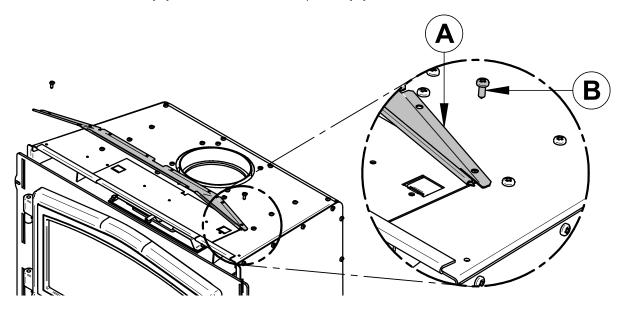

This insert comes with a removable handle for the primary air control. A holder for the handle is supplied with the manual. Here is an example of the holder installation.

CAUTION: Do not leave the handle on the air control after use, as it will get very hot.



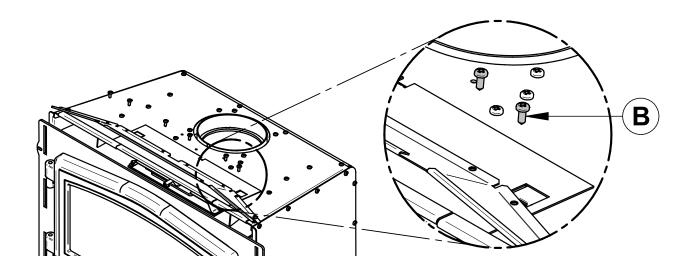
## 3.7 Faceplate Removal

• Remove the screws (A) that hold the faceplate on each side of the insert. Then lift and pull the faceplate towards you to remove it. It is not necessary to keep the screws (A), since they were only useful for the transport of the insert.




## 3.8 Faceplate Decorative Panel Installation/Removal

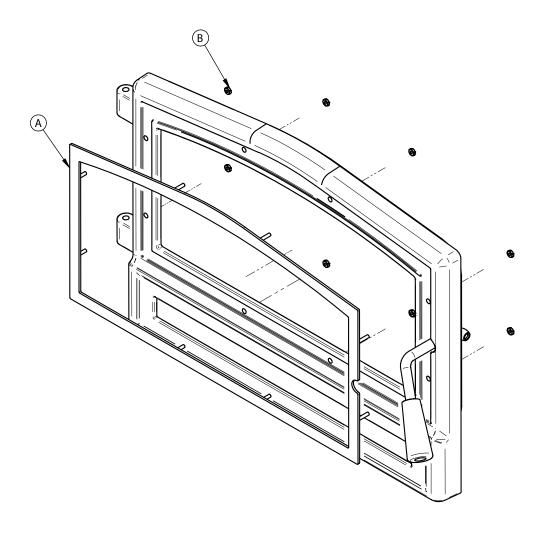
It is possible to install the insert with or without the faceplate decorative panel. The latter is included with the insert and is already partially installed with two screws at each end. Here are the steps to remove or keep it:


## Faceplate decorative panel removal

• Remove the screws **(B)** at each end of the panel **(A)** to be able to remove it afterwards.



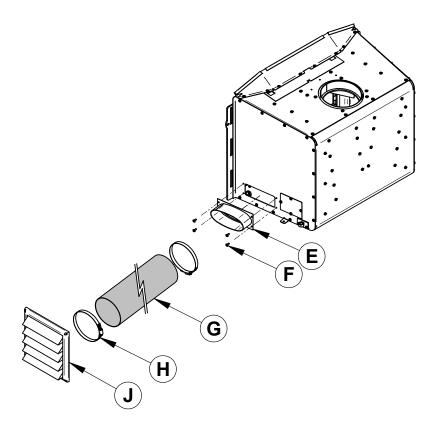
## Faceplate decorative panel installation


Screw the panel with 6 additional screws (B).



# 3.9 Door Overlay Installation

Position the overlay (A) on the door frame and secure using the bolts (B). To facilitate the installation, do not tighten the nuts until they are all installed.

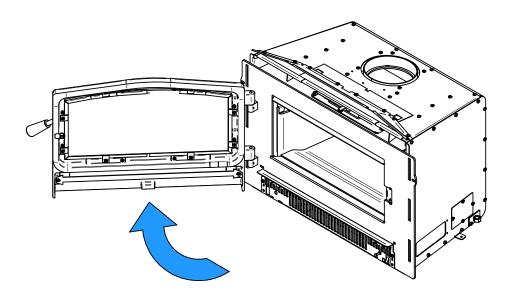

Note: It is not necessary to remove the glass or any other component to install the overlay..



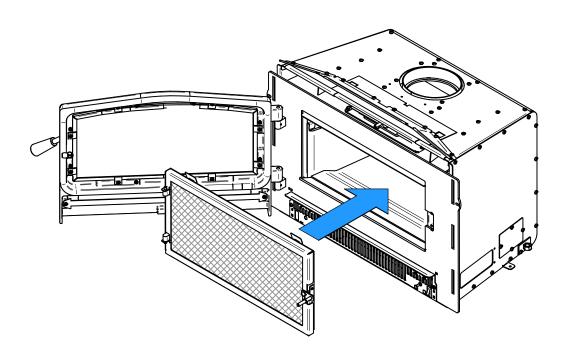
## 3.10 Optional Fresh Air Intake Kit Installation

The fresh air intake kit may be installed on the right or left end side of the unit. The unused side must be covered by the plate provided in the user manual kit.

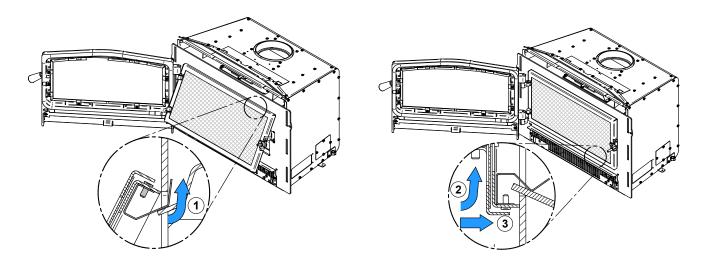
• Install the fresh air intake adapter **(E)** with four screws **(F)** then secure the flexible pipe<sup>18</sup> **(H)** (not included) to the adapter using one of the pipe clamps **(G)**. Secure the other end of the pipe to the outside wall termination **(J)** using the other pipe clamp. The outside wall termination must be installed outside of the home.




<sup>&</sup>lt;sup>15</sup> The pipe must be HVAC type, insulated, and must comply with ULC S110 and/or UL 181, Class 0 or Class 1.


## 3.11 Optional Fire Screen Installation

In the United States or in provinces with a particulate emissions limit (e.g.: US EPA), the use of open-door wood stoves with a rigid firescreen is prohibited.


1. Open the door.

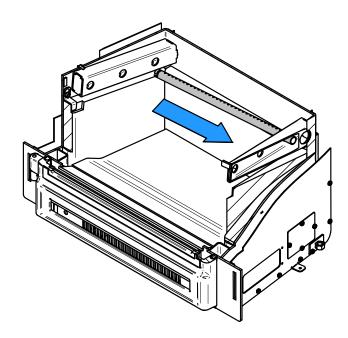


2. Hold the fire screen by the two handles and bring it close to the door opening.

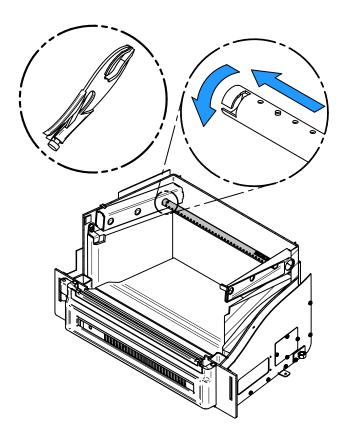


- 3. Lean the upper part of the fire screen against the top door opening making sure to insert the top fire screen brackets in front of the primary air deflector.
- 4. Lift the fire screen upwards and push the bottom part towards the insert then let the fire screen rest on the bottom of the door opening.

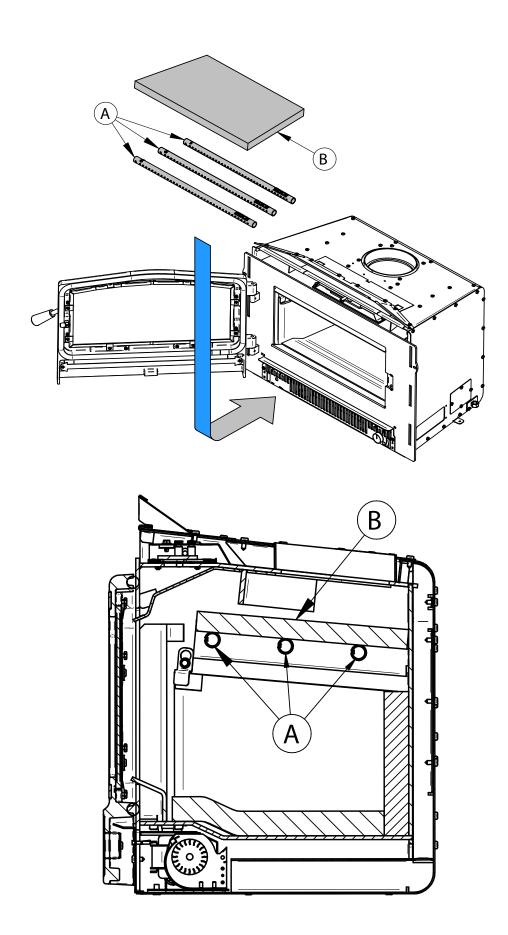





Never leave the insert unattended while in use with the fire screen.


Do not use the blower with the fire screen installed. May cause smoke spillage. Do not use the fire screen with a offset liner adaptor.

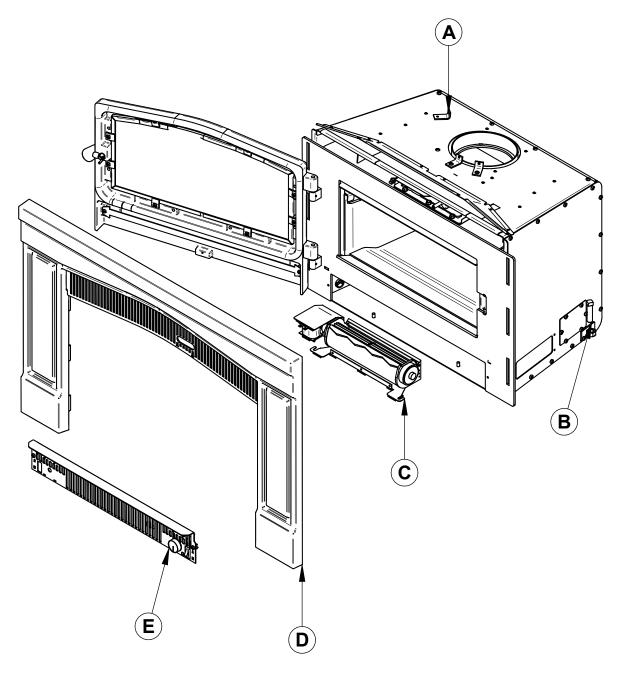
#### 3.12 Air Tubes and Baffle Installation


1. Starting with the rear tube, lean and insert the right end of the secondary air tube into the rear right channel hole. Then lift and insert the left end of the tube into the rear left channel.

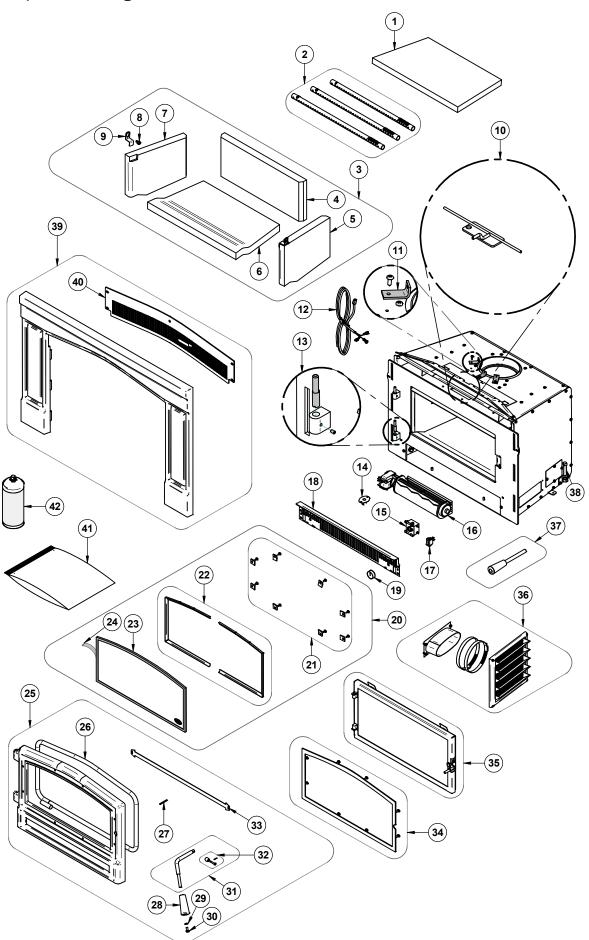


- 2. Align the notch in the left end of the tube with the key of the left air channel hole. Using a « Wise grip » hold the tube and lock it in place by turning the tube as shown. Make sure the notch reaches the end of the key way.
- 3. Install the baffle.
- 4. Repeat steps 1 and 2 for the two other tubes.
- 5. To remove the tubes use the above steps in reverse order.




Note that secondary air tubes (A) can be replaced without removing the baffle board (B) and that all tubes are identical.




## 3.13 Removal Instructions

For inspecting purposes, the insert may need to be removed. To remove the insert, follow these instructions:

- Remove faceplate (D) by lifting it and then pulling on it.
- Remove the three screws securing the pipe connector (A).
- Unscrew the bolts securing the insert to the floor on each side of the unit (B).



# 3.14 Exploded Diagram and Parts List



IMPORTANT: THIS IS DATED INFORMATION. When requesting service or replacement parts for this unit, please provide the model number and the serial number. We reserve the right to change parts due to technology upgrades or availability. Contact an authorized dealer to obtain any of these parts. Never use substitute materials. Use of non-approved parts can result in poor performance and safety hazards.

| #  | Item    | Description                                                          | Qty |
|----|---------|----------------------------------------------------------------------|-----|
| 1  | 21636   | 2.1 SERIE BAFFLE                                                     | 1   |
| 2  | SE74778 | SECONDARY AIR TUBE KIT                                               | 1   |
| 3  | SE22420 | SET OF BRICKS                                                        | 1   |
| 4  | 22420   | REAR REFRACTORY BRICK                                                | 1   |
| 5  | 22421   | RIGHT REFRACTORY BRICK                                               | 1   |
| 6  | 22419   | BOTTOM REFRACTORY BRICK                                              | 1   |
| 7  | 22422   | LEFT REFRACTORY BRICK                                                | 1   |
| 8  | 30060   | THREAD-CUTTING SCREW 1/4-20 X 1/2" F HEX STEEL SLOT WASHER C102 ZINC | 2   |
| 9  | PL74789 | STONE RETENEUR                                                       | 2   |
| 10 | SE74766 | DAMPER ASSEMBLY                                                      | 1   |
| 11 | PL34052 | LINER FIXATION BRACKET                                               | 1   |
| 12 | 60013   | POWER CORD 96" X 18-3 type SJT (50 pcs per carton)                   | 1   |
| 13 | SE74167 | DOOR HINGE REPLACEMENT KIT                                           | 1   |
| 14 | 44028   | CERAMIC THERMODISC F110-20F                                          | 1   |
| 15 | PL74813 | RHEOSTAT SUPPORT                                                     | 1   |
| 16 | 44075   | TANGENTIAL BLOWER 1800 115V-60hZ-30W (S) 90 CFM                      | 1   |
| 17 | 44091   | ROCKER SWITCH 2 POSITION MSR-8                                       | 1   |
| 18 | PL74793 | BOTTOM DOOR GRILL                                                    | 1   |
| 19 | 44085   | RHEOSTAT KNOB                                                        | 1   |
| 20 | SE74784 | GLASS, GASKET AND MOULDING KIT                                       | 1   |
| 21 | SE53585 | GLASS RETAINER KIT WITH SCREWS (12 PER KIT)                          | 1   |
| 22 | SE74783 | GLASS FRAMES KIT                                                     | 1   |
| 23 | SE74718 | ARCHED GLASS WITH GASKET 19 1/8" X 9 1/4"                            | 1   |
| 24 | AC06400 | 3/4" X 6' FLAT BLACK SELF-ADHESIVE GLASS GASKET                      | 1   |
| 25 | SE24371 | BLUE RIDGE 150-I CAST IRON DOOR ASSEMBLY                             | 1   |
| 26 | AC06500 | SILICONE AND 5/8" X 8' BLACK DOOR GASKET KIT                         | 1   |
| 27 | 30101   | SPRING TENSION PIN 5/32"Ø X 1 1/2"L                                  | 1   |
| 28 | 30898   | ROUND WOODEN BLACK HANDLE                                            | 1   |
| 29 | 30187   | STAINLESS WASHER ID 17/64" X OD 1/2"                                 | 1   |
| 30 | 30025   | 1/4-20 X 1/2" PAN-HEAD QUADREX BLACK SCREW                           | 1   |
| 31 | SE65024 | REPLACEMENT HANDLE WITH LATCH KIT                                    | 1   |
| 32 | AC09185 | DOOR LATCH KIT                                                       | 1   |
| 33 | PL74795 | DECORATIVE DOOR PLATE                                                | 1   |

| #  | Item    | Description                                       | Qty |
|----|---------|---------------------------------------------------|-----|
| 34 | OA10042 | BRUSHED NICKEL DOOR OVERLAY                       | 1   |
| 34 | OA10041 | BLACK DOOR OVERLAY                                | 1   |
| 36 | AC01298 | 5"Ø FRESH AIR INTAKE KIT                          | 1   |
| 37 | SE74166 | HANDLE 30898 REPLACEMENT KIT                      | 1   |
| 38 | 30337   | SQUARE HEAD SET SCREW 1/2-13 X 1-3/4"             | 2   |
| 39 | SE24372 | BLUE RIDGE 150-I FACEPLATE ASSEMBLY               | 1   |
| 40 | PL74839 | GRILL                                             | 1   |
| 41 | SE46278 | BLUE RIDGE 150-I MANUAL KIT                       | 1   |
| 42 | AC05959 | METALLIC BLACK STOVE PAINT - 342 g (12oz) AEROSOL | 1   |

## 4. ENGLANDER LIMITED LIFETIME WARRANTY

The warranty of the manufacturer extends only to the original retail purchaser and is not transferable. This warranty covers brand new products only, which have not been altered, modified nor repaired since shipment from factory.

This warranty applies to normal residential use only. Damages caused by misuse, abuse, improper installation, lack of maintenance, over firing, negligence or accident during transportation, power failures, downdrafts, venting problems or under-estimated heating area are not covered by this warranty. The recommended heated area for a given appliance is defined by the manufacturer as its capacity to maintain a minimum acceptable temperature in the designated area in case of a power failure.

This warranty does not cover any scratch, corrosion, distortion, or discoloration. Any defect or damage caused by the use of unauthorized or other than original parts voids this warranty. An authorized qualified technician must perform the installation in accordance with the instructions supplied with this product and all local and national building codes. Any reclamation related to an improper installation is not covered by this warranty.

The manufacturer may require that defective products be returned or that digital pictures be provided to support the claim. Returned products are to be shipped prepaid to the manufacturer for investigation. Transportation fees to ship the product back to the purchaser will be paid by the manufacturer. All parts costs covered by this warranty are limited according to the table below.

The manufacturer, at its discretion, may decide to repair or replace any part or unit after inspection and investigation of the defect. The manufacturer may, at its discretion, fully discharge all obligations with respect to this warranty by refunding the wholesale price of any warranted but defective parts. The manufacturer shall, in no event, be responsible for any uncommon, indirect, consequential damages of any nature, which are in excess of the original purchase price of the product. A one-time replacement limit applies to all parts benefiting from lifetime coverage. This warranty applies to products purchased after July 1st, 2020.

| DESCRIPTION                                                                                              | WARRANTY<br>APPLICATION* |  |
|----------------------------------------------------------------------------------------------------------|--------------------------|--|
|                                                                                                          | PARTS                    |  |
| Combustion chamber (welds only) and cast iron door frame.                                                | 5 years                  |  |
| Surrounds, heat shields, ash drawer, steel legs, pedestal and convector air-mate.                        | 2 years                  |  |
| Removable stainless steel combustion chamber components, secondary air tubes**, deflectors and supports. | 2 years                  |  |
| Glass retainers, handle assembly, and air control mechanism.                                             | 2 years                  |  |
| Carbon steel combustion chamber components, vermiculite baffle**and ceramic glass.                       | 1 year                   |  |
| Blower, heat sensors, switches, rheostat, wiring, and other controls.                                    | 1 year                   |  |
| Firebricks, paint and gaskets.                                                                           | -                        |  |
| Any parts replaced under the warranty (Except firebricks, paint and gaskets)                             | 90 days                  |  |

#### \*Subject to limitations above. \*\*Picture required.

Shall your unit or a components be defective, contact immediately your CENTURY. To accelerate processing of your warranty claim, make sure to have on hand the following information when calling:

- Your name, address and telephone number;
- Installation configuration;
- Nature of the defect and any relevant information.
- Serial number and model name as indicated on the nameplate fixed to the back of your unit;

Before shipping your unit or defective component to our plant, you must obtain an Authorization Number from your CENTURY. Any merchandise shipped to our plant without authorization will be refused automatically and returned to sender.

This document is available for free download on the manufacturer's website. It is a copyrighted document. Resale is strictly prohibited. The manufacturer may update this document from time to time and cannot be responsible for problems, injuries, or damages arising out of the use of information contained in any document obtained from unauthorized sources.

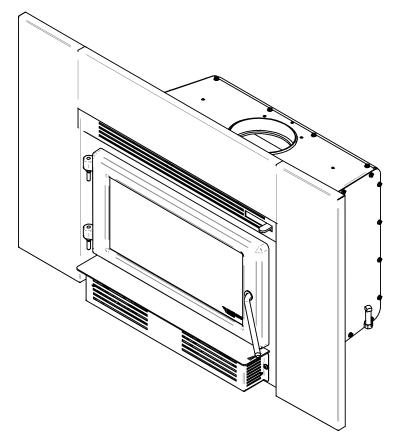


Stove Builder International inc. 250, rue de Copenhague, St-Augustin-de-Desmaures (Québec) Canada G3A 2H3 418-908-8002

https://www.englander-stoves.com service@englanderstoves.com






# Wood Insert Owner's Manual

# Part 2 of 2

INSTALLATION AND OPERATION REQUIREMENTS

# CW2100 INSERT

(CB00027 Model)



Safety tested according to ULC S628, UL 1482 and UL 737 by an accredited laboratory.

US Environmental Protection Agency phase II certified wood insert compliant with 2020 cord wood standard.



CONTACT LOCAL BUILDING OR FIRE OFFICIALS ABOUT RESTRICTIONS AND INSTALLATION INSPECTION REQUIREMENTS IN THE AREA.

READ THIS ENTIRE MANUAL BEFORE INSTALLATION AND USE OF THIS WOOD INSERT. FAILURE TO FOLLOW THESE INSTRUCTIONS COULD RESULT IN PROPERTY DAMAGE, BODILY INJURY OR EVEN DEATH.

# READ AND KEEP THIS MANUAL FOR REFERENCE

#### **ONLINE WARRANTY REGISTRATION**

If the unit requires repairs during the warranty period, proof of purchase must be provided. The purchase invoice must be kept. The date indicated on it establishes the warranty period. If it can not be provided, the warranty period will be determined by the date of manufacture of the product. It is also highly recommended to register the warranty online at



https://www.century-heating.com/ca/en/warranty/warranty-registration

Registering the warranty will help to quickly find the information needed on the unit.

| Dealer:    |
|------------|
| Installer: |
|            |

#### CERTIFICATION PLATE



REFER TO INTERTEN'S DIRECTORY OF BUILDING PRODUCTS FOR DETAILED INSTRUCTIONS
SE REFERRE AU REFERENCIE DES REQUITS HOMOLOGUÉS
D'INTERTER POUR PLUS D'INFORMATION OF THE RESTRICTION AND INSTALLATION INSPECTION IN YOUR AREA.
COMMUNIQUER AVEC LES AUTORITÉS LOCALES OU BÂTIMENT ET DE LA PRÉVENTION DES INCERDIES AU SUIET DES RESTRICTIONS D'INSTALLATION DANS VOTRE SECTEUR.

(July/Juillet 2021)

Intertek STANDARDS / NORMES D'ESSAI: Control number: 4002461

Certified to / Certifié selon UI C 5628 Certified to / Certifié selon UL 1482 Certified to / Certifié selon UL 737 Certified to/Certiflé selon CSA B415.1-10 Certified to/Certifié selon ASTM E3053-17 Certified to/Certiflé selon ASTM E2515-11 (R2017)

#### MODEL / MODÈLE : CW2100

Serial Number No. de Série

INSTALL AND USE ONLY IN ACCORDANCE WITH SBI STOVE BUILDER INTERNATIONAL INSTALLATION AND OPERATION INSTRUCTIONS. L'INSTALLATION ET L'OPERATION DOIT SE FAIRE SELON LES INSTRUCTIONS D'INSTALLATION ET D'UTILISATION DE SBI FABRICANT DE POÊLES INTERNATIONAL.

#### PREVENT HOUSE FIRES

- Install and use in accordance with the manufacturer's installation and operating instructions.
- Contact local building or fire officials about restrictions and installation inspection in your area.
  Use with solid wood fuel only. Do not use other fuels.
- For safety, keep screen doors or glass doors fully closed. Do not overfire unit.
- Replace with only ceramic glass 4mm thick.
- Connect to a code-approved masonry chimney or listed factory-built fireplace chimney with a direct flue connector into the first chimney liner section. The non-combustible floor protection in front of the unit should extend 16
- inches (406 mm) (USA), 18 inches (457 mm) (CANADA) without a R value even if the hearth elevation is equal with the combustible floor.
- Do not connect this unit to a chimney serving another appliance Install only in masonry fireplaces. Do not remove bricks or mortar from
- masonry fireplace.
- Inspect and clean chimney frequently. Under certain conditions of use, creosote buildup may occur rapidly.
- Do not use grate or elevate fire. Build wood fire directly on hearth.

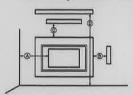
  This wood heater needs periodic inspection and repair for proper operation.
- Consult the owner's manual for further information. It is against US federal regulations to operate this wood heater in a manner inconsistent with the operating instructions in the owner's manual.

#### PRÉVENEZ LES INCENDIES

- Installer et utiliser conformément au manuel d'utilisation du fabricant.
- Contacter les autorités de votre localité ayant juridiction concernant les restrictions et Inspection d'installation.
- Utiliser avec le bois seulement. Ne pas utiliser d'autres combustibles. Utiliser l'apparell la porte fermée ou ouverte avec le pare-étincelle en place
- uniquement. Ouvrir la porte ou retirer le pare-étincelle seulement lors du
- Ne pas raccorder à un conduit de fumée servant délà pour un autre appareil.
- mplacer la vitre seulement avec un verre céramique de 4mm d'épaisseur.
- Raccorder à une cheminée de maçonnerie respectant les codes ou à une cheminée préfabriquée homologuée, directement à la première section de cheminée gainée.
- La protection de plancher incombustible au devant de l'encastrable doit se prolonger de 16 pouces (406 mm) (USA), 18 pouces (457 mm) (CANADA), sans facteur d'isolation R au devant de l'encastrable même si l'âtre est égale au plancher combustible.
- Installer seulement dans un foyer de maçonnerle. Ne pas enlever les briques ou le mortier du foyer de maconnerle. Inspecter et nettoyer la cheminée fréquemment. Dans certaines conditions, la
- formation de créosote peut être rapide.
- Ne pas utiliser de chenets ou de grilles pour élever le feu. Préparer le feu directement sur l'âtre.
- Cet apparell de chauffage requiert des instructions et réparations périodiques. Consulter le manuel de l'utilisateur pour plus d'information. Opérer cet appareil de chauffage de façon inconsistente par rapport au manuel de l'utilisateur consiste une violation de la loi fédérale (USA).

WARNING: This product can expose you to carbon monoxide, which is known to the State of California to cause cancer, birth defects or other reproductive harm. (For more information go to www.p65warnings.ca.gov)

# LISTED SOLID FUEL BURNING INSERT APPLIANCE


#### APPAREIL ENCASTRABLE À COMBUSTIBLE SOLIDE HOMOLOGUÉ

FOR USE WITH WOOD ONLY

POUR UTILISATION AVEC BOIS SEULEMENT

MINIMUM CLEARANCES TO COMBUSTIBLE MATERIALS / DÉGAGEMENTS MINIMUM AUX MATÉRIAUX COMBUSTIBLES

Floor - Ceiling / Plancher - Plafond: 72 in./po. (183 cm)



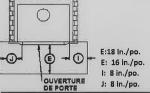
Blower / Ventilateur: 115VOLTS, 0.8 AMPS, 60Hz

A - Sidewall (from door opening)/Mur latéral (de l'ouverture de porte)

D - Combustible shelf (from base of the fireplace

D - Tablette combustible (de la base de l'encastrable) :

B - Combustible side surround (from faceplate)/Parement latéral combustible (de la facade):


C - Combustible top surround (from faceplate)/Parement supérieur combustible (de la facade):

A: 16 in./po. in (406 mm)

D: 34 in./po.in (864 mm)

B: 1 in./po.ln (25 mm)

C: 1 in./po. in. (25 mm)



(457 mm) CANADA (406 mm) USA (203 mm) CANADA (203 mm) USA

U.S. ENVIRONMENTAL PROTECTION AGENCY Certifled to comply with 2020 particulate emission standards using cordwood. AGENCE DE PROTECTION DE L'ENVIRONNEMENT DES É.-U. Conforme aux normes d'émission de particules de 2020 avec bûche de bois.

Weighted average emission rate / Moyenne pondérée des émissions: 1.5 g/h

Tested and certified in compliance with CFR 40 part 60, subpart AAA, section 60.534(a)(1(ii))

## CAUTION

- HOT WHILE IN OPERATION.
- DO NOT TOUCH. KEEP CHILDREN, CLOTHING AND FURNITURE AWAY.
- CONTACT MAY CAUSE SKIN BURNS. SEE NAME-PLATE AND INSTRUCTIONS.

#### ATTENTION

- . CHAUD EN FONCTIONNEMENT.
- NE PAS TOUCHER, GARDER LES ENFANTS, LES VÊTEMENTS ET LES MEUBLES ÉLOIGNÉS.
- UN CONTACT AVEC LA PEAU PEUT OCCASIONNER DES BRÛLURES. VOIR LES INSTRUCTIONS.

Made in St-Augustin-de-Desmaures (Qc), Canada Fabriqué à St-Augustin-de-Desmaures (Qc), Canada





20/07/2021 (#test)

# **TABLE OF CONTENTS**

| 1. | Gene  | eral Information                                       | 6  |
|----|-------|--------------------------------------------------------|----|
|    | 1.1   | Performances                                           | 6  |
|    | 1.2   | Specifications                                         | 7  |
|    | 1.3   | Dimensions                                             | 8  |
|    | 1.4   | EPA Loading                                            | 10 |
| 2. | Clea  | rances to Combustible Material                         | 11 |
|    | 2.1   | Minimum Masonry Opening and Clearances to Combustibles | 11 |
|    | 2.2   | Floor Protection                                       | 12 |
|    | 2.3   | R Value                                                | 13 |
| 3. | Insta | Iling Options on Your Product and Replacing Parts      | 15 |
|    | 3.1   | Replacement and Adjustment                             | 15 |
|    | 3.2   | Removal of refractory stones                           | 17 |
|    | 3.3   | Blower Removal                                         | 18 |
|    | 3.4   | Faceplate Installation                                 | 19 |
|    | 3.5   | Optional Fresh Air Intake Kit Installation             | 21 |
|    | 3.6   | Optional Fire Screen Installation                      | 22 |
|    | 3.7   | Air Tubes and Baffle Installation                      | 23 |
|    | 3.8   | Removal Instructions                                   | 26 |
|    | 3.9   | Exploded Diagram and Parts List                        | 27 |
| 4. | CEN   | TURY LIMITED LIFETIME WARRANTY                         | 30 |

## 1. General Information

#### 1.1 Performances

Values are as measured per test method, except for the recommended heating area, firebox volume, maximum burn time and maximum heat output.

| Models                                                 | CW2100 (CB00027)                                    |       |  |
|--------------------------------------------------------|-----------------------------------------------------|-------|--|
| Type of combustion                                     | Non-catalytic                                       |       |  |
| Fuel Type                                              | Dry Cordwood                                        |       |  |
| Recommended heating area (sq. ft) <sup>1</sup>         | 250 to 1,200 ft <sup>2</sup> (23 to 11              | 1 m²) |  |
| Nominal firebox volume                                 | 1.2 ft <sup>3</sup> (0.034 m <sup>3</sup> )         |       |  |
| Loading volume EPA                                     | 1.03 ft <sup>3</sup> (0.0292 m <sup>3</sup> )       |       |  |
| Maximum burn time <sup>1</sup>                         | 7 hours                                             |       |  |
| Overall heat output rate (min. to max.) <sup>2 3</sup> | 8,471 BTU/h to 31,700 BTU/h<br>(2.48 kW to 9.29 kW) |       |  |
| Average overall efficiency <sup>3</sup> - Dry cordwood | 75 % (HHV) <sup>4</sup> 80 % (LHV) <sup>5</sup>     |       |  |
| Optimum overall efficiency <sup>6</sup>                | 82 %                                                |       |  |
| Optimum heat transfert efficiency <sup>7</sup>         | 78 %                                                |       |  |
| Average particulate emissions rate <sup>8</sup>        | 1.5 g/h (EPA / CSA B415.1-10) <sup>9</sup>          |       |  |
| Average CO <sup>10</sup>                               | 35 g/h                                              |       |  |

<sup>&</sup>lt;sup>1</sup> Recommended heating area and maximum burn time may vary subject to location in home, chimney draft,heat loss factors, climate, fuel type and other variables. The recommended heated area for a given appliance is defined by the manufacturer as its capacity to maintain a minimum acceptable temperature in the designated area in case of a power failure.

<sup>&</sup>lt;sup>2</sup> The maximum heat output (dry cordwood) is based on a loading density varying between 15 lb/ft3 and 20 lb/ft3. Other performances are based on a fuel load prescribed by the standard. The specified loading density varies between 7 lb/ft³ and 12 lb/ft³. The moisture content is between 19% and 25%.

<sup>&</sup>lt;sup>3</sup> As measured per CSA B415.1-10 stack loss method.

<sup>&</sup>lt;sup>4</sup> Higher Heating Value of the fuel.

<sup>&</sup>lt;sup>5</sup> Lower Heating Value of the fuel.

<sup>&</sup>lt;sup>6</sup> Optimum overall efficiency at a specific burn rate (LHV).

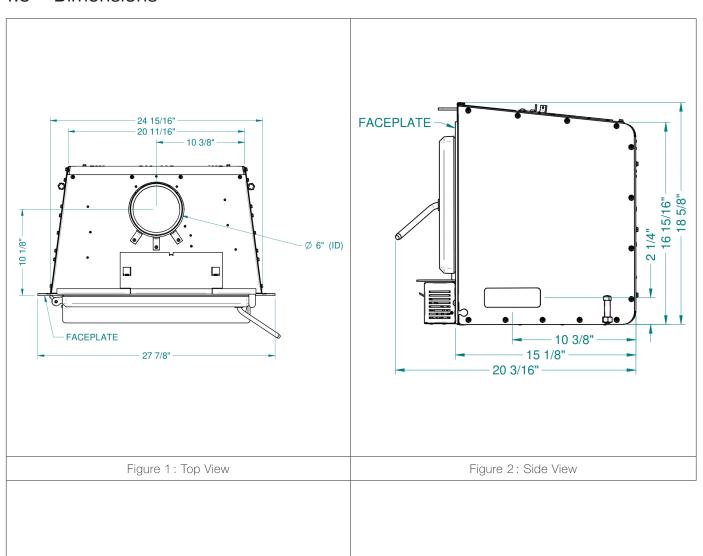
<sup>&</sup>lt;sup>7</sup> The optimum heat transfer efficiency is for the low burn rate and represents the appliance's ability to convert the energy contained in the wood logs into energy transferred to the room in the form of heat and does not take into account the chemical losses during combustion.

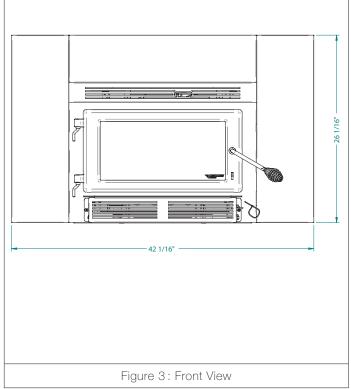
<sup>&</sup>lt;sup>8</sup> This appliance is officially tested and certified by an independent agency.

<sup>&</sup>lt;sup>9</sup> Tested and certified in compliance with CFR 40 part 60, subpart AAA, section 60.534(a)(1(ii) and draft ASTM WK47329-14 based on the ATM send by EPA on October 12th, 2017.

<sup>&</sup>lt;sup>10</sup> Carbon monoxide.

# 1.2 Specifications


| Recommended log length                              | 16 in (406 mm) east-west             |
|-----------------------------------------------------|--------------------------------------|
| Maximum log length <sup>11</sup>                    | 17 in (432 mm) east-west             |
| Flue outlet diameter                                | 6 in (150 mm)                        |
| Recommended connector pipe diameter                 | 6 in (150 mm)                        |
| Type of chimney                                     | ULC S635, CAN/ULC-S640, UL 1777      |
| Minimum liner height                                | 12 feet                              |
| Baffle material                                     | C-Cast                               |
| Approved for alcove installation                    | No                                   |
| Approved for mobile home installation <sup>12</sup> | No                                   |
| Type of door                                        | Simple, glazed, with cast iron frame |
| Type of glass                                       | Ceramic glass                        |
| Blower                                              | Included (up to 110 CFM)             |
| Particulate emission standard <sup>13</sup>         | EPA / CSA B415.1-10                  |
| USA Standard (Safety)                               | UL 1482, UL 737                      |
| Canada Standard (Safety)                            | ULC-S628                             |


<sup>&</sup>lt;sup>11</sup> North-south: ends of the logs visible, East-west: sides of the logs visible.

<sup>&</sup>lt;sup>12</sup> Mobile homes (Canada) or manufactured homes (USA): The US Department of Housing and Urban Development describes "manufactured homes" better known as "mobile homes" as follows; buildings built on fixed wheels and those transported on temporary wheels/axles and set on a permanent foundation. In Canada, a mobile home is a dwelling for which the manufacture and assembly of each component is completed or substantially completed prior to being moved to a site for installation on a foundation and connection to service facilities and which conforms to the CAN/CSAZ240 MH standard.

<sup>&</sup>lt;sup>13</sup> Tested and certified in compliance with CFR 40 part 60, subpart AAA, section 60.534(a)(1(ii) and draft ASTM WK47329-14 based on the ATM send by EPA on October 12th, 2017.

# 1.3 Dimensions





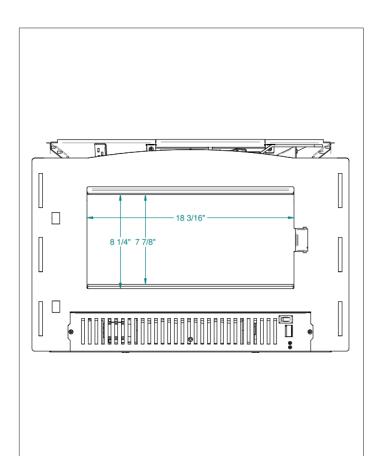
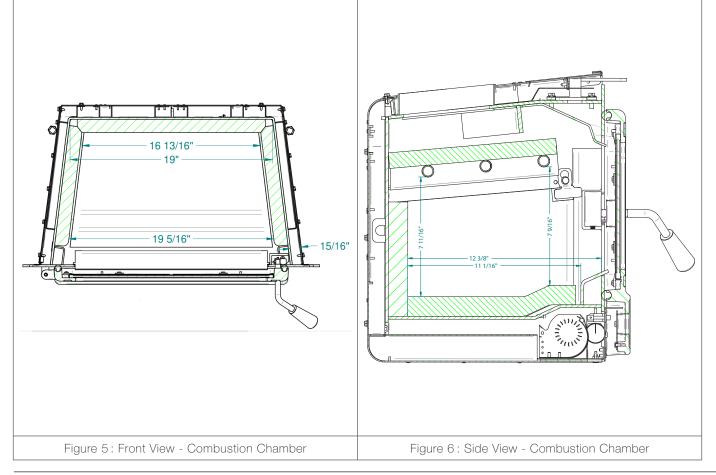
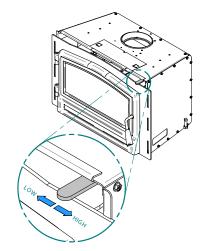




Figure 4: Door Opening




# 1.4 EPA Loading

The loading methods shown below are those that were used during emissions certification.

#### 1.4.1 Air control

The air control is located above the door on the right. To open the air control, push the air control handle completely to the right (High). This will increase the burn rate. To close the air control, push the air control handle completely to the left (Low). This will decrease the burn rate.



# 1.4.2 High burn rate (primary air control open)

Open the air control completely. Criss cross 6 kindling wood pieces in the back of the firebox. Then, place six

small pieces (2"x2") of wood on the kindling crossing them at the greatest possible angle. Criss cross ten others kindling wood pieces on the small pieces of wood. Tie knot with five sheets of paper and place them on top of the kindling wood. Light up the paper and let the door completely open for two minutes. Close the door.

When the kindling and the small pieces of wood are almost completely burnt out and it is possible to break them into pieces, level the coal bed and put four logs in the firebox in an east-west orientation. Place a medium log (about 4"x4") in front of the combustion chamber and the biggest log (about 5"x5") in the back of the combustion chamber. Place the last two medium pieces on top of the two others in an orientation that points to the right. Do not leave space between the pieces. Let the door open ajar at 90° for 5 minutes and close the door.

#### 1.4.3 Medium and low burn rate

On a 2" coal bed that is still red, place five logs of approximatively 4"x4" or 3"x3" with an east-west orientation. Place two logs on the coal bed with approximatively 4" between them and the other three on top. There should be air space between each logs and between the logs and the bricks. Let the door ajar at 90° for 5 minutes and then close the door with the primary air control fully open. Leave to burn with the primary air control open for approximately 10 minutes and then close the primary air control completely for the low burn rate and halfway for the medium burn rate.

# 2. Clearances to Combustible Material

When the insert is installed so that its surfaces are at or beyond the minimum clearances specified, combustible surfaces will not overheat under normal and even abnormal operating conditions.

# NO PART OF THE INSERT MAY BE LOCATED CLOSER TO THE COMBUSTIBLE THAN THE MINIMUM CLEARANCE FIGURES GIVEN.

#### 2.1 Minimum Masonry Opening and Clearances to Combustibles

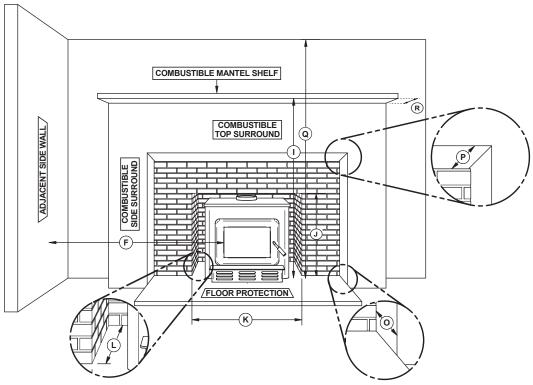



Figure 7 : Ouverture de l'âtre et dégagements aux combustibles

|   | MINIMUM CLEARANCES |
|---|--------------------|
| F | 16" (406 mm)       |
| I | 34" (864 mm)       |
| Q | 72" (183 cm)       |

|   | MAXIMUM THICKNESS |  |  |
|---|-------------------|--|--|
| 0 | 3" (76 mm)        |  |  |
| Р | 1.5" (38 mm)      |  |  |
| R | 12" (305 mm)      |  |  |

|                 | MINIMUM MASONRY<br>OPENING |  |  |
|-----------------|----------------------------|--|--|
| J               | 20 <b>%</b> " (524 mm)     |  |  |
| K <sup>14</sup> | 27" (686 mm)*              |  |  |
| L <sup>15</sup> | 17" (432 mm)**             |  |  |

|                                | FACADE<br>CLEARANCES |
|--------------------------------|----------------------|
| From combustible side surround | 1" (25 mm)           |
| From combustible top surround  | 1" (25 mm)           |

<sup>&</sup>lt;sup>14</sup> If a fresh air intake is required, it is recommended to add at least 4" to the width of the minimum opening of the hearth. <sup>15</sup> If projection kit is used L = 17  $\frac{5}{8}$ " or 15  $\frac{5}{8}$ ". If installed without projection kit L = 19  $\frac{5}{8}$ ".

#### 2.2 Floor Protection

It is necessary to have a floor protection made of non-combustible materials that meets the measurements specified below.

**Table 1: Floor Protection** 

|                        | FLOOR PROTECTION  Canada USA |              |  |
|------------------------|------------------------------|--------------|--|
|                        |                              |              |  |
| <b>B</b> <sup>16</sup> | 18" (457 mm)                 | 16" (406 mm) |  |
| М                      | 8" (203 mm)                  | N/A          |  |
| N                      | N/A                          | 8" (203 mm)  |  |



Figure 8: Floor Protection

To determine the need to add floor protection **(D)** beyond the hearth extension **(A)**, the following calculation must be done using the data in "Table 2: Data for Floor Protection Calculation" of this section: D = B - G, where G = A-C.

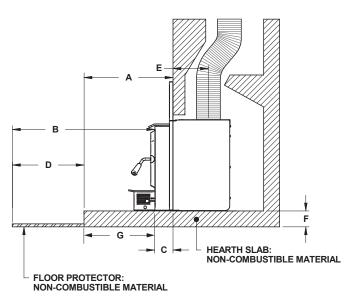



Figure 9: Additional Floor Protection - Raised Installation

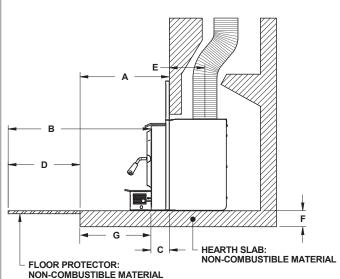



Figure 10: Additional Floor Protection - Not Raised Installation

**Table 2: Data for Floor Protection Calculation** 

|                     | Α                                 | В                       | С            | D                   | E                   | Air Jacket                        |
|---------------------|-----------------------------------|-------------------------|--------------|---------------------|---------------------|-----------------------------------|
| Minimum<br>Extended | Dimension of the hearth extension | See raised installation | 0"<br>(0 mm) | G = (A-C)<br>D=B- G | 10 1/8"<br>(257 mm) | flush with<br>fireplace<br>facing |

<sup>&</sup>lt;sup>16</sup>From door opening. The depth of the hearth extension in front of the insert is included in the calculation of the floor protector's dimensions.

If the value **(D)** is negative or zero, additional floor protection in front of the unit is not needed because the masonry fireplace hearth extension is long enough. If the value **(D)** is positive, an additional floor protection in front of the hearth extension at least equivalent to the result **(D)** must be added.

#### 2.3 R Value

There are two ways to calculate the R-value of the floor protection. First, by adding the R-values of materials used, or by the conversion if the K factor and thickness of the floor protection are given.

To calculate the total R value from R values of the materials used, simply add the R-values of materials. If the result is equal to or greater than the R-value requirements, the combination is acceptable. R-values of some selected materials are shown below.

Table 3: Thermal Characteristics of Common Floor Protection Materials<sup>17</sup>

| MATERIAL                            | CONDUCTIVITY (K) PER INCH | RESISTANCE (R) PER INCH THICKNESS |
|-------------------------------------|---------------------------|-----------------------------------|
| Micore® 160                         | 0.39                      | 2.54                              |
| Micore® 300                         | 0.49                      | 2.06                              |
| Durock®                             | 1.92                      | 0.52                              |
| Hardibacker®                        | 1.95                      | 0.51                              |
| Hardibacker® 500                    | 2.3                       | 0.44                              |
| Wonderboard®                        | 3.23                      | 0.31                              |
| Cement mortar                       | 5.00                      | 0.2                               |
| Common brick                        | 5.00                      | 0.2                               |
| Face brick                          | 9.00                      | 0.11                              |
| Marble                              | 14.3 – 20.00              | 0.07 - 0.05                       |
| Ceramic tile                        | 12.5                      | 0.008                             |
| Concrete                            | 1.050                     | 0.950                             |
| Mineral wool insulation             | 0.320                     | 3.120                             |
| Limestone                           | 6.5                       | 0.153                             |
| Ceramic board (Fibremax)            | 0.450                     | 2.2                               |
| Horizontal still air (1/8" thick)18 | 0.135                     | 0,920**                           |

#### **Exemple:**

Required floor protection R of 1.00. Proposed materials: four inches of brick and one inch of Durock® board:

Four inches of brick ( $R = 4 \times 0.2 = 0.8$ ) plus 1 inch of Durock® ( $R = 1 \times 0.52 = 0.52$ ).

<sup>&</sup>lt;sup>17</sup> Information as reported by manufacturers and other resources.

<sup>18</sup> Horizontal still air can't be «stack» to accumulate R-values; each layer must be separated with another non-combustible material.

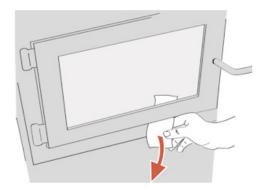
This R value is larger than the required 1.00 and is therefore acceptable.

In the case of a known K and thickness of alternative materials to be used in combination, convert all K values to R by dividing the thickness of each material by its K value. Add R values of the proposed materials as shown in the previous example.

# **Exemple:**

K value = 0.75 Thickness = 1

R value = Thickness/K = 1/0.75 = 1.33


# 3. Installing Options on Your Product and Replacing Parts

# 3.1 Replacement and Adjustment

#### 3.1.1 Door

Note: The images shown are for guidance only and may be different from your product, but the assembly remains the same.

In order for the insert to burn at its best efficiency, the door must provide a perfect seal with the firebox. Therefore, the gasket should be inspected periodically to check for a good seal. The tightness of the door seal can be verified by closing and latching the door on a strip of paper. The test must be performed all around the door. If the paper slips out easily anywhere, either adjust the door or replace the gasket.



# 3.1.2 Adjustment

The gasket seal may be improved with a simple latch mechanism adjustment:

- 1. Remove the split pin by pulling and turning it using pliers.
- 2. Turn the handle one counterclockwise turn to increase pressure.
- 3. Reinstall the split pin with a small hammer.

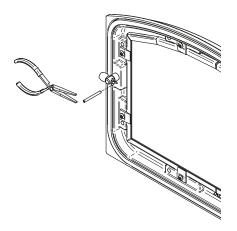
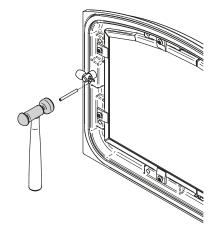
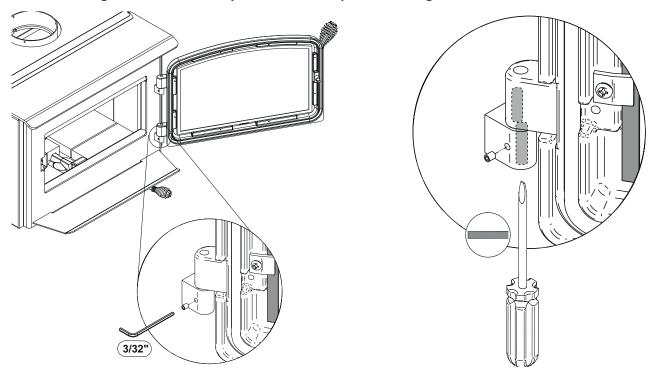
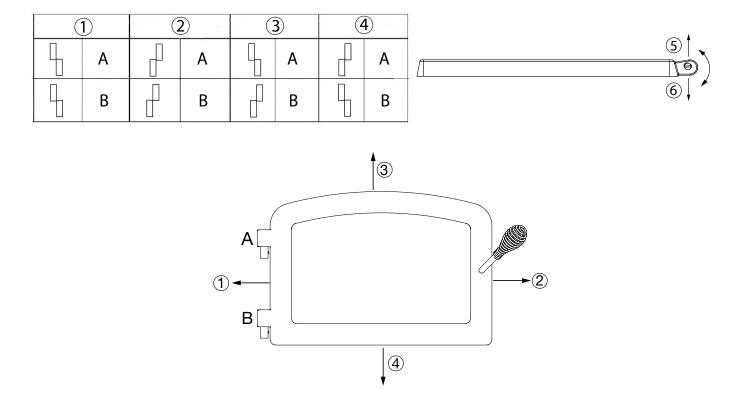



Figure 11: Removing the split pin

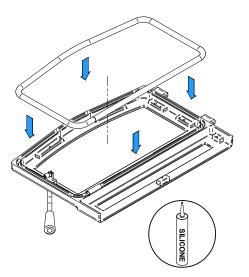





Figure 12: Installing the split pin

# 3.1.3 Door Alignment

To align, open the door and loosen the pressures screws located on the lower and upper hinges of the door using a 3/32" Allen key to free the adjustable hinge rods.




Using a flat screwdriver, turn the adjustable hinge rods in the direction shown to adjust the doors. Tighten all door hinge pressure screws when they are at the desired positions. Configurations 1-2-3-4-5-6, show in which direction these act on the adjustment of the door.



#### 3.1.4 Gasket

It is important to replace the gasket with another having the same diameter and density to maintain a good seal.

- 1. Remove the door and place it face-down on something soft like a cushion of rags or a piece of carpet.
- 2. Remove the old gasket from the door. Use a screwdriver to scrape the old gasket adhesive from the door gasket groove.
- 3. Apply a bead of approximately 3/16" (5 mm) of high temperature silicone in the door gasket groove. Starting from the middle, hinges side, press the gasket into the groove. The gasket must not be stretched during installation.
- 4. Leave about ½" (10 mm) long of the gasket when cutting and press the end into the groove. Tuck any loose fibers under the gasket and into the silicone.
- 5. Close the door. Do not use the insert for 24 hours.



# 3.2 Removal of refractory stones

• Empty the combustion chamber.

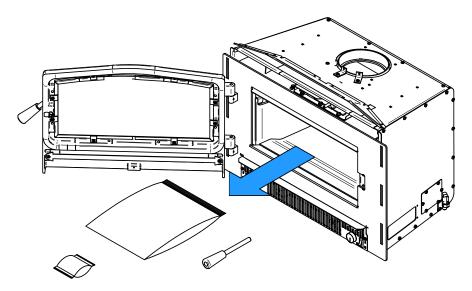



Figure 13: Empty the combustion chamber

• Unscrew the two supports **(B)** of the refractory bricks from the sides. The stones can then be removed in the order shown in Figure 15.

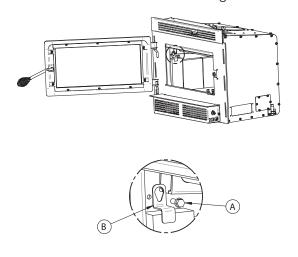
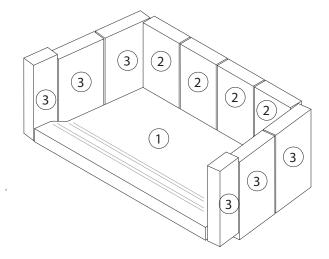
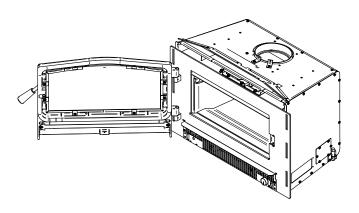
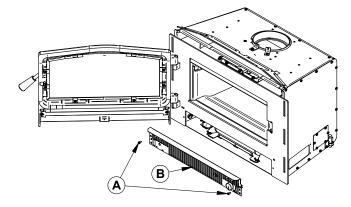
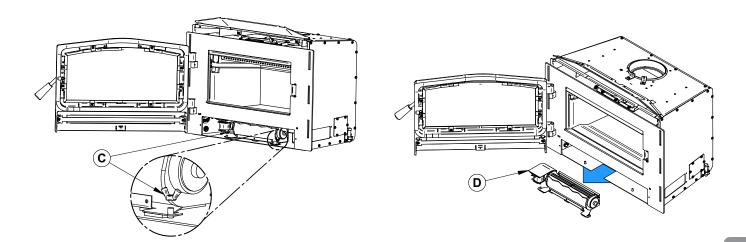



Figure 14: Install the Combustion Chamber Bricks



Figure 15: Stones scheme

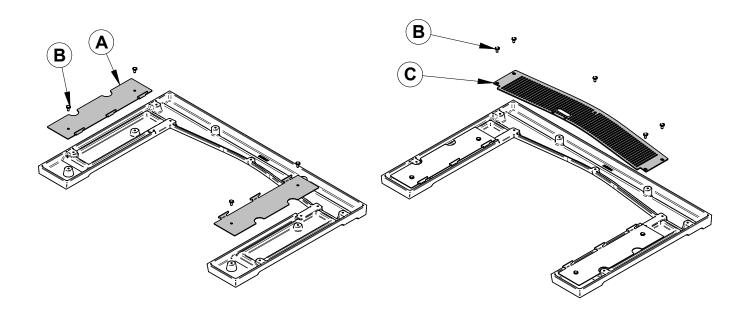
# 3.3 Blower Removal


Note: The images shown are for guidance only and may be different from your product, but the assembly remains the same.

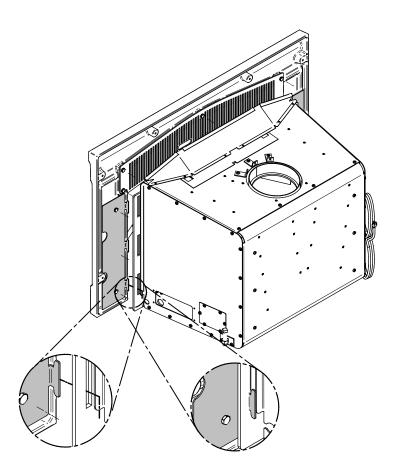
- 1. Open the insert door to gain access to the fan grille **(B)**.
- 2. Unscrew the two screws (A) on each side of the grille (B) to be able to remove it.






- 3. Unscrew the two wing nuts **(C)** on each 4. Take out the fan **(D)**. side of the fan.



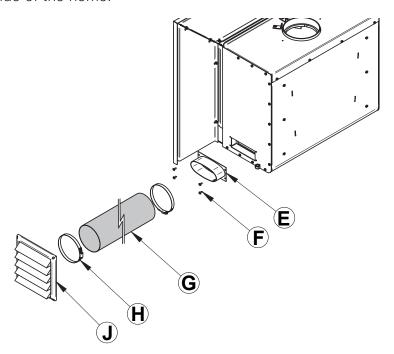

#### Faceplate Installation 3.4

Note: The images shown are for guidance only and may be different from your product, but the assembly remains the same.

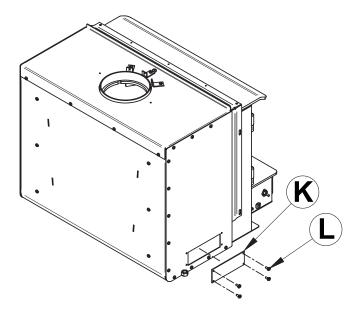
Screw the metal plates (A) and the grille (C) with screws (B) to the faceplate.



2. Install the faceplate on the insert as shown in the image below.




## 3.5 Optional Fresh Air Intake Kit Installation


Note: The images shown are for guidance only and may be different from your product, but the assembly remains the same.

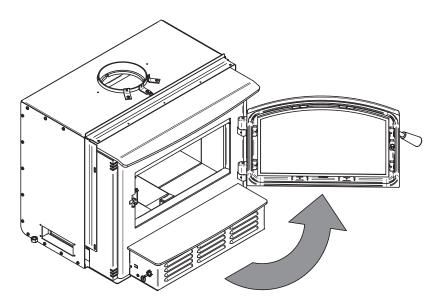
The fresh air intake kit may be installed on the right or left end side of the unit. The unused side must be covered by the plate provided in the user manual kit.

1. Install the fresh air intake adapter **(E)** with four screws **(F)** then secure the flexible pipe<sup>19</sup> **(H)** (not included) to the adapter using one of the pipe clamps **(G)**. Secure the other end of the pipe to the outside wall termination **(J)** using the other pipe clamp. The outside wall termination must be installed outside of the home.

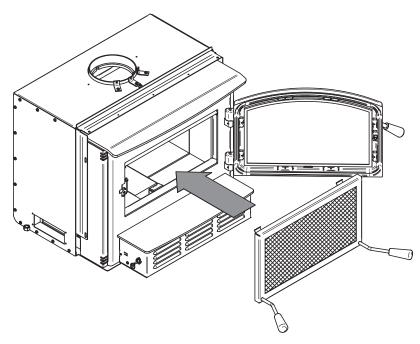


2. Install the plate **(K)** with four screws **(L)** on the unused side of the insert.



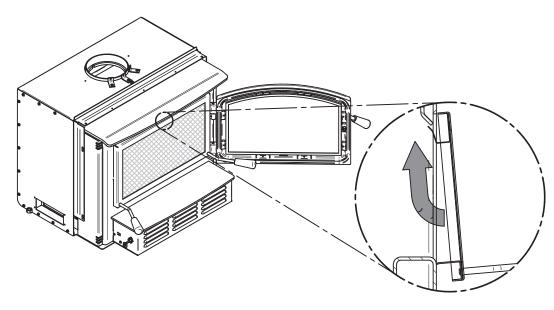

<sup>&</sup>lt;sup>15</sup> The pipe must be HVAC type, insulated, and must comply with ULC S110 and/or UL 181, Class 0 or Class 1.

# 3.6 Optional Fire Screen Installation


Note: The images shown are for guidance only and may be different from your product, but the assembly remains the same.

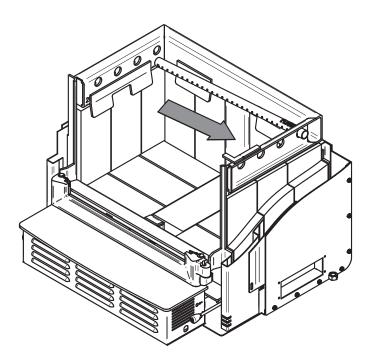
In the United States or in provinces with a particulate emissions limit (e.g.: US EPA), the use of open-door wood stoves with a rigid firescreen is prohibited.

1. Open the door.

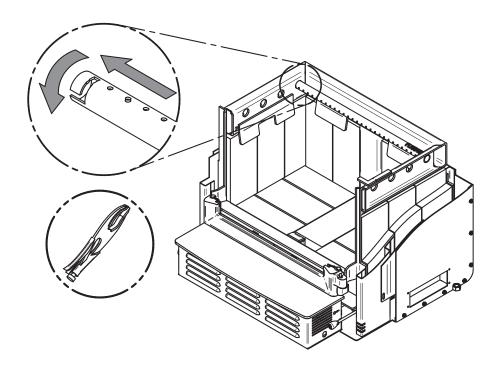



2. Hold the fire screen by the two handles and bring it close to the door opening.

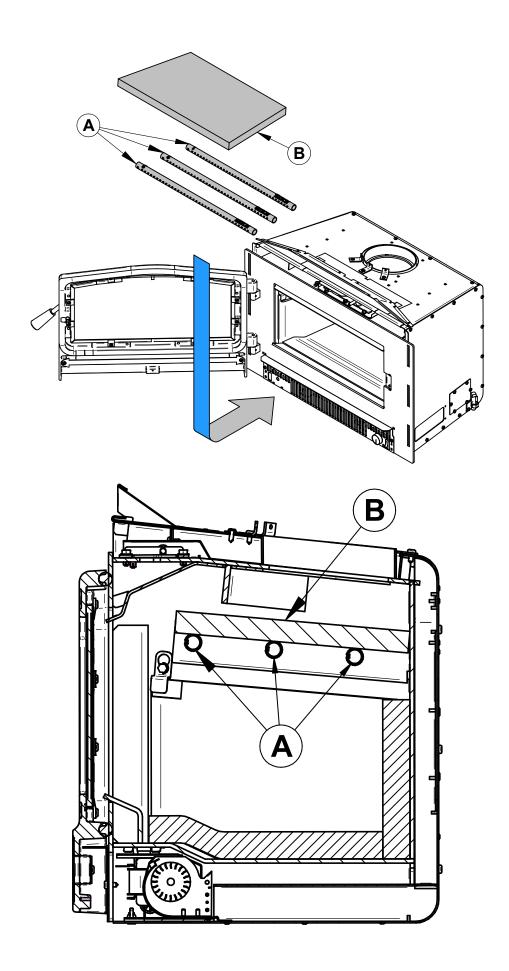



- 3. Lean the upper part of the fire screen against the top door opening making sure to insert the top fire screen brackets behind the primary air deflector.
- 4. Lift the fire screen upwards and push the bottom part towards the insert then let the fire screen rest on the bottom of the door opening.

Warning: Never leave the insert unattended while in use with the fire screen.



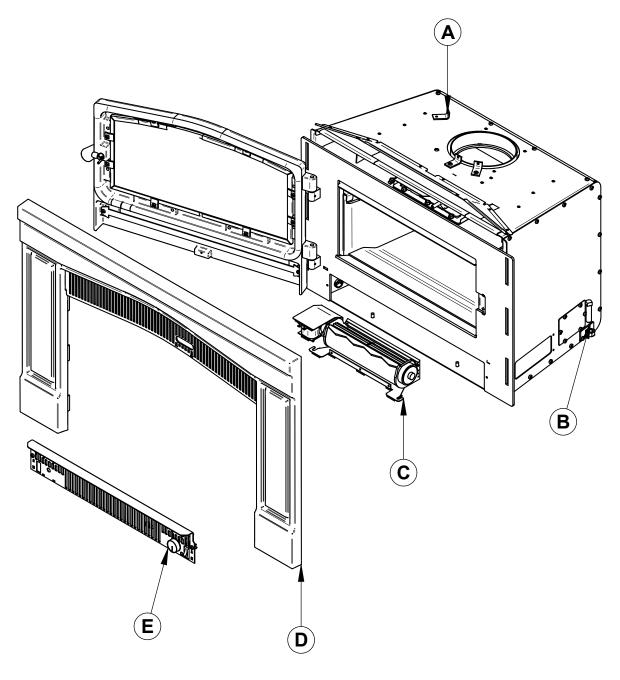

## 3.7 Air Tubes and Baffle Installation


1. Starting with the rear tube, lean and insert the right end of the secondary air tube into the rear right channel hole. Then lift and insert the left end of the tube into the rear left channel.

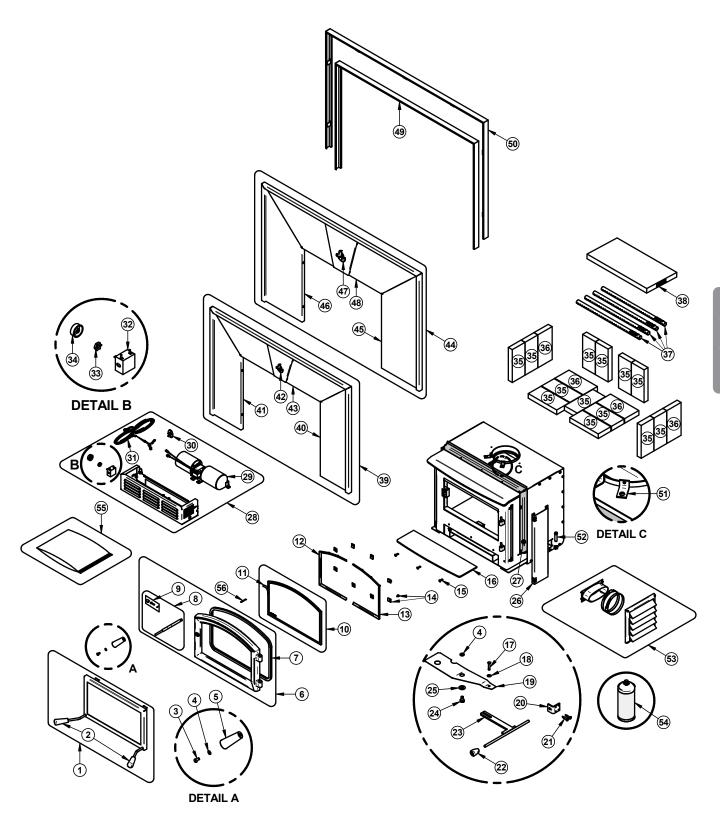


- 2. Align the notch in the left end of the tube with the key of the left air channel hole. Using a « Wise grip » hold the tube and lock it in place by turning the tube as shown. Make sure the notch reaches the end of the key way.
- 3. Install the baffle.
- 4. Repeat steps 1 and 2 for the two other tubes.
- 5. To remove the tubes use the above steps in reverse order.




Note that secondary air tubes (A) can be replaced without removing the baffle board (B) and that all tubes are identical.




# 3.8 Removal Instructions

For inspecting purposes, the insert may need to be removed. To remove the insert, follow these instructions:

- Remove faceplate (D) by lifting it and then pulling on it.
- Remove the three screws securing the pipe connector (A).
- Unscrew the bolts securing the insert to the floor on each side of the unit (B).



# 3.9 Exploded Diagram and Parts List



IMPORTANT: THIS IS DATED INFORMATION. When requesting service or replacement parts for this unit, please provide the model number and the serial number. We reserve the right to change parts due to technology upgrades or availability. Contact an authorized dealer to obtain any of these parts. Never use substitute materials. Use of non-approved parts can result in poor performance and safety hazards.

| #  | Item    | Description                                                          | Qty |
|----|---------|----------------------------------------------------------------------|-----|
| 1  | AC01299 | FIRE SCREEN                                                          |     |
| 2  | 30569   | ROUND WOODEN HANDLE BLACK                                            |     |
| 3  | 30025   | 1/4-20 X 1/2" PAN-HEAD QUADREX BLACK SCREW                           |     |
| 4  | 30187   | STAINLESS WASHER ID 17/64" X OD 1/2"                                 |     |
| 5  | 30898   | ROUND WOODEN BLACK HANDLE DULL BLACK FINISH                          | 1   |
| 6  | SE24299 | CW2100 DOOR ASSEMBLY                                                 | 1   |
| 7  | AC06500 | SILICONE AND 5/8" X 8' BLACK DOOR GASKET KIT                         | 1   |
| 8  | SE70698 | REPLACEMENT HANDLE WITH LATCH KIT                                    | 1   |
| 9  | AC09185 | DOOR LATCH KIT                                                       | 1   |
| 10 | SE23086 | ARCHED GLASS WITH GASKET                                             | 1   |
| 11 | AC06400 | 3/4" (FLAT) X 6' BLACK SELF-ADHESIVE GLASS GASKET                    | 1   |
| 12 | PL70655 | LEFT GLASS FRAME                                                     | 1   |
| 13 | PL70654 | RIGHT GLASS FRAME                                                    | 1   |
| 14 | SE53585 | GLASS RETAINER KIT WITH SCREWS (12 PER KIT)                          | 1   |
| 15 | 30507   | BLACK TORX SCREW WITH FLAT HEAD TYPE F 1/4-20 X 3/4"                 | 3   |
| 16 | SE70671 | ASH LIP ASSEMBLY                                                     | 1   |
| 17 | 30064   | 3/16" X 1" CLEVIS PIN                                                | 1   |
| 18 | 30059   | 5/32" ID PUSHNUT                                                     | 1   |
| 19 | PL70586 | DAMPER                                                               |     |
| 20 | PL65562 | AIR CONTRÔL DAMPER GUIDE                                             | 1   |
| 21 | 30160   | METAL SCREW #8 X 3/4" QUADREX SELF TAPPING TEK BLACK                 |     |
| 22 | 30102   | 1/4" CAST STEEL AIR CONTROL HANDLE INCLUDES MOUNTING SCREW           | 1   |
| 23 | SE65559 | AIR CONTROL ROD ASSEMBLY                                             | 1   |
| 24 | 30060   | THREAD-CUTTING SCREW 1/4-20 X 1/2" F HEX STEEL SLOT WASHER C102 ZINC | 1   |
| 25 | 30206   | ZINC WASHER 5/16"ID X 3/4"OD                                         |     |
| 26 | PL70672 | DECORATIVE PANEL                                                     |     |
| 27 | PL70587 | FACEPLATE EXTENSION                                                  |     |
| 28 | SE70668 | BLOWER ASSEMBLY                                                      |     |
| 29 | 44089   | DOUBLE CAGE BLOWER 144 CFM 115V - 60Hz - 1.1A                        |     |
| 30 | 44028   | CERAMIC THERMODISC F110-20F                                          |     |
| 31 | 60013   | POWER CORD 96" X 18-3 type SJT (50 pcs per carton)                   | 1   |

| #  | Item    | Description                                       | Qty |
|----|---------|---------------------------------------------------|-----|
| 32 | 44080   | RHEOSTAT WITHOUT NUT (MODEL KBMS-13BV)            | 1   |
| 33 | 44087   | RHEOSTAT NUT                                      | 1   |
| 34 | 44085   | RHEOSTAT KNOB                                     | 1   |
| 35 | 29011   | 4" X 9" X 1 1/4" REFRACTORY BRICK HD              | 13  |
| 36 | 29020   | 4 1/2" X 9" X 1 1/4" REFRACTORY BRICK HD          | 4   |
| 37 | PL70516 | SECONDARY AIR TUBE                                | 4   |
| 38 | 21521   | C-CAST BAFFLE 1.25" X 18.875" X 9.5"              | 1   |
| 39 | AC01287 | REGULAR FACEPLATE (29" X 44")                     | 1   |
| 40 | PL70681 | REGULAR FACEPLATE RIGHT PANEL                     | 1   |
| 41 | PL70680 | REGULAR FACEPLATE LEFT PANEL                      | 1   |
| 42 | PL70682 | FACEPLATE DECORATION                              | 1   |
| 43 | PL70679 | REGULAR FACEPLATE TOP PANEL                       | 1   |
| 44 | AC01285 | LARGE FACEPLATE (32" X 50")                       | 1   |
| 45 | PL70701 | LARGE FACEPLATE RIGHT PANEL                       | 1   |
| 46 | PL70700 | LARGE FACEPLATE LEFT PANEL                        | 1   |
| 47 | PL70703 | FACEPLATE DECORATION                              | 1   |
| 48 | PL70702 | LARGE FACEPLATE TOP PANEL                         | 1   |
| 49 | OA10123 | BRUSHED NICKEL FACEPLATE TRIMS (29" X 44")        | 1   |
| 49 | OA10122 | BLACK FACEPLATE TRIMS (29" X 44")                 | 1   |
| 50 | OA10129 | BRUSHED NICKEL LARGE FACEPLATE TRIMS (32" X 50")  | 1   |
| 50 | OA10128 | BLACK LARGE FACEPLATE TRIMS (32" X 50")           | 1   |
| 51 | PL34052 | LINER FIXATION BRACKET                            | 3   |
| 52 | 30337   | SQUARE HEAD SET SCREW 1/2-13 X 1-3/4"             | 2   |
| 53 | AC01298 | 5"Ø FRESH AIR INTAKE KIT OVAL                     | 1   |
| 54 | AC05959 | METALLIC BLACK STOVE PAINT - 342 g (12oz) AEROSOL | 1   |
| 55 | SE45983 | CW2100 INSERT INSTRUCTIONS MANUAL KIT             | 1   |
| 56 | 30101   | SPRING TENSION PIN 5/32"Ø X 1 1/2"L               | 1   |

## 4. CENTURY LIMITED LIFETIME WARRANTY

The warranty of the manufacturer extends only to the original retail purchaser and is not transferable. This warranty covers brand new products only, which have not been altered, modified nor repaired since shipment from factory.

This warranty applies to normal residential use only. Damages caused by misuse, abuse, improper installation, lack of maintenance, over firing, negligence or accident during transportation, power failures, downdrafts, venting problems or under-estimated heating area are not covered by this warranty. The recommended heated area for a given appliance is defined by the manufacturer as its capacity to maintain a minimum acceptable temperature in the designated area in case of a power failure.

This warranty does not cover any scratch, corrosion, distortion, or discoloration. Any defect or damage caused by the use of unauthorized or other than original parts voids this warranty. An authorized qualified technician must perform the installation in accordance with the instructions supplied with this product and all local and national building codes. Any reclamation related to an improper installation is not covered by this warranty.

The manufacturer may require that defective products be returned or that digital pictures be provided to support the claim. Returned products are to be shipped prepaid to the manufacturer for investigation. Transportation fees to ship the product back to the purchaser will be paid by the manufacturer. All parts costs covered by this warranty are limited according to the table below.

The manufacturer, at its discretion, may decide to repair or replace any part or unit after inspection and investigation of the defect. The manufacturer may, at its discretion, fully discharge all obligations with respect to this warranty by refunding the wholesale price of any warranted but defective parts. The manufacturer shall, in no event, be responsible for any uncommon, indirect, consequential damages of any nature, which are in excess of the original purchase price of the product. A one-time replacement limit applies to all parts benefiting from lifetime coverage. This warranty applies to products purchased after July 1st, 2020.

| DESCRIPTION                                                                                              | WARRANTY<br>APPLICATION* |  |
|----------------------------------------------------------------------------------------------------------|--------------------------|--|
|                                                                                                          | PARTS                    |  |
| Combustion chamber (welds only) and cast iron door frame.                                                | 5 years                  |  |
| Surrounds, heat shields, ash drawer, steel legs, pedestal and convector air-mate.                        | 2 years                  |  |
| Removable stainless steel combustion chamber components, secondary air tubes**, deflectors and supports. | 2 years                  |  |
| Glass retainers, handle assembly, and air control mechanism.                                             | 2 years                  |  |
| Carbon steel combustion chamber components, vermiculite baffle**and ceramic glass.                       | 1 year                   |  |
| Blower, heat sensors, switches, rheostat, wiring, and other controls.                                    | 1 year                   |  |
| Firebricks, paint and gaskets.                                                                           | -                        |  |
| Any parts replaced under the warranty (Except firebricks, paint and gaskets)                             | 90 days                  |  |

#### \*Subject to limitations above. \*\*Picture required.

Shall your unit or a components be defective, contact immediately your CENTURY. To accelerate processing of your warranty claim, make sure to have on hand the following information when calling:

- Your name, address and telephone number;
- Installation configuration;
- Nature of the defect and any relevant information.
- Serial number and model name as indicated on the nameplate fixed to the back of your unit;

Before shipping your unit or defective component to our plant, you must obtain an Authorization Number from your CENTURY. Any merchandise shipped to our plant without authorization will be refused automatically and returned to sender.

This document is available for free download on the manufacturer's website. It is a copyrighted document. Resale is strictly prohibited. The manufacturer may update this document from time to time and cannot be responsible for problems, injuries, or damages arising out of the use of information contained in any document obtained from unauthorized sources.

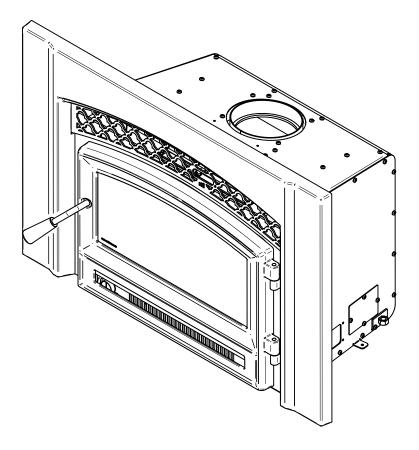


Stove Builder International inc. 250, rue de Copenhague, St-Augustin-de-Desmaures (Québec) Canada G3A 2H3 418-908-8002

> https://www.century-heating.com/ca/en/ tech@sbi-international.com

# NGLISH

# enerzone


# Wood Insert Owner's Manual

Part 2 of 2

INSTALLATION AND OPERATION REQUIREMENTS

# DESTINATION 1.9 INSERT

(EB00066 Model)



Safety tested according to ULC S628, UL 1482 and UL 737 by an accredited laboratory.

US Environmental Protection Agency phase II certified wood insert compliant with 2020 cord wood standard.



CONTACT LOCAL BUILDING OR FIRE OFFICIALS ABOUT RESTRICTIONS AND INSTALLATION INSPECTION REQUIREMENTS IN THE AREA.

READ THIS ENTIRE MANUAL BEFORE INSTALLATION AND USE OF THIS WOOD INSERT. FAILURE TO FOLLOW THESE INSTRUCTIONS COULD RESULT IN PROPERTY DAMAGE, BODILY INJURY OR EVEN DEATH.

# READ AND KEEP THIS MANUAL FOR REFERENCE

#### **ONLINE WARRANTY REGISTRATION**

If the unit requires repairs during the warranty period, proof of purchase must be provided. The purchase invoice must be kept. The date indicated on it establishes the warranty period. If it can not be provided, the warranty period will be determined by the date of manufacture of the product. It is also highly recommended to register the warranty online at



https://www.enerzone-intl.com/en/warranty/warranty-registration/

Registering the warranty will help to quickly find the information needed on the unit.

|       | Dealer:    |  |
|-------|------------|--|
|       |            |  |
|       | Installer: |  |
|       |            |  |
| Phor  | ne Number: |  |
| Seria | l Number:  |  |
|       |            |  |

## CERTIFICATION PLATE



REFER TO INTERTEK'S DIRECTORY OF BUILDING PRODUCTS FOR DEFAULD INSTRUCTIONS PRODUCTS HOMOLOGUES SE REFERRAL REFER TO RE DESERVOUTS HOMOLOGUES DINYERTEK POUR PLUS D'INFORMATION

D'INTERTER POUR PLUS D'INFORMATION

CONTACT LOCAL BUILDING OFFICIALS ABOUT THE RESTRICTIONS AND

INSTALLATION INSPECTION IN YOUR AGEA.

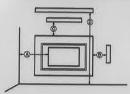
COMMUNIQUER AVIC LES AUTORITÉS LOCALES DU BÂTIMENT ET DE LA
PRÉVENTION DES INCERDIES AU SUIET DES RESTRICTIONS D'INSTALLATION
DANS VOTRE SECTEUR.

Control number: 4002461

(July/Julllet 2021)

STANDARDS / NORMES D'ESSAI: Certified to / Certifié selon ULC S628 Certified to / Certifié selon UL 1482

Certified to / Certifié selon UL 737 Certified to/Certifié selon CSA B415.1-10 Certified to/Certifié selon ASTM E3053-17 Certified to/Certifié selon ASTM E2515-11 (R2017) LISTED SOLID FUEL BURNING INSERT APPLIANCE


#### APPAREIL ENCASTRABLE À COMBUSTIBLE SOLIDE HOMOLOGUÉ

FOR USE WITH WOOD ONLY

POUR UTILISATION AVEC BOIS SEULEMENT

MINIMUM CLEARANCES TO COMBUSTIBLE MATERIALS / DÉGAGEMENTS MINIMUM AUX MATÉRIAUX COMBUSTIBLES

Floor - Celling / Plancher - Plafond: 72 in./po. (183 cm)



Blower / Ventilateur: 115VOLTS, 0.8 AMPS, 60Hz

A - Sidewall (from door opening)/Mur latéral (de

D - Combustible shelf (from base of the fireplace

A: 16 in./po. in (406 mm)

Insert)/
D - Tablette combustible (de la base de l'encastrable) :

D: 34 in./po.in (864 mm)

B - Combustible side surround (from faceplate)/Parement latéral combustible (de la façade):

B: 1 in./po.in (25 mm)

C - Combustible top surround (from faceplate)/Parement supérieur combustible (de la

C: 1 in./po. in. (25 mm)

façade):

Contact local building or fire officials about restrictions and installation inspection in your area. Use with solid wood fuel only. Do not use other fuels

- For safety, keep screen doors or glass doors fully closed.
- Do not overfire unit.

operating instructions.

Replace with only ceramic glass 4mm thick.

restrictions et inspection d'installation.

Connect to a code-approved masonry chimney or listed factory-built fireplace chimney with a direct flue connector into the first chimney liner section.

MODEL / MODÈLE : **DESTINATION 1.9** Serial Number No. de Série

INSTALL AND USE ONLY IN ACCORDANCE WITH SBI STOVE BUILDER INTERNATIONAL INSTALLATION AND OPERATION INSTRUCTIONS.

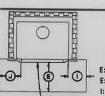
L'INSTALLATION ET L'OPERATION DOIT SE FAIRE SELON LES INSTRUCTIONS D'INSTALLATION ET D'UTILISATION DE SBI FABRICANT

DE POÊLES INTERNATIONAL.

PREVENT HOUSE FIRES Install and use in accordance with the manufacturer's installation and

- The non-combustible floor protection in front of the unit should extend 16 inches (406 mm) (USA), 18 inches (457 mm) (CANADA) without a R value even if the hearth elevation is equal with the combustible floor.
- Do not connect this unit to a chimney serving another appliance.
  Install only in masonry fireplaces. Do not remove bricks or mortar from
- masonry fireplace. Inspect and clean chimney frequently. Under certain conditions of use,
- creosote buildup may occur rapidly.
  Do not use grate or elevate fire. Build wood fire directly on hearth.
- This wood heater needs periodic inspection and repair for proper operation. Consult the owner's manual for further information. It is against US federal regulations to operate this wood heater in a manner inconsistent with the operating instructions in the owner's manual

#### PRÉVENEZ LES INCENDIES


- Installer et utiliser conformément au manuel d'utilisation du fabricant. Contacter les autorités de votre localité ayant juridiction concernant les
- Utiliser avec le bois seulement. Ne pas utiliser d'autres combustibles. Utiliser l'apparell la porte fermée ou ouverte avec le pare-étincelle en place uniquement. Ouvrir la porte ou retirer le pare-étincelle seulement lors du
- Ne pas raccorder à un conduit de fumée servant déjà pour un autre apparell.
- Remplacer la vitre seulement avec un verre céramique de 4mm d'épaisseur.
- Raccorder à une cheminée de maçonnerie respectant les codes ou à une cheminée préfabriquée homologuée, directement à la première section de cheminée gainée.
- La protection de plancher incombustible au devant de l'encastrable doit se prolonger de 16 pouces (406 mm) (USA), 18 pouces (457 mm) (CANADA), sans facteur d'isolation R au devant de l'encastrable même si l'âtre est égale au
- Installer seulement dans un foyer de maçonnerie. Ne pas enlever les briques ou le mortler du foyer de maçonnerie.
- inspecter et nettoyer la cheminée fréquemment. Dans certaines conditions, la formation de créosote peut être rapide.
- Ne pas utiliser de chenets ou de grilles pour élever le feu. Préparer le feu directement sur l'âtre.
- Cet appareil de chauffage requiert des instructions et réparations périodiques. Consulter le manuel de l'utilisateur pour plus d'information. Opérer cet appareil de chauffage de façon inconsistente par rapport au manuel de l'utilisateur consiste une violation de la loi fédérale (USA)





20/07/2021 (#test) 27876

WARNING: This product can expose you to carbon monoxide, which is known to the State of California to cause cancer, birth defects or other reproductive harm (For more information go to www.p65warnings.ca.gov)



E:18 in./po. E: 16 in./po. I: 8 in./po. J: 8 in./po.

(457 mm) CANADA (406 mm) USA (203 mm) CANADA (203 mm) USA

U.S. ENVIRONMENTAL PROTECTION AGENCY Certified to comply with 2020 particulate emission standards using cordwood. AGENCE DE PROTECTION DE L'ENVIRONNEMENT DES É.-U. Conforme aux normes d'émission de particules de 2020 avec bûche de bois.

Weighted average emission rate / Moyenne pondérée des émissions: 1.5 g/h Tested and certified in compliance with CFR 40 part 60, subpart AAA, section 60.534(a)(1(ii))

# CAUTION

- HOT WHILE IN OPERATION.
- DO NOT TOUCH. KEEP CHILDREN, CLOTHING AND FURNITURE AWAY.
- CONTACT MAY CAUSE SKIN BURNS, SEE NAME-PLATE AND INSTRUCTIONS.

#### ATTENTION

- CHAUD EN FONCTIONNEMENT.
- NE PAS TOUCHER. GARDER LES ENFANTS, LES VÊTEMENTS ET LES MEUBLES ÉLOIGNÉS.
- UN CONTACT AVEC LA PEAU PEUT OCCASIONNER DES BRÛLURES. VOIR LES INSTRUCTIONS.

Made in St-Augustin-de-Desmaures (Qc), Canada Fabriqué à St-Augustin-de-Desmaures (Qc), Canada



# **TABLE OF CONTENTS**

| 1. | Gene  | General Information6                                   |    |  |  |  |
|----|-------|--------------------------------------------------------|----|--|--|--|
|    | 1.1   | Performances                                           | 6  |  |  |  |
|    | 1.2   | Specifications                                         | 7  |  |  |  |
|    | 1.3   | Dimensions                                             | 8  |  |  |  |
|    | 1.4   | EPA Loading                                            | 10 |  |  |  |
| 2. | Clea  | rances to Combustible Material                         | 11 |  |  |  |
|    | 2.1   | Minimum Masonry Opening and Clearances to Combustibles | 11 |  |  |  |
|    | 2.2   | Floor Protection                                       | 12 |  |  |  |
|    | 2.3   | R Value                                                | 13 |  |  |  |
| 3. | Insta | nstalling Options on Your Product and Replacing Parts1 |    |  |  |  |
|    | 3.1   | Replacement and Adjustment                             | 15 |  |  |  |
|    | 3.2   | Removal of refractory stones                           | 17 |  |  |  |
|    | 3.3   | Connecting the Blower With a BX Wire                   | 18 |  |  |  |
|    | 3.4   | Changing the Side of the Blower Power Cord             | 21 |  |  |  |
|    | 3.5   | Blower Removal                                         | 24 |  |  |  |
|    | 3.6   | Removable Air Control Handle                           | 25 |  |  |  |
|    | 3.7   | Faceplate Removal                                      | 26 |  |  |  |
|    | 3.8   | Faceplate Decorative Panel Installation/Removal        | 27 |  |  |  |
|    | 3.9   | Optional Fresh Air Intake Kit Installation             | 28 |  |  |  |
|    | 3.10  | Optional Fire Screen Installation                      | 29 |  |  |  |
|    | 3.11  | Air Tubes and Baffle Installation                      |    |  |  |  |
|    | 3.12  |                                                        |    |  |  |  |
|    | 3.13  | Exploded Diagram and Parts List                        | 34 |  |  |  |
| 4. | ENE   | RZONE LIMITED LIFETIME WARRANTY                        | 37 |  |  |  |

#### 1. General Information

#### 1.1 Performances

Values are as measured per test method, except for the recommended heating area, firebox volume, maximum burn time and maximum heat output.

| Models Destination 1.9 (                                                                   |                                                          | )                       |  |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------|--|
| Type of combustion                                                                         | Non-catalytic                                            |                         |  |
| Fuel Type                                                                                  | Dry Cordwood                                             |                         |  |
| Recommended heating area (sq. ft) <sup>1</sup>                                             | 250 to 1,200 ft <sup>2</sup> (23 to 111 m <sup>2</sup> ) |                         |  |
| Nominal firebox volume                                                                     | 1.2 ft <sup>3</sup> (0.034 m <sup>3</sup> )              |                         |  |
| Loading volume EPA                                                                         | 1.03 ft <sup>3</sup> (0.0292 m <sup>3</sup> )            |                         |  |
| Maximum burn time <sup>1</sup>                                                             | 7 hours                                                  |                         |  |
| Overall heat output rate (min. to max.) <sup>2 3</sup>                                     | 8,471 BTU/h to 31,700 BTU/h<br>(2.48 kW to 9.29 kW)      |                         |  |
| Average overall efficiency <sup>3</sup> - Dry cordwood                                     | 75 % (HHV) <sup>4</sup>                                  | 80 % (LHV) <sup>5</sup> |  |
| Optimum efficiency <sup>6</sup>                                                            | 82 %                                                     |                         |  |
| Optimum heat transfert efficiency <sup>7</sup>                                             | 78 %                                                     |                         |  |
| Average particulate emissions rate <sup>8</sup> 1.5 g/h (EPA / CSA B415.1-10) <sup>9</sup> |                                                          | .1-10)9                 |  |
| Average CO <sup>10</sup>                                                                   | 34 g/h                                                   |                         |  |

<sup>&</sup>lt;sup>1</sup> Recommended heating area and maximum burn time may vary subject to location in home, chimney draft,heat loss factors, climate, fuel type and other variables. The recommended heated area for a given appliance is defined by the manufacturer as its capacity to maintain a minimum acceptable temperature in the designated area in case of a power failure.

<sup>&</sup>lt;sup>2</sup> The maximum heat output (dry cordwood) is based on a loading density varying between 15 lb/ft3 and 20 lb/ft3. Other performances are based on a fuel load prescribed by the standard. The specified loading density varies between 7 lb/ft³ and 12 lb/ft³. The moisture content is between 19% and 25%.

<sup>&</sup>lt;sup>3</sup> As measured per CSA B415.1-10 stack loss method.

<sup>&</sup>lt;sup>4</sup> Higher Heating Value of the fuel.

<sup>&</sup>lt;sup>5</sup> Lower Heating Value of the fuel.

<sup>&</sup>lt;sup>6</sup> Optimum overall efficiency at a specific burn rate (LHV).

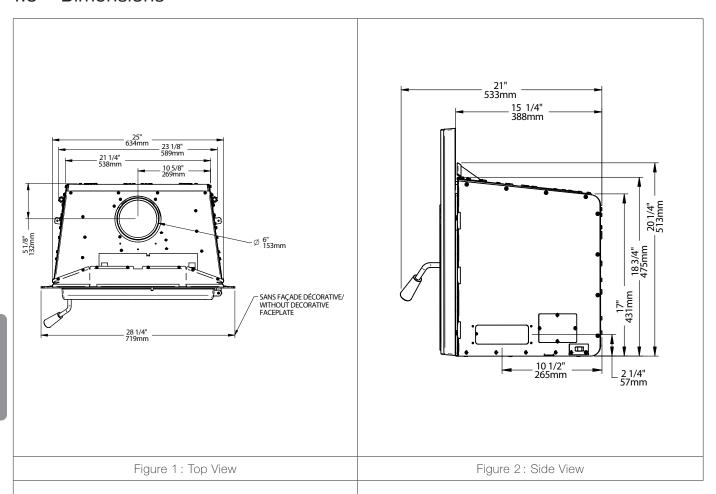
<sup>&</sup>lt;sup>7</sup> The optimum heat transfer efficiency is for the low burn rate and represents the appliance's ability to convert the energy contained in the wood logs into energy transferred to the room in the form of heat and does not take into account the chemical losses during combustion.

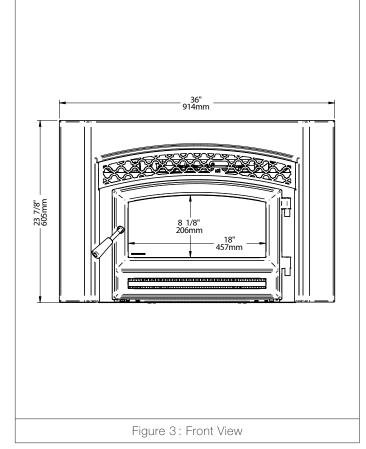
<sup>&</sup>lt;sup>8</sup> This appliance is officially tested and certified by an independent agency.

<sup>&</sup>lt;sup>9</sup> Tested and certified in compliance with CFR 40 part 60, subpart AAA, section 60.534(a)(1(ii) and draft ASTM WK47329-14 based on the ATM send by EPA on October 12th, 2017.

<sup>&</sup>lt;sup>10</sup> Carbon monoxide.

# 1.2 Specifications


| Recommended log length                              | 16 in (406 mm) east-west             |
|-----------------------------------------------------|--------------------------------------|
| Maximum log length <sup>11</sup>                    | 17 in (432 mm) east-west             |
| Flue outlet diameter                                | 6 in (150 mm)                        |
| Recommended connector pipe diameter                 | 6 in (150 mm)                        |
| Type of chimney                                     | ULC S635, CAN/ULC-S640, UL 1777      |
| Minimum liner height                                | 12 feet                              |
| Baffle material                                     | C-Cast or equivalent                 |
| Approved for alcove installation                    | No                                   |
| Approved for mobile home installation <sup>12</sup> | No                                   |
| Type of door                                        | Simple, glazed, with cast iron frame |
| Type of glass                                       | Ceramic glass                        |
| Blower                                              | Included (up to 90 CFM)              |
| Particulate emission standard <sup>13</sup>         | EPA / CSA B415.1-10                  |
| USA Standard (Safety)                               | UL 1482, UL 737                      |
| Canada Standard (Safety)                            | ULC-S628                             |


<sup>&</sup>lt;sup>11</sup> North-south: ends of the logs visible, East-west: sides of the logs visible.

<sup>&</sup>lt;sup>12</sup> Mobile homes (Canada) or manufactured homes (USA): The US Department of Housing and Urban Development describes "manufactured homes" better known as "mobile homes" as follows; buildings built on fixed wheels and those transported on temporary wheels/axles and set on a permanent foundation. In Canada, a mobile home is a dwelling for which the manufacture and assembly of each component is completed or substantially completed prior to being moved to a site for installation on a foundation and connection to service facilities and which conforms to the CAN/CSAZ240 MH standard.

<sup>&</sup>lt;sup>13</sup> Tested and certified in compliance with CFR 40 part 60, subpart AAA, section 60.534(a)(1(ii) and draft ASTM WK47329-14 based on the ATM send by EPA on October 12th, 2017.

# 1.3 Dimensions





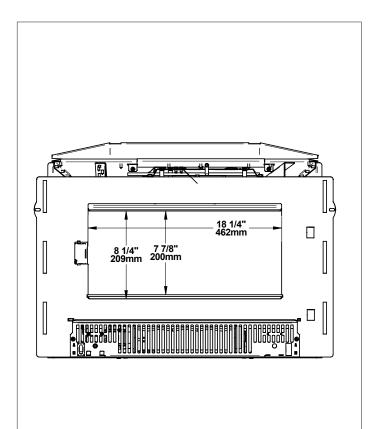
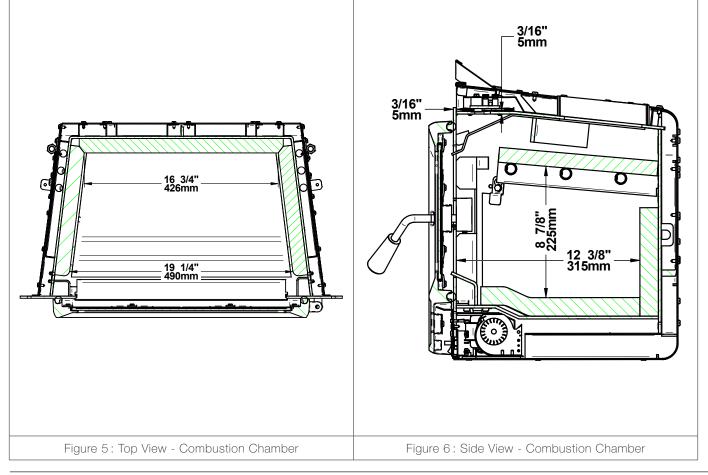
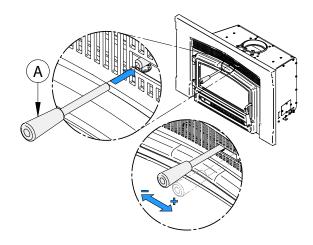




Figure 4: Door Opening




## 1.4 EPA Loading

The loading methods shown below are those that were used during emissions certification.

#### 1.4.1 Air control

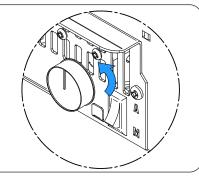
The air control is located above the door. To open the air control, insert the removable handle onto the air control and push the air control handle completely to the right (High). This will increase the burn rate. To close the air control, push the air control handle completely to the left (Low). This will decrease the burn rate. Do not leave the handle on the air control after use, as it will get very hot.



# 1.4.2 High burn rate (primary air control open)

Open the air control completely. Criss cross 6 kindling wood pieces in the back of the firebox. Then, place six small pieces (2"x2") of wood on the kindling crossing them at the greatest possible angle. Criss cross ten others kindling wood pieces on the small pieces of wood. Tie knot with five sheets of paper and place them on top of the kindling wood. Light up the paper and let the door completely open for two minutes. Close the door.

When the kindling and the small pieces of wood are almost completely burnt out and it is possible to break them into pieces, level the coal bed and put four logs in the firebox in an east-west orientation. Place a medium log (about 4"x4") in front of the combustion chamber and the biggest log (about 5"x5") in the back of the combustion chamber. Place the last two medium pieces on top of the two others in an orientation that points to the right. Do not leave space between the pieces. Let the door open ajar at 90° for 5 minutes and close the door.


#### 1.4.3 Medium and low burn rate

On a 2" coal bed that is still red, place five logs of approximatively 4"x4" or 3"x3" with an east-west orientation. Place two logs on the coal bed with approximatively 4" between them and the other three on top. There should be air space between each logs and between the logs and the bricks. Let the door ajar at 90° for 5 minutes and then close the door with the primary air control fully open. Leave to burn with the primary air control open for approximately 10 minutes and then close the primary air control completely for the low burn rate and halfway for the medium burn rate.

#### WARNING



Before opening the door completely to add wood to the insert, the fan must be turned OFF to avoid blowing ash outside the combustion chamber. Refer to section "5.1 Blower" of the owner's manual for how to turn OFF the fan.



#### 2. Clearances to Combustible Material

When the insert is installed so that its surfaces are at or beyond the minimum clearances specified, combustible surfaces will not overheat under normal and even abnormal operating conditions.

# NO PART OF THE INSERT MAY BE LOCATED CLOSER TO THE COMBUSTIBLE THAN THE MINIMUM CLEARANCE FIGURES GIVEN.

#### 2.1 Minimum Masonry Opening and Clearances to Combustibles

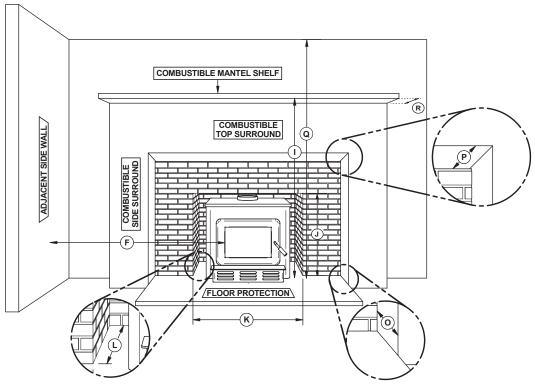



Figure 7 : Ouverture de l'âtre et dégagements aux combustibles

|   | MINIMUM CLEARANCES |
|---|--------------------|
| F | 16" (406 mm)       |
| I | 34" (864 mm)       |
| Q | 72" (183 cm)       |

|   | MAXIMUM THICKNESS |  |
|---|-------------------|--|
| 0 | 3" (76 mm)        |  |
| Р | 1.5" (38 mm)      |  |
| R | 12" (305 mm)      |  |

|                        | MINIMUM MASONRY<br>OPENING |  |  |
|------------------------|----------------------------|--|--|
| J                      | 19" (483 mm)               |  |  |
| <b>K</b> <sup>14</sup> | 25" (635 mm)               |  |  |
| L                      | 15 ½" (394 mm)             |  |  |

|                                | FACADE<br>CLEARANCES |
|--------------------------------|----------------------|
| From combustible side surround | 1" (25 mm)           |
| From combustible top surround  | 1" (25 mm)           |

<sup>&</sup>lt;sup>14</sup> If a fresh air intake is required, it is recommended to add at least 4" to the width of the minimum opening of the hearth.

#### 2.2 Floor Protection

It is necessary to have a floor protection made of non-combustible materials that meets the measurements specified below.

**Table 1: Floor Protection** 

|                        | FLOOR PR     | OTECTION     |
|------------------------|--------------|--------------|
|                        | Canada       | USA          |
| <b>B</b> <sup>15</sup> | 18" (457 mm) | 16" (406 mm) |
| М                      | 8" (203 mm)  | N/A          |
| N                      | N/A          | 8" (203 mm)  |

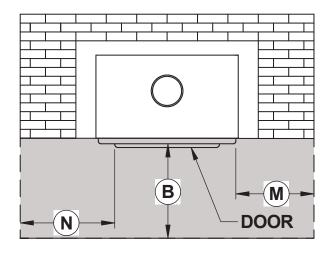



Figure 8: Floor Protection

To determine the need to add floor protection **(D)** beyond the hearth extension **(A)**, the following calculation must be done using the data in "Table 2: Data for Floor Protection Calculation" of this section: D = B - G, where G = A-C.

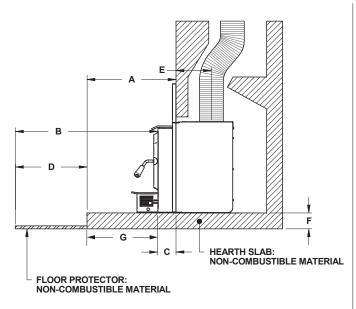



Figure 9: Additional Floor Protection - Raised Installation

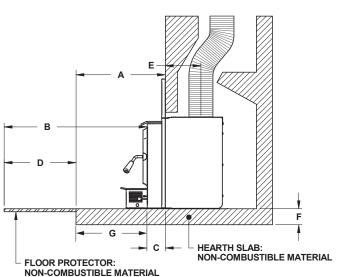



Figure 10: Additional Floor Protection - Not Raised Installation

**Table 2: Data for Floor Protection Calculation** 

|                     | Α                                 | В                       | С            | D                   | E                   | Air Jacket                        |
|---------------------|-----------------------------------|-------------------------|--------------|---------------------|---------------------|-----------------------------------|
| Minimum<br>Extended | Dimension of the hearth extension | See raised installation | 0"<br>(0 mm) | G = (A-C)<br>D=B- G | 10 1/8"<br>(257 mm) | flush with<br>fireplace<br>facing |

<sup>&</sup>lt;sup>15</sup>From door opening. The depth of the hearth extension in front of the insert is included in the calculation of the floor protector's dimensions.

If the value **(D)** is negative or zero, additional floor protection in front of the unit is not needed because the masonry fireplace hearth extension is long enough. If the value **(D)** is positive, an additional floor protection in front of the hearth extension at least equivalent to the result **(D)** must be added.

#### 2.3 R Value

There are two ways to calculate the R-value of the floor protection. First, by adding the R-values of materials used, or by the conversion if the K factor and thickness of the floor protection are given.

To calculate the total R value from R values of the materials used, simply add the R-values of materials. If the result is equal to or greater than the R-value requirements, the combination is acceptable. R-values of some selected materials are shown below.

Table 3: Thermal Characteristics of Common Floor Protection Materials<sup>16</sup>

| MATERIAL                                        | CONDUCTIVITY (K) PER INCH | RESISTANCE (R) PER INCH THICKNESS |
|-------------------------------------------------|---------------------------|-----------------------------------|
| Micore® 160                                     | 0.39                      | 2.54                              |
| Micore® 300                                     | 0.49                      | 2.06                              |
| Durock®                                         | 1.92                      | 0.52                              |
| Hardibacker®                                    | 1.95                      | 0.51                              |
| Hardibacker® 500                                | 2.3                       | 0.44                              |
| Wonderboard®                                    | 3.23                      | 0.31                              |
| Cement mortar                                   | 5.00                      | 0.2                               |
| Common brick                                    | 5.00                      | 0.2                               |
| Face brick                                      | 9.00                      | 0.11                              |
| Marble                                          | 14.3 – 20.00              | 0.07 - 0.05                       |
| Ceramic tile                                    | 12.5                      | 0.008                             |
| Concrete                                        | 1.050                     | 0.950                             |
| Mineral wool insulation                         | 0.320                     | 3.120                             |
| Limestone                                       | 6.5                       | 0.153                             |
| Ceramic board (Fibremax)                        | 0.450                     | 2.2                               |
| Horizontal still air (1/8" thick) <sup>17</sup> | 0.135                     | 0,920**                           |

#### **Exemple:**

Required floor protection R of 1.00. Proposed materials: four inches of brick and one inch of Durock® board:

Four inches of brick (R =  $4 \times 0.2 = 0.8$ ) plus 1 inch of Durock® (R =  $1 \times 0.52 = 0.52$ ).

$$0.8 + 0.52 = 1.32$$
.

<sup>&</sup>lt;sup>16</sup> Information as reported by manufacturers and other resources.

<sup>&</sup>lt;sup>17</sup> Horizontal still air can't be «stack» to accumulate R-values; each layer must be separated with another non-combustible material.

This R value is larger than the required 1.00 and is therefore acceptable.

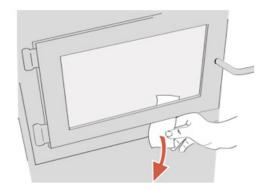
In the case of a known K and thickness of alternative materials to be used in combination, convert all K values to R by dividing the thickness of each material by its K value. Add R values of the proposed materials as shown in the previous example.

#### **Exemple:**

K value = 0.75

Thickness = 1

R value = Thickness/K = 1/0.75 = 1.33


# 3. Installing Options on Your Product and Replacing Parts

#### 3.1 Replacement and Adjustment

#### 3.1.1 Door

Note: The images shown are for guidance only and may be different from your product, but the assembly remains the same.

In order for the insert to burn at its best efficiency, the door must provide a perfect seal with the firebox. Therefore, the gasket should be inspected periodically to check for a good seal. The tightness of the door seal can be verified by closing and latching the door on a strip of paper. The test must be performed all around the door. If the paper slips out easily anywhere, either adjust the door or replace the gasket.



#### 3.1.2 Adjustment

The gasket seal may be improved with a simple latch mechanism adjustment:

- 1. Remove the split pin by pulling and turning it using pliers.
- 2. Turn the handle one counterclockwise turn to increase pressure.
- 3. Reinstall the split pin with a small hammer.

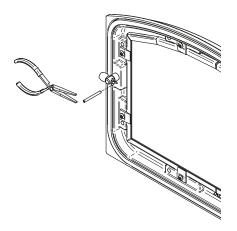
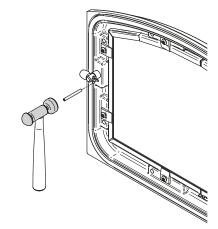
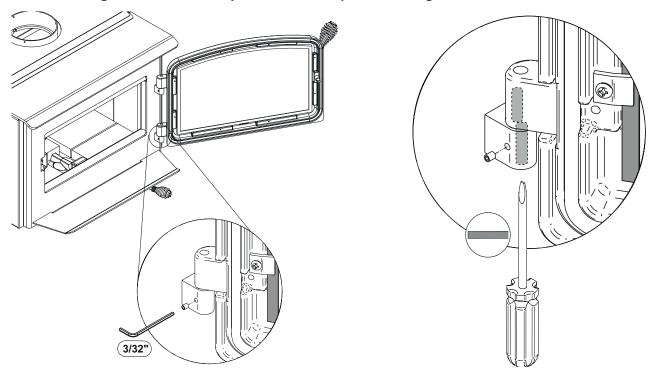
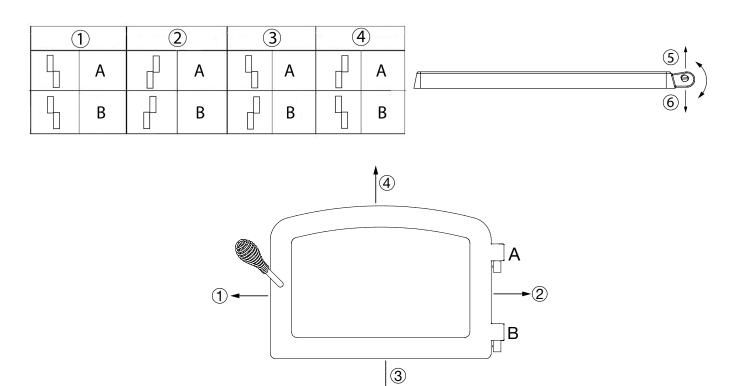



Figure 11: Removing the split pin

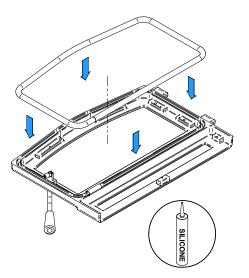





Figure 12: Installing the split pin

# 3.1.3 Door Alignment

To align, open the door and loosen the pressures screws located on the lower and upper hinges of the door using a 3/32" Allen key to free the adjustable hinge rods.




Using a flat screwdriver, turn the adjustable hinge rods in the direction shown to adjust the doors. Tighten all door hinge pressure screws when they are at the desired positions. Configurations 1-2-3-4-5-6, show in which direction these act on the adjustment of the door.



#### 3.1.4 Gasket

It is important to replace the gasket with another having the same diameter and density to maintain a good seal.

- 1. Remove the door and place it face-down on something soft like a cushion of rags or a piece of carpet.
- 2. Remove the old gasket from the door. Use a screwdriver to scrape the old gasket adhesive from the door gasket groove.
- 3. Apply a bead of approximately 3/16" (5 mm) of high temperature silicone in the door gasket groove. Starting from the middle, hinges side, press the gasket into the groove. The gasket must not be stretched during installation.
- 4. Leave about ½" (10 mm) long of the gasket when cutting and press the end into the groove. Tuck any loose fibers under the gasket and into the silicone.
- 5. Close the door. Do not use the insert for 24 hours.



# 3.2 Removal of refractory stones

Note: The images shown are for guidance only and may be different from your product, but the assembly remains the same.

• Empty the combustion chamber.

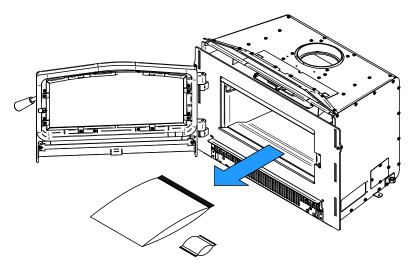



Figure 13: Empty the combustion chamber

• Unscrew the two supports **(B)** of the refractory bricks from the sides. The stones can then be removed in the order shown in Figure 12.

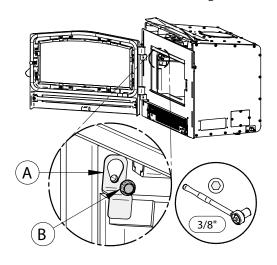
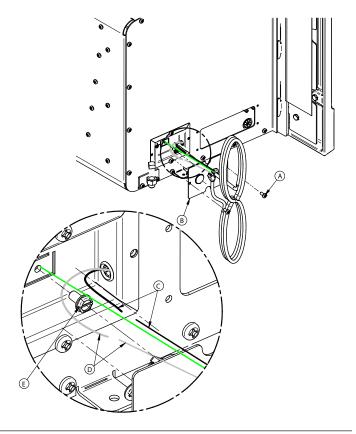



Figure 14: Install the Combustion Chamber Bricks

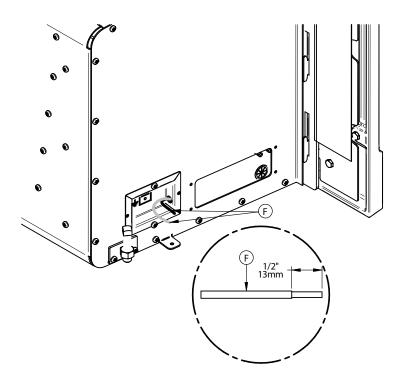



Figure 15: Stones scheme

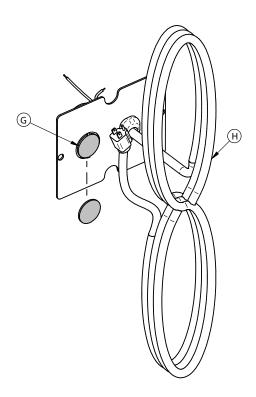
# 3.3 Connecting the Blower With a BX Wire


Note: The images shown are for guidance only and may be different from your product, but the assembly remains the same.

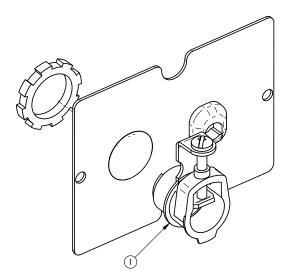



#### CAUTION RISK OF ELECTROCUTION.

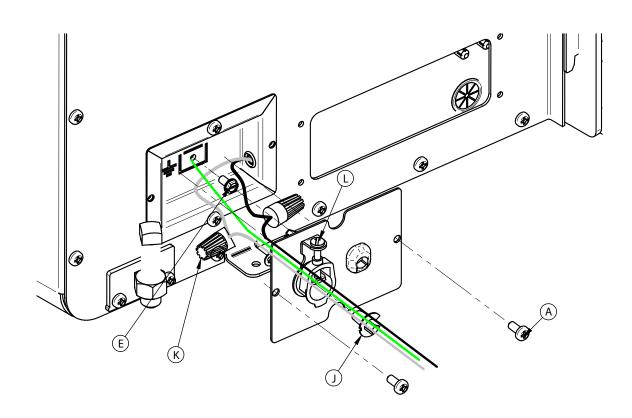
All electrical connections should be performed by a certified electrician.


- Remove the screws (A) to remove the plate
   (B) and gain access to the wires. Save the screws for later.
- 2. Disconnect the black (C) and white (D) wires.
- 3. Remove the ground screw **(E)** to remove the green wire. Save the screw for later.




4. Strip a section of  $\frac{1}{2}$ " of the black and white wires **(F)** that are in the box attached to the insert.

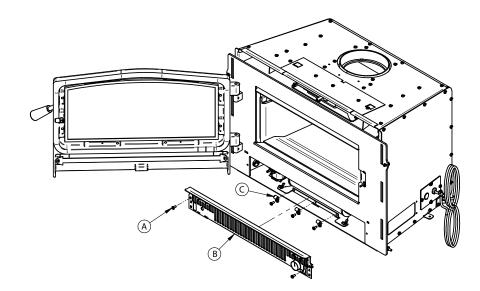



5. Remove the piece of metal **(G)** from the plate **(B)** obstructing the hole to the left of the power cord **(H)** using pliers or a screwdriver. Cut the power cord **(H)** on each side of the black clamp.

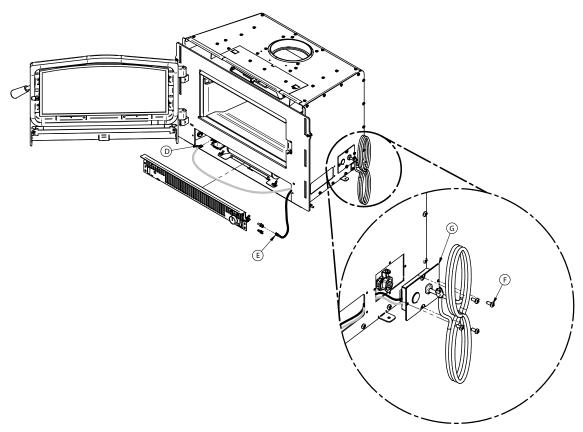


6. Install the connector (I) supplied with the manual kit in the hole formed in the plate (B) in step 5.

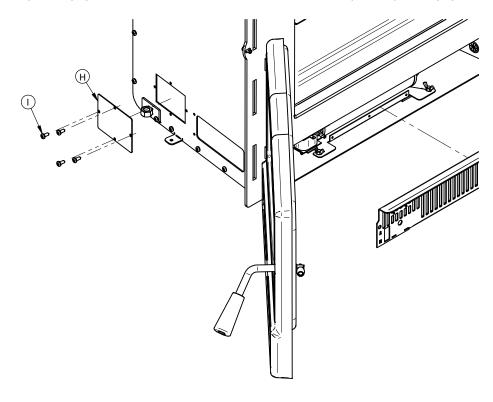



- 7. Pass the new wires through the connector (I) and install the sleeve (J) supplied with the manual kit on the BX wire.
- 8. Join the black and white wires using marettes **(K)** (not supplied) and secure the ground wire with the screw **(E)** kept in step 3.
- 9. Close the connection box by screwing in the plate (B) with the two screws (A) kept in step 1 and secure the BX wire by tightening the screw (L) of the connector (I).

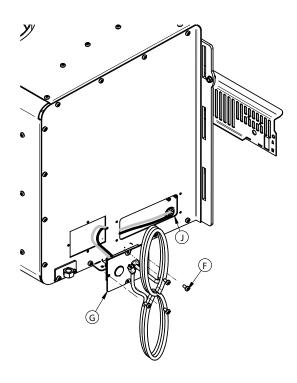



# 3.4 Changing the Side of the Blower Power Cord

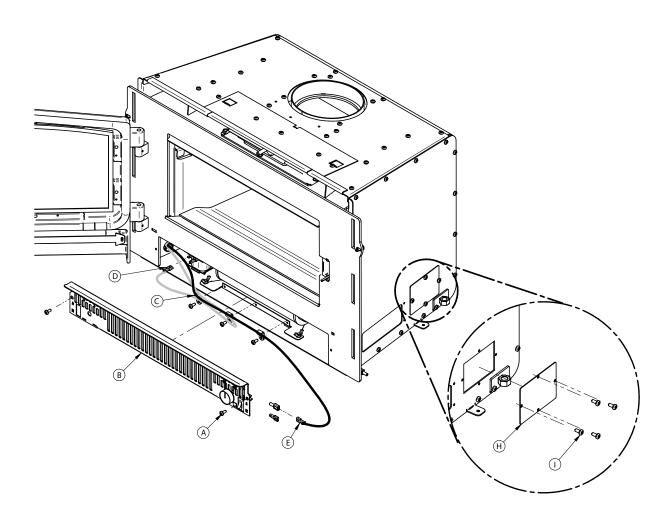
Note: The images shown are for guidance only and may be different from your product, but the assembly remains the same.


1. Open the door and unscrew the screws (A) to remove the grille (B) in front of the fan. Then unscrew the three plastic grommets (C) located on the base of the fan. Remove the wires from the grommets. Keep the screws.




2. Disconnect the white wire **(D)** and the black wire **(E)** (follow the wires coming from the inside of the insert). Remove the four screws **(F)** that hold the connection box **(G)** to the insert and gently pull it out until the white and black wires come out of the insert. Keep the screws.

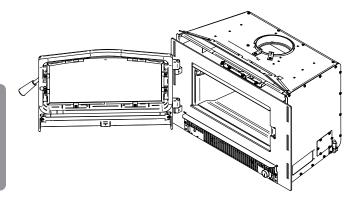


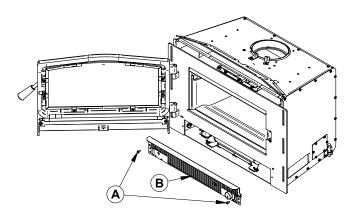

3. Unscrew the plate (H) on the other side of the insert. Keep the plate (H) and screws (I).



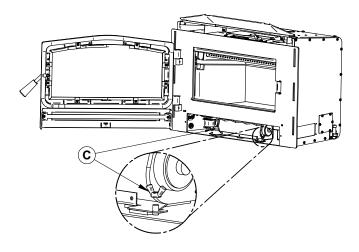
- 4. Pass the white **(D)** and black **(E)** wires through the hole formed in the previous step by pulling them towards the front of the insert. Then pass the wires through the grommet **(J)** located on the side at the front of the device.
- 5. Screw the connection box (G) with the four screws (F) kept in step 2.

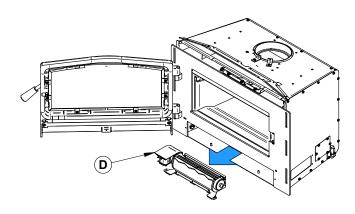



- 6. Install the plate **(H)** with the screws **(I)** kept in step 3 to the initial location of the connection box **(G)**.
- 7. Pull the excess black and white wires into the insert to be able to connect them to their respective locations (the black wire is connected to the rheostat and the white wire is connected to the blower). An extension cable must be installed on the black wire to get to the rheostat (extension supplied with the manual kit).
- 8. Secure the excess wires using the three plastic grommets (C) removed in step 1.
- 9. Reinstall the grille (B) with the screws (A) kept in step 1.




#### 3.5 Blower Removal

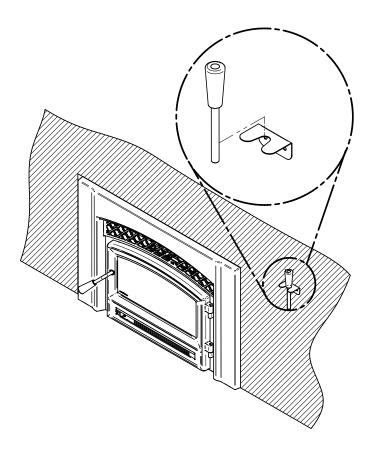

Note: The images shown are for guidance only and may be different from your product, but the assembly remains the same.


- 1. Open the insert door to gain access to the fan grille (B).
- 2. Unscrew the two screws (A) on each side of the grille (B) to be able to remove it.



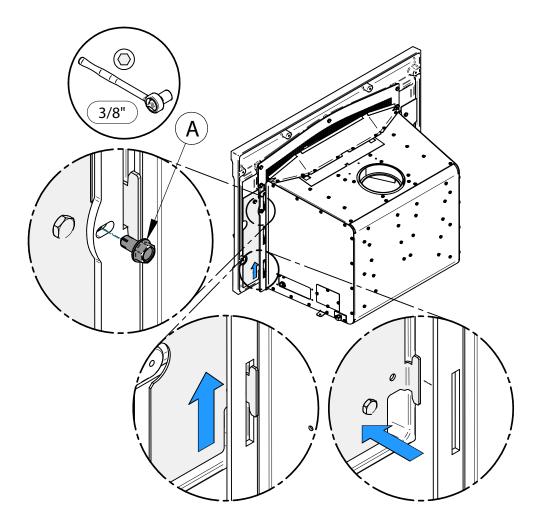


- 3. Unscrew the two wing nuts **(C)** on each 4. Take out the fan **(D)**. side of the fan.






# 3.6 Removable Air Control Handle


This insert comes with a removable handle for the primary air control. A holder for the handle is supplied with the manual. Here is an example of the holder installation.

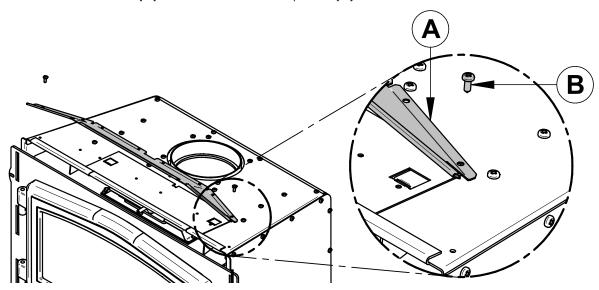
CAUTION: Do not leave the handle on the air control after use, as it will get very hot.



# 3.7 Faceplate Removal

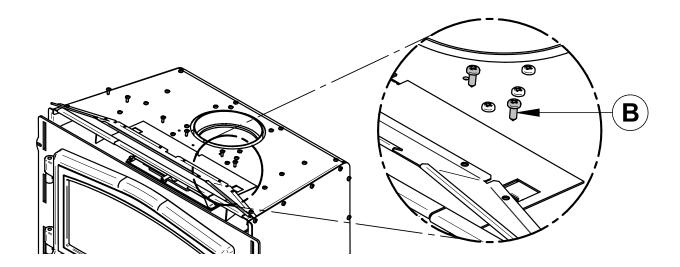
Remove the screws (A) that hold the faceplate on each side of the insert. Then lift and pull the
faceplate towards you to remove it. It is not necessary to keep the screws (A), since they were
only useful for the transport of the insert.




#### 3.8 Faceplate Decorative Panel Installation/Removal

Note: The images shown are for guidance only and may be different from your product, but the assembly remains the same.

It is possible to install the insert with or without the faceplate decorative panel. The latter is included with the insert and is already partially installed with two screws at each end. Here are the steps to remove or keep it:

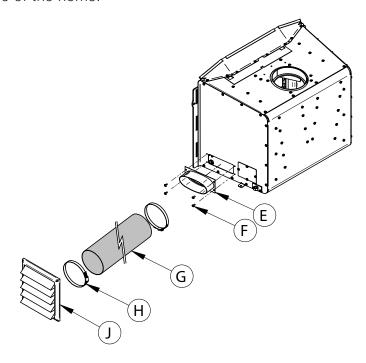

#### Faceplate decorative panel removal

• Remove the screws (B) at each end of the panel (A) to be able to remove it afterwards.



#### Faceplate decorative panel installation

Screw the panel with 6 additional screws (B).




# 3.9 Optional Fresh Air Intake Kit Installation

Note: The images shown are for guidance only and may be different from your product, but the assembly remains the same.

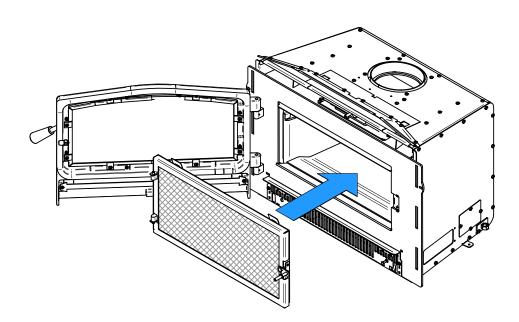
The fresh air intake kit may be installed on the right or left end side of the unit. The unused side must be covered by the plate provided in the user manual kit.

• Install the fresh air intake adapter **(E)** with four screws **(F)** then secure the flexible pipe<sup>18</sup> **(H)** (not included) to the adapter using one of the pipe clamps **(G)**. Secure the other end of the pipe to the outside wall termination **(J)** using the other pipe clamp. The outside wall termination must be installed outside of the home.

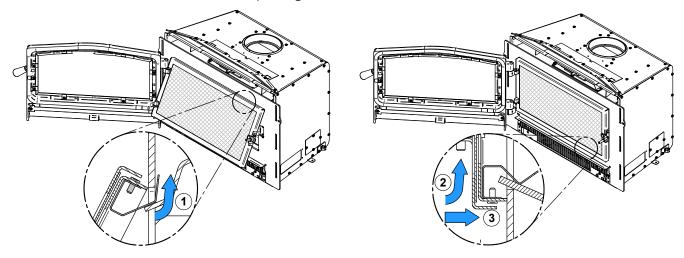


<sup>&</sup>lt;sup>15</sup> The pipe must be HVAC type, insulated, and must comply with ULC S110 and/or UL 181, Class 0 or Class 1.

# 3.10 Optional Fire Screen Installation


Note: The images shown are for guidance only and may be different from your product, but the assembly remains the same.

In the United States or in provinces with a particulate emissions limit (e.g.: US EPA), the use of open-door wood stoves with a rigid firescreen is prohibited.


1. Open the door.



2. Hold the fire screen by the two handles and bring it close to the door opening.

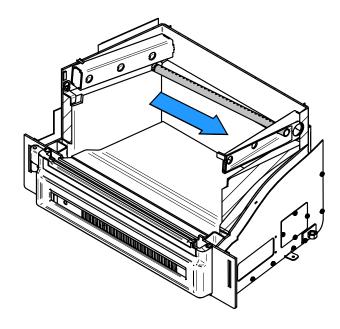


- 3. Lean the upper part of the fire screen against the top door opening making sure to insert the top fire screen brackets in front of the primary air deflector.
- 4. Lift the fire screen upwards and push the bottom part towards the insert then let the fire screen rest on the bottom of the door opening.

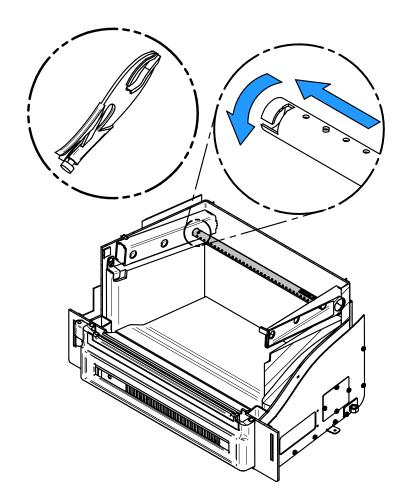




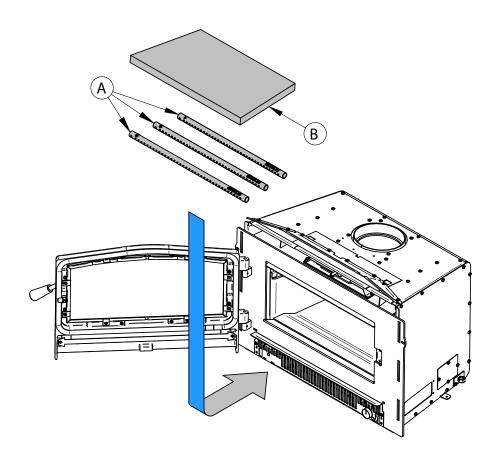
Never leave the insert unattended while in use with the fire screen.

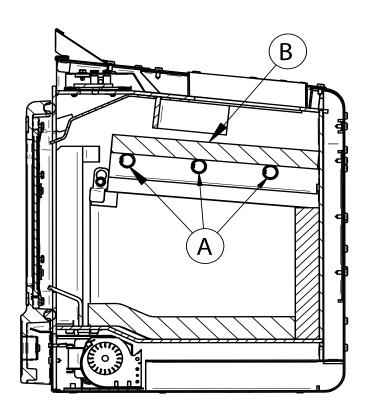

Do not use the blower with the fire screen installed. May cause smoke spillage.

Do not use the fire screen with a offset liner adaptor.


#### 3.11 Air Tubes and Baffle Installation

Note: The images shown are for guidance only and may be different from your product, but the assembly remains the same.

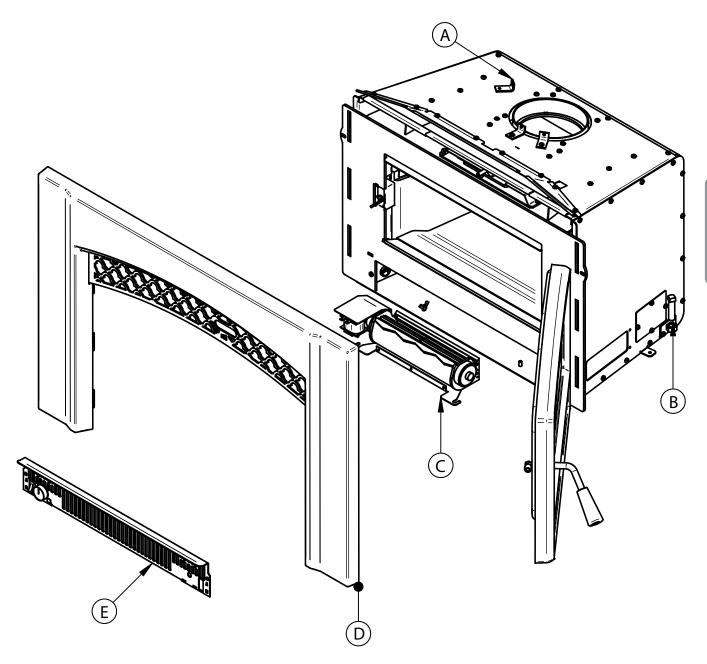

1. Starting with the rear tube, lean and insert the right end of the secondary air tube into the rear right channel hole. Then lift and insert the left end of the tube into the rear left channel.



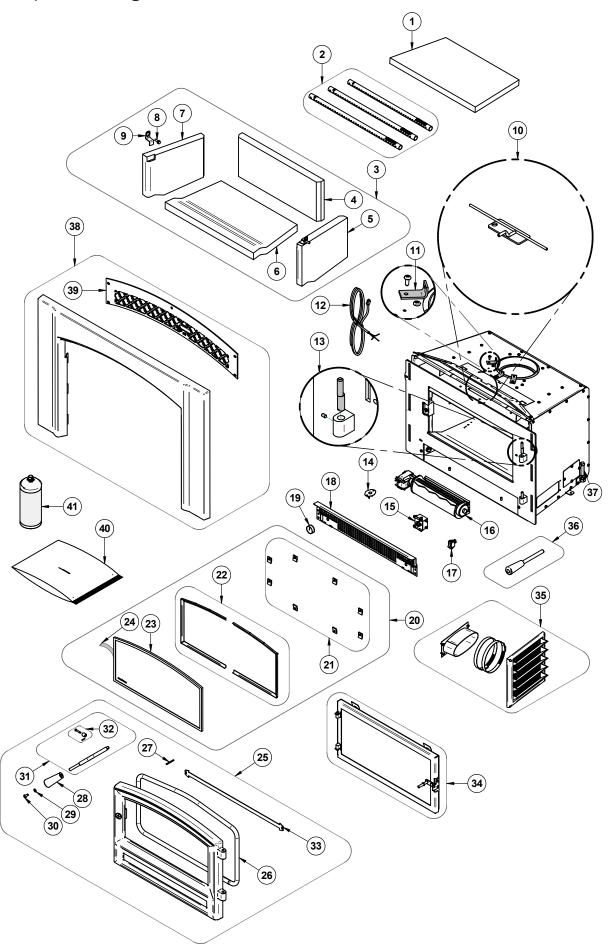

- 2. Align the notch in the left end of the tube with the key of the left air channel hole. Using a « Wise grip » hold the tube and lock it in place by turning the tube as shown. Make sure the notch reaches the end of the key way.
- 3. Install the baffle.
- 4. Repeat steps 1 and 2 for the two other tubes.
- 5. To remove the tubes use the above steps in reverse order.



Note that secondary air tubes (A) can be replaced without removing the baffle board (B) and that all tubes are identical.







#### 3.12 Removal Instructions

For inspecting purposes, the insert may need to be removed. To remove the insert, follow these instructions:

- Remove faceplate (D) by lifting it and then pulling on it.
- Remove the three screws securing the pipe connector (A).
- Unscrew the bolts securing the insert to the floor on each side of the unit (B).



# 3.13 Exploded Diagram and Parts List



IMPORTANT: THIS IS DATED INFORMATION. When requesting service or replacement parts for this unit, please provide the model number and the serial number. We reserve the right to change parts due to technology upgrades or availability. Contact an authorized dealer to obtain any of these parts. Never use substitute materials. Use of non-approved parts can result in poor performance and safety hazards.

| #  | Item    | Description                                        | Qty |
|----|---------|----------------------------------------------------|-----|
| 1  | 21636   | 2.1 SERIE BAFFLE                                   | 1   |
| 2  | SE74778 | SECONDARY AIR TUBE KIT                             | 1   |
| 3  | SE22420 | SET OF BRICKS                                      | 1   |
| 4  | 22420   | REAR REFRACTORY BRICK                              | 1   |
| 5  | 22421   | RIGHT REFRACTORY BRICK                             | 1   |
| 6  | 22419   | BOTTOM REFRACTORY BRICK                            | 1   |
| 7  | 22422   | LEFT REFRACTORY BRICK                              | 1   |
| 8  | 30094   | HEX SCREW WASHER HEAD 1/4-20 X 3/4" F ZINC TYPE    | 2   |
| 9  | PL74789 | STONE RETENEUR                                     | 2   |
| 10 | SE74766 | DAMPER ASSEMBLY                                    | 1   |
| 11 | PL34052 | LINER FIXATION BRACKET                             | 3   |
| 12 | 60013   | POWER CORD 96" X 18-3 type SJT (50 pcs per carton) | 1   |
| 13 | SE74167 | DOOR HINGE REPLACEMENT KIT                         | 1   |
| 14 | 44028   | CERAMIC THERMODISC F110-20F                        | 1   |
| 15 | PL74813 | RHEOSTAT SUPPORT                                   | 1   |
| 16 | 44075   | TANGENTIAL BLOWER 1800 115V-60hZ-30W (S) 90 CFM    | 1   |
| 17 | 44091   | ROCKER SWITCH 2 POSITION MSR-8                     | 1   |
| 18 | PL74793 | BOTTOM DOOR GRILL                                  | 1   |
| 19 | 44085   | RHEOSTAT KNOB                                      | 1   |
| 20 | SE74785 | GLASS, GASKET AND MOULDING KIT                     | 1   |
| 21 | SE53585 | GLASS RETAINER KIT WITH SCREWS (12 PER KIT)        | 1   |
| 22 | SE74783 | GLASS FRAMES KIT                                   | 1   |
| 23 | SE74827 | DESTINATION 1.9 GLASS                              | 1   |
| 24 | AC06400 | 3/4" X 6' FLAT BLACK SELF-ADHESIVE GLASS GASKET    | 1   |
| 25 | SE24368 | DESTINATION 1.9 CASR IRON DOOR                     | 1   |
| 26 | AC06500 | SILICONE AND 5/8" X 8' BLACK DOOR GASKET KIT       | 1   |
| 27 | 30101   | SPRING TENSION PIN 5/32"Ø X 1 1/2"L                | 1   |
| 28 | 30898   | ROUND WOODEN BLACK HANDLE                          | 1   |
| 29 | 30187   | STAINLESS WASHER ID 17/64" X OD 1/2"               | 1   |
| 30 | 30025   | 1/4-20 X 1/2" PAN-HEAD QUADREX BLACK SCREW         | 1   |
| 31 | SE72072 | REPLACEMENT HANDLE WITH LATCH KIT                  | 1   |
| 32 | AC09185 | DOOR LATCH KIT                                     | 1   |
| 33 | PL74795 | DECORATIVE DOOR PLATE                              | 1   |
| 35 | AC01298 | 5"Ø FRESH AIR INTAKE KIT                           | 1   |

| #  | Item    | Description                                       | Qty |
|----|---------|---------------------------------------------------|-----|
| 36 | SE74166 | HANDLE 30898 REPLACEMENT KIT                      | 1   |
| 37 | 30337   | SQUARE HEAD SET SCREW 1/2-13 X 1-3/4"             | 2   |
| 38 | SE24367 | DESTINATION 1.9 FACEPLATE ASSEMBLY                | 1   |
| 39 | PL74844 | DESTINATION 1.9 GRILL                             | 1   |
| 40 | SE46279 | DESTINATION 1.9(EB00066) MANUAL KIT               | 1   |
| 41 | AC05959 | METALLIC BLACK STOVE PAINT - 342 g (12oz) AEROSOL | 1   |

#### 4. ENERZONE LIMITED LIFETIME WARRANTY

The warranty of the manufacturer extends only to the original retail purchaser and is not transferable. This warranty covers brand new products only, which have not been altered, modified nor repaired since shipment from factory. Proof of purchase (dated bill of sale), model name and serial number must be supplied when making any warranty claim to your ENERZONE dealer.

This warranty applies to normal residential use only. This warranty is void if the unit is used to burn material other than cordwood (for which the unit is not certified by EPA) and void if not operated according to the owner's manual. Damages caused by misuse, abuse, improper installation, lack of maintenance, over firing, negligence or accident during transportation, power failures, downdrafts, venting problems or under-estimated heating area are not covered by this warranty. The recommended heated area for a given appliance is defined by the manufacturer as its capacity to maintain a minimum acceptable temperature in the designated area in case of a power failure.

This warranty does not cover any scratch, corrosion, distortion, or discoloration. Any defect or damage caused by the use of unauthorized or other than original parts voids this warranty. An authorized qualified technician must perform the installation in accordance with the instructions supplied with this product and all local and national building codes. Any service call related to an improper installation is not covered by this warranty.

The manufacturer may require that defective products be returned or that digital pictures be provided to support the claim. Returned products are to be shipped prepaid to the manufacturer for investigation. Transportation fees to ship the product back to the purchaser will be paid by the manufacturer. Repair work covered by the warranty, executed at the purchaser's domicile by an authorized qualified technician requires the prior approval of the manufacturer. All parts and labour costs covered by this warranty are limited according to the table below.

The manufacturer, at its discretion, may decide to repair or replace any part or unit after inspection and investigation of the defect. The manufacturer may, at its discretion, fully discharge all obligations with respect to this warranty by refunding the wholesale price of any warranted but defective parts. The manufacturer shall, in no event, be responsible for any uncommon, indirect, consequential damages of any nature, which are in excess of the original purchase price of the product. A one-time replacement limit applies to all parts benefiting from lifetime coverage. This warranty applies to products purchased after September 1st, 2015.

| DESCRIPTION                                                                                                                                                                                                                             | WARRANTY APPLICATION* |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------|
|                                                                                                                                                                                                                                         | PARTS                 | LABOUR  |
| Combustion chamber (welds only) and cast iron door frame                                                                                                                                                                                | Lifetime***           | 5 years |
| Ceramic glass**, plating (manufacturing defect**) and convector air-mate                                                                                                                                                                | Lifetime***           | N/A     |
| Surrounds, heat shields, ash drawer, steel legs, pedestal, trims (aluminum extrusions), vermiculite, <i>C-Cast</i> or equivalent baffle**, secondary air tubes**, removable stainless steel combustion chamber, deflectors and supports | 7 years***            | N/A     |
| Handle assembly, glass retainers and air control mechanism                                                                                                                                                                              | 5 years               | 3 years |
| Removable carbon steel combustion chamber components                                                                                                                                                                                    | 5 years               | N/A     |
| Standard and optional blower, heat sensors, switches, rheostat, wiring and electronics                                                                                                                                                  | 2 years               | 1 year  |
| Paint (peeling**), gaskets, insulation, ceramic fiber blankets, refractory bricks (fireplace only***), and other options                                                                                                                | 1 year                | N/A     |
| All parts replaced under the warranty                                                                                                                                                                                                   | 90 days               | N/A     |

<sup>\*</sup>Subject to limitations above \*\*Picture required \*\*\*Limited to one replacement

Labour cost and repair work to the account of the manufacturer are based on a predetermined rate schedule and must not exceed the wholesale price of the replacement part.

Shall your unit or a components be defective, contact immediately your **ENERZONE** dealer. To accelerate processing of your warranty claim, make sure to have on hand the following information when calling:

- Your name, address and telephone number
- Bill of sale and dealer's name
- Installation configuration

- Serial number and model name as indicated on the nameplate fixed to the back of your unit
- Nature of the defect and any relevant information

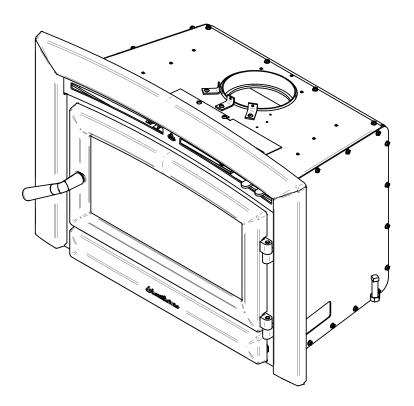
Before shipping your unit or defective component to our plant, you must obtain an Authorization Number from your ENERZONE dealer. Any merchandise shipped to our plant without authorization will be refused automatically and returned to sender.

This document is available for free download on the manufacturer's website. It is a copyrighted document. Resale is strictly prohibited. The manufacturer may update this document from time to time and cannot be responsible for problems, injuries, or damages arising out of the use of information contained in any document obtained from unauthorized sources.



Stove Builder International inc. 250, rue de Copenhague, enerzone St-Augustin-de-Desmaures (Québec) Canada G3A 2H3

418-908-8002


https://www.enerzone-intl.com/en/ tech@sbi-international.com



# Product Specification Manual

# GREEN MOUNTAIN INSERT 50

(SF00330 Model)



US Environmental Protection Agency phase II certified wood insert compliant with 2020 cord wood standard.



CONTACT LOCAL BUILDING OR FIRE OFFICIALS ABOUT RESTRICTIONS AND INSTALLATION INSPECTION REQUIREMENTS IN THE AREA.

READ THIS ENTIRE MANUAL BEFORE INSTALLATION AND USE OF THIS WOOD INSERT. FAILURE TO FOLLOW THESE INSTRUCTIONS COULD RESULT IN PROPERTY DAMAGE, BODILY INJURY OR EVEN DEATH.

# READ AND KEEP THIS MANUAL FOR REFERENCE



REFER TO INTERTEK'S DIRECTORY OF BUILDING PRODUCTS FOR DETAILED INSTRUCTIONS
SE RÉFÉRER AU RÉPÉRTOIRE DES PRODUITS HOMOLOGUÉS D'INTERTEK POUR PLUS D'INFORMATION

STANDARDS / NORMES D'ESSAI:

LISTED SOLID FUEL BURNING **INSERT APPLIANCE** 

APPAREIL ENCASTRABLE À COMBUSTIBLE SOLIDE HOMOLOGUÉ

## MODEL / MODÈLE : **GREEN MOUNTAIN**

**INSERT 50** 

0

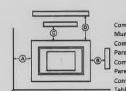
Control number: 4002461

Blower / Ventilateur:

115VOLTS, 0.8 AMPS, 60Hz

Certified to/Certifié selon CSA B415.1-10 Certified to/Certifié selon ASTM E3053-17 Certified to/Certiflé selon ASTM E2515-11 (R2017)

(March/Mars 2021)


\* See owner's manual for other installation instructions/ voir manuel d'installation pour d'autres instructions d'installation

Serial Number No. de Série

#### Clearances to combustibles / Dégagements aux combustibles Measured from door opening

Mesuré à partir de l'ouverture de porte

Floor - Ceiling / Plancher - Plafond: 84 in./po. (213 cm)



Combustible side wall Mur côté adjacent Combustible side surround Parement latéral combustible Combustible top surround Parement supérieur combustible Combustible mantle shelf Tablette combustible

B: 9.5 in./po. (241 mm) C: 12 in./po. (305 mm) D: 12 in./po. (305 mm)

A: 19 in./po.

E: 16 in./po. (406 mm) USA 18 in./po. (457 mm) CAMADA I: 8 in./po. (203 mm) CANADA

1 10

OUVERTURE

J: 8 in./po. (203 mm) USA

#### PREVENT HOUSE FIRES

- Install and use only in accordance with the manufacturer's installation and
- operating instructions.

  Contact local building or fire officials about restrictions and installation inspection in your area.
- Use with solid wood fuel only. Do not use other fuels.
- Risk of smoke and flame spillage. Operate only with door closed or door open with screen door installed. Open door or remove screen door only to feed the
- Do not connect this unit to a chimney serving another appliance
- install only in masonry fireplaces. Do not remove bricks or mortar from masonry fireplace.
- The non-combustible floor protection in front of the unit should have an R value equal or greater than 1.00 extending 20 inches (508 mm) in front of the insert if the hearth elevation is lower than 2 inches (51 mm) or extend 16 inches (406 mm) (USA), 18 inches (457 mm) (CANADA) without a R value if the hearth elevation is higher than 2 inches (51 mm).
- Connect to a code-approved masonry chimney or listed factory-built fireplace chimney with a direct flue connector into the first chimney liner section.
- no not overfire. If stove or chimney connector glows, your are overfiring. Inspect and clean chimney frequently. Under certain conditions of use,
- creosote buildup may occur rapidly.

  Do not use grate or elevate fire. Build wood fire directly on hearth.
- Replace glass only with ceramic glass.
- This wood heater needs periodic inspection and repair for proper operation. Consult the owner's manual for further information. It is against US federal regulations to operate this wood heater in a manner inconsistent with the operating instructions in the owner's manual.

#### PRÉVENEZ LES INCENDIES

Installer et utiliser conformément au manuel d'utilisation du fabricant.

(483 mm)

- Contacter les autorités de votre localité avant juridiction concernant les restrictions et Inspections d'Installation.
- Utiliser avec le bois seulement. Ne pas utiliser d'autres combustibles
- Risque de fuite de fumée et de fiammes. Utiliser l'appareil la porte fermée ou ouverte avec le pare-étincelle en place uniquement. Ouvrir la porte ou retirer le pare-étincelle seulement lors du chargement.
- Ne pas raccorder à un conduit de fumée servant déjà pour un autre appareil.
- Installer seulement dans un fover de maconnerie. Ne pas enlever les briques ou le
- La protection de plancher incombustible au devant de l'encastrable devrait avoir un La protection de planener incomusticle au devant de l'encastrable devrait avoir un facteur d'isolation R'égal ou supérieure à 1.00 et se prolonger 20 pouces (508 mm) au devant de l'appareil lorsque l'âtre possède moins de 2 pouces (51 mm) d'élévation et se prolonger 16 pouces (406 mm) (USA), 18 pouces (457 mm) (CANADA), sans facteur d'isolation R au devant de l'encastrable lorsque l'âtre possède plus de 2 pouces (51 mm) d'élévation.
- Raccorder à une cheminée de maçonnerle respectant les codes ou à une cheminée préfabriquée homologuée, directement à la première section de cheminée gainée.
- Ne pas surchauffer. Si l'appareil ou le tuyau rougit, il y a surchauffe
- Inspecter et nettoyer la cheminée fréquemment. Dans certaines conditions, la formation de créosote peut être rapide.
- Ne pas utiliser de chenets ou de grilles pour élever le feu. Préparer le feu
- directement sur l'âtre.
- Remplacer la vitre avec un verre de céramique
- Cet apparell de chauffage requiert des inspections et réparations périodiques Consulter le manuel de l'utilisateur pour plus d'information. Opérer cet appareil de chauffage de façon inconsistente par rapport au manuel de l'utilisateur consiste une violation de la loi fédérale (USA).

U.S. ENVIRONMENTAL PROTECTION AGENCY Certified to comply with 2020 particulate emission standards using cordwood AGENCE DE PROTECTION DE L'ENVIRONNEMENT DES É.-U. Conforme aux normes d'émission de particules de 2020 avec bûche de bois.

Weighted average emission rate / Moyenne pondérée des émissions: 1.5 g/h Tested and certified in compliance with CFR 40 part 60, subpart AAA, section 60.534(a)(1(ii))



WARNING: This product can expose you to carbon monoxide, which is known to the State of California to cause cancer, birth defects or other reproductive harm-(For more information go to www.p65warnings.ca.gov)



## CAUTION

- HOT WHILE IN OPERATION.
   CHAUD EN FONCTIONNEMENT.
- DO NOT TOUCH. KEEP CHILDREN, CLOTHING AND **FURNITURE AWAY.**
- **BURNS. SEE NAME-PLATE** AND INSTRUCTIONS.

# ATTENTION

- NE PAS TOUCHER. GARDER LES **ENFANTS, LES VÊTEMENTS ET LES** MEUBLES ÉLOIGNÉS.
- CONTACT MAY CAUSE SKIN UN CONTACT AVEC LA PEAU PEUT OCCASIONNER DES BRÛLURES. **VOIR LES INSTRUCTIONS.**

Fabriqué à St-Augustin-de-Desmaures (Qc), Canada

26/03/2021 (# test)

27879

Made in St-Augustin-de-Desmaures (Qc) Canada 26/03/2021 (#test)



# **TABLE OF CONTENTS**

| Gene  | eral Information6                                                                                                       | ò                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.1   | Performances                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.2   | Specifications                                                                                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.3   | Dimensions                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.4   | EPA Loading10                                                                                                           | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Clear | rances to Combustible Material11                                                                                        | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2.1   | Minimum Masonry Opening and Clearances to Combustibles                                                                  | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2.2   | Floor Protection                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2.3   | R Value13                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Insta | Iling Options on Your Product and Replacing Parts15                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3.1   | Replacement and Adjustment15                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3.2   | Mandatory Installation17                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3.3   | Blower and Ash Lip Installation18                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3.4   | Faceplate and Trims Installation19                                                                                      | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3.5   | Optional Fresh Air Intake Kit Installation23                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3.6   | Optional Fire Screen Installation24                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3.7   | Air Tubes and Baffle Installation25                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3.8   | Removal Instructions28                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3.9   | Exploded Diagram and Parts List                                                                                         | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | 1.1<br>1.2<br>1.3<br>1.4<br>Clear<br>2.1<br>2.2<br>2.3<br>Insta<br>3.1<br>3.2<br>3.3<br>3.4<br>3.5<br>3.6<br>3.7<br>3.8 | 1.2       Specifications       7         1.3       Dimensions       8         1.4       EPA Loading       10         Clearances to Combustible Material       11         2.1       Minimum Masonry Opening and Clearances to Combustibles       11         2.2       Floor Protection       12         2.3       R Value       13         Installing Options on Your Product and Replacing Parts       15         3.1       Replacement and Adjustment       15         3.2       Mandatory Installation       17         3.3       Blower and Ash Lip Installation       18         3.4       Faceplate and Trims Installation       18         3.5       Optional Fresh Air Intake Kit Installation       23         3.6       Optional Fire Screen Installation       24         3.7       Air Tubes and Baffle Installation       25         3.8       Removal Instructions       28 |

## 1. General Information

#### 1.1 Performances

Values are as measured per test method, except for the recommended heating area, firebox volume, maximum burn time and maximum heat output.

| Models                                                 | Green Mountain Insert 50 (SF00330)                       |                         |
|--------------------------------------------------------|----------------------------------------------------------|-------------------------|
| Fuel Type                                              | Dry Cordwood                                             |                         |
| Recommended heating area (sq. ft) <sup>1</sup>         | 250 to 1,500 ft <sup>2</sup> (23 to 139 m <sup>2</sup> ) |                         |
| Nominal firebox volume                                 | 1.2 ft <sup>3</sup> (0.034 m <sup>3</sup> )              |                         |
| Loading volume EPA                                     | 1.03 ft³ (0.0292 m³)                                     |                         |
| Maximum burn time <sup>1</sup>                         | 7 hours                                                  |                         |
| Overall heat output rate (min. to max.) <sup>2 3</sup> | 8,471 BTU/h to 31,700 B<br>(2.48 kW to 9.29 kW)          | TU/h                    |
| Average overall efficiency <sup>3</sup> - Dry cordwood | 75 % (HHV) <sup>4</sup>                                  | 80 % (LHV) <sup>5</sup> |
| Optimum efficiency <sup>6</sup>                        | 82 %                                                     |                         |
| Average particulate emissions rate <sup>7</sup>        | 1.5 g/h (EPA / CSA B415.1-10)8                           |                         |
| Average CO <sup>9</sup>                                | 35 g/h                                                   |                         |

<sup>&</sup>lt;sup>1</sup> Recommended heating area and maximum burn time may vary subject to location in home, chimney draft,heat loss factors, climate, fuel type and other variables. The recommended heated area for a given appliance is defined by the manufacturer as its capacity to maintain a minimum acceptable temperature in the designated area in case of a power failure.

<sup>&</sup>lt;sup>2</sup> The maximum heat output (dry cordwood) is based on a loading density varying between 15 lb/ft3 and 20 lb/ft3. Other performances are based on a fuel load prescribed by the standard. The specified loading density varies between 7 lb/ft³ and 12 lb/ft3. The moisture content is between 19% and 25%.

<sup>&</sup>lt;sup>3</sup> As measured per CSA B415.1-10 stack loss method.

<sup>&</sup>lt;sup>4</sup> Higher Heating Value of the fuel.

<sup>&</sup>lt;sup>5</sup> Lower Heating Value of the fuel.

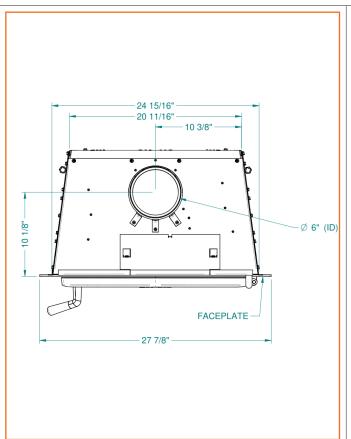
<sup>&</sup>lt;sup>6</sup> Optimum overall efficiency at a specific burn rate (LHV).

<sup>&</sup>lt;sup>7</sup> This appliance is officially tested and certified by an independent agency.

<sup>&</sup>lt;sup>8</sup> Tested and certified in compliance with CFR 40 part 60, subpart AAA, section 60.534(a)(1(ii) and ASTM E3053-17 based on the ALT-125 send by EPA on February 28<sup>th</sup>, 2018.

<sup>&</sup>lt;sup>9</sup> Carbon monoxide.

## 1.2 Specifications


| Maximum log length <sup>10</sup>                    | 17 in (432 mm) east-west             |
|-----------------------------------------------------|--------------------------------------|
| Flue outlet diameter                                | 6 in (150 mm)                        |
| Recommended connector pipe diameter                 | 6 in (150 mm)                        |
| Type of chimney                                     | ULC S635, CAN/ULC-S640, UL 1777      |
| Baffle material                                     | C-Cast or Vermiculite                |
| Approved for alcove installation                    | X                                    |
| Approved for mobile home installation <sup>11</sup> | X                                    |
| Type of door                                        | Simple, glazed, with cast iron frame |
| Type of glass                                       | Ceramic glass                        |
| Blower                                              | Included or Optional (up to XXX CFM) |
| Particulate emission standard <sup>12</sup>         | EPA / CSA B415.1-10                  |

<sup>&</sup>lt;sup>10</sup> North-south: ends of the logs visible, East-west: sides of the logs visible.

<sup>&</sup>lt;sup>11</sup> Mobile homes (Canada) or manufactured homes (USA): The US Department of Housing and Urban Development describes "manufactured homes" better known as "mobile homes" as follows; buildings built on fixed wheels and those transported on temporary wheels/axles and set on a permanent foundation. In Canada, a mobile home is a dwelling for which the manufacture and assembly of each component is completed or substantially completed prior to being moved to a site for installation on a foundation and connection to service facilities and which conforms to the CAN/CSAZ240 MH standard.

<sup>&</sup>lt;sup>12</sup> Tested and certified in compliance with CFR 40 part 60, subpart AAA, section 60.534(a)(1(ii) and ASTM E3053-17 based on the ALT-125 send by EPA on February 28th, 2018.

## 1.3 Dimensions



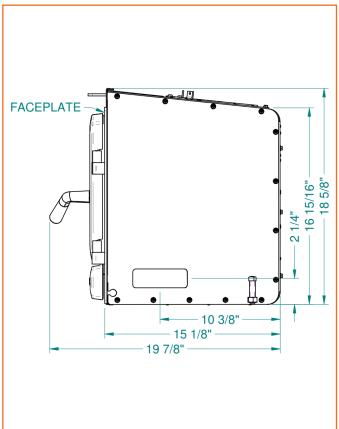



Figure 1: Top View

Figure 2: Side View

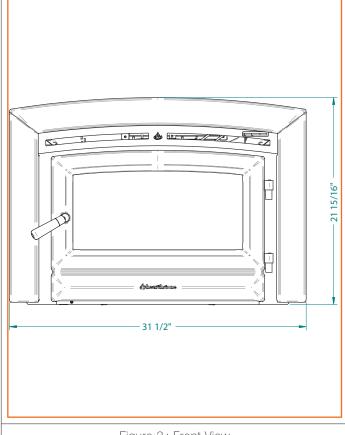



Figure 3: Front View

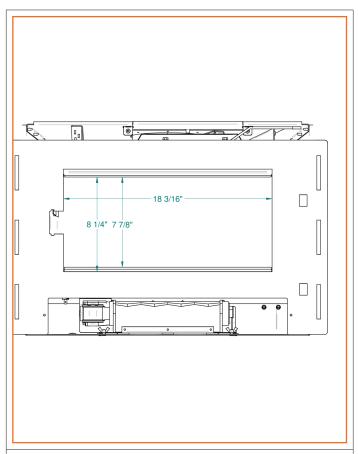
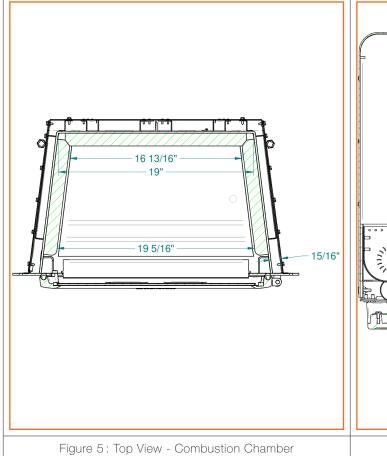




Figure 4: Door Opening



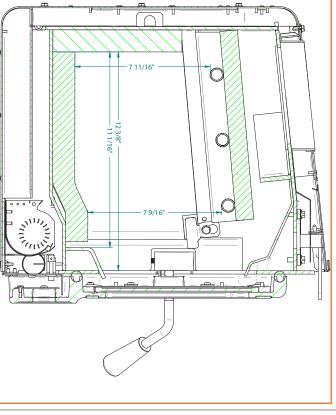
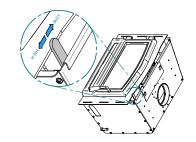



Figure 6: Side View - Combustion Chamber


## 1.4 EPA Loading

The charging methods shown below are those that were used during emissions certification.

#### 1.4.1 Air control

The air control is located above the door on the right. To open the air control, push the air control handle completely to the right (High). This will increase the burn rate. To close the air control, push the air control handle completely to the left (Low). This will decrease the burn rate.

Open the air control completely. Criss cross 6 kindling wood pieces



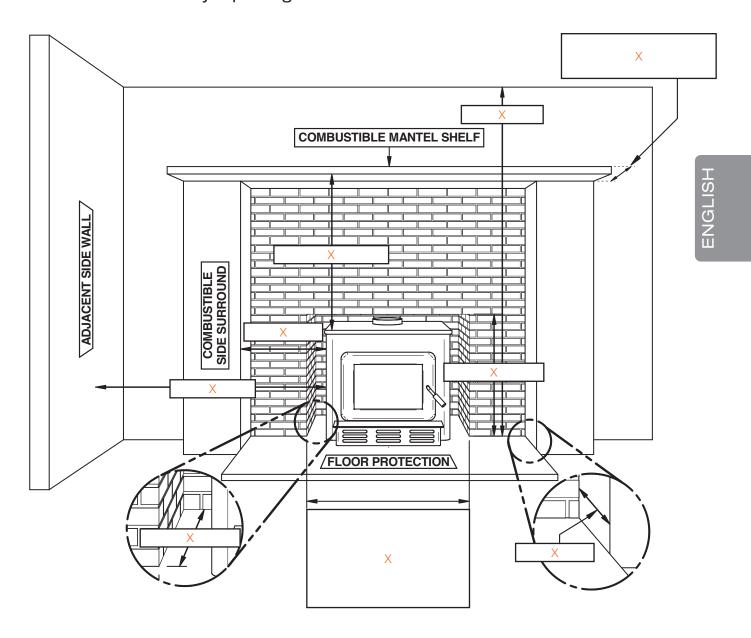
### 1.4.2 High burn rate (primary air control open)

in the back of the firebox. Then, place six small pieces (2"x2") of wood on the kindling crossing them at the greatest possible angle. Criss cross ten others kindling wood pieces on the small pieces of wood. Tie knot with five sheets of paper and place them on top of the kindling wood. Light up the paper and let the door completely open for two

When the kindling and the small pieces of wood are almost completely burnt out and it is possible to break them into pieces, level the coal bed and put four logs in the firebox in an east-west orientation. Place a medium log (about 4"x4") in front of the combustion chamber and the biggest log (about 5"x5") in the back of the combustion chamber. Place the last two medium pieces on top of the two others in an orientation that points to the right. Do not leave space between the pieces. Let the door open ajar at 90° for 5 minutes and close the door.

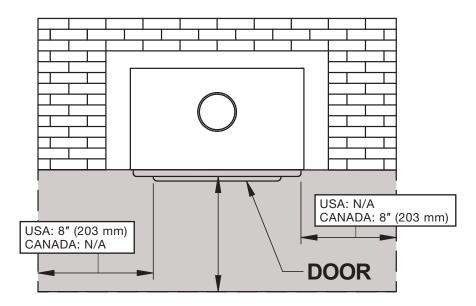
#### 1.4.3 Medium and low burn rate

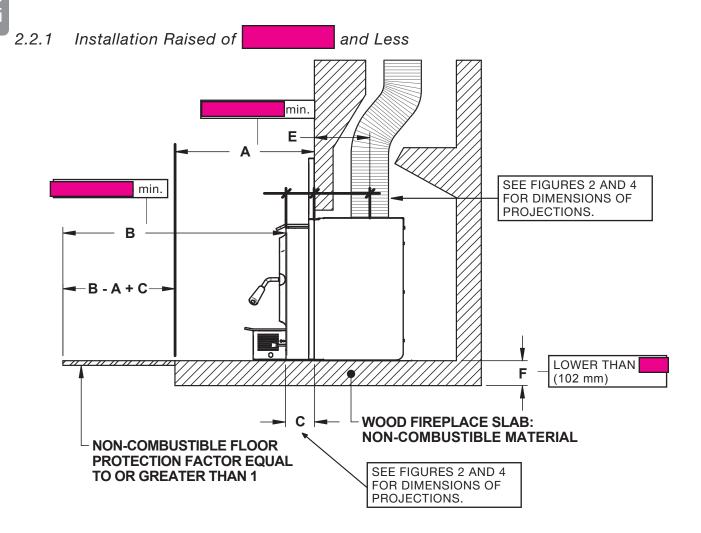
minutes. Close the door.


On a 2" coal bed that is still red, place five logs of approximatively 4"x4" or 3"x3" with an east-west orientation. Place two logs on the coal bed with approximatively 4" between them and the other three on top. There should be air space between each logs and between the logs and the bricks. Let the door ajar at 90° for 5 minutes and then close the door with the primary air control fully open. Leave to burn with the primary air control open for approximately 10 minutes and then close the primary air control completely for the low burn rate and halfway for the medium burn rate.

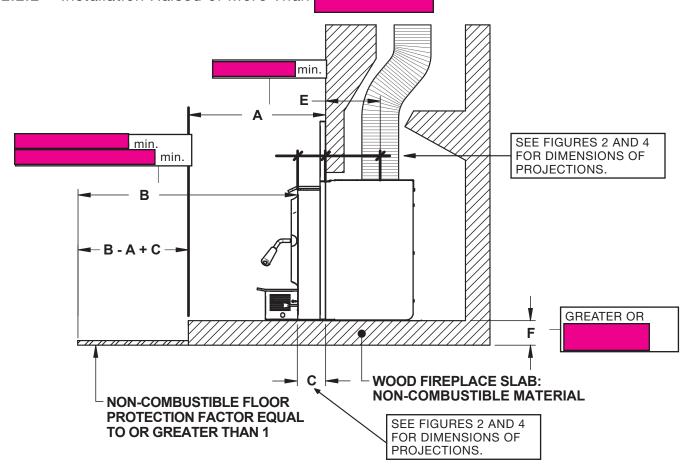
## 2. Clearances to Combustible Material

When the insert is installed so that its surfaces are at or beyond the minimum clearances specified, combustible surfaces will not overheat under normal and even abnormal operating conditions.


# NO PART OF THE INSERT MAY BE LOCATED CLOSER TO THE COMBUSTIBLE THAN THE MINIMUM CLEARANCE FIGURES GIVEN.


## 2.1 Minimum Masonry Opening and Clearances to Combustibles




#### 2.2 Floor Protection

It is necessary to have a floor protection made of non-combustible materials that meets the measurements specified below.





## 2.2.2 Installation Raised of More Than



#### 2.3 R Value

There are two ways to calculate the R-value of the floor protection. First, by adding the R-values of materials used, or by the conversion if the K factor and thickness of the floor protection are given.

To calculate the total R value from R values of the materials used, simply add the R-values of materials. If the result is equal to or greater than the R-value requirements, the combination is acceptable. R-values of some selected materials are shown below.

Table 1: Thermal Characteristics of Common Floor Protection Materials<sup>13</sup>

| MATERIAL         | CONDUCTIVITY (K) PER INCH | RESISTANCE (R) PER INCH THICKNESS |
|------------------|---------------------------|-----------------------------------|
| Micore® 160      | 0.39                      | 2.54                              |
| Micore® 300      | 0.49                      | 2.06                              |
| Durock®          | 1.92                      | 0.52                              |
| Hardibacker®     | 1.95                      | 0.51                              |
| Hardibacker® 500 | 2.3                       | 0.44                              |
| Wonderboard®     | 3.23                      | 0.31                              |
| Cement mortar    | 5.00                      | 0.2                               |

| MATERIAL                            | CONDUCTIVITY (K) PER INCH | RESISTANCE (R) PER INCH THICKNESS |
|-------------------------------------|---------------------------|-----------------------------------|
| Common brick                        | 5.00                      | 0.2                               |
| Face brick                          | 9.00                      | 0.11                              |
| Marble                              | 14.3 – 20.00              | 0.07 - 0.05                       |
| Ceramic tile                        | 12.5                      | 0.008                             |
| Concrete                            | 1.050                     | 0.950                             |
| Mineral wool insulation             | 0.320                     | 3.120                             |
| Limestone                           | 6.5                       | 0.153                             |
| Ceramic board (Fibremax)            | 0.450                     | 2.2                               |
| Horizontal still air (1/8" thick)14 | 0.135                     | 0,920**                           |

#### **Exemple:**

Required floor protection R of 1.00. Proposed materials: four inches of brick and one inch of Durock® board:

Four inches of brick ( $R = 4 \times 0.2 = 0.8$ ) plus 1 inch of Durock® ( $R = 1 \times 0.52 = 0.52$ ).

$$0.8 + 0.52 = 1.32$$
.

This R value is larger than the required 1.00 and is therefore acceptable.

In the case of a known K and thickness of alternative materials to be used in combination, convert all K values to R by dividing the thickness of each material by its K value. Add R values of the proposed materials as shown in the previous example.

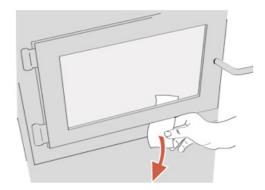
#### **Exemple:**

K value = 0.75

Thickness = 1

R value = Thickness/K = 1/0.75 = 1.33

<sup>&</sup>lt;sup>14</sup> Horizontal still air can't be «stack» to accumulate R-values; each layer must be separated with another non-combustible material.


## 3. Installing Options on Your Product and Replacing Parts

## 3.1 Replacement and Adjustment

#### 3.1.1 Door

Note: The images shown are for guidance only and may be different from your product, but the assembly remains the same.

In order for the insert to burn at its best efficiency, the door must provide a perfect seal with the firebox. Therefore, the gasket should be inspected periodically to check for a good seal. The tightness of the door seal can be verified by closing and latching the door on a strip of paper. The test must be performed all around the door. If the paper slips out easily anywhere, either adjust the door or replace the gasket.



## 3.1.2 Adjustment

The gasket seal may be improved with a simple latch mechanism adjustment:

- 1. Remove the split pin by pulling and turning it using pliers.
- 2. Turn the handle one counterclockwise turn to increase pressure.
- 3. Reinstall the split pin with a small hammer.

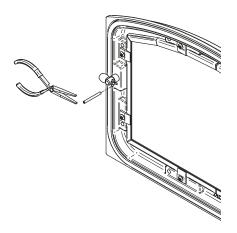
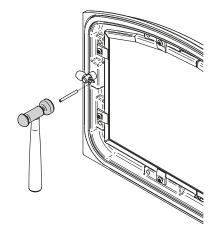
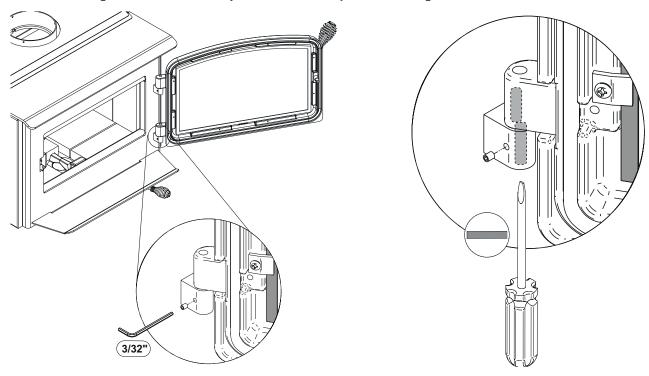
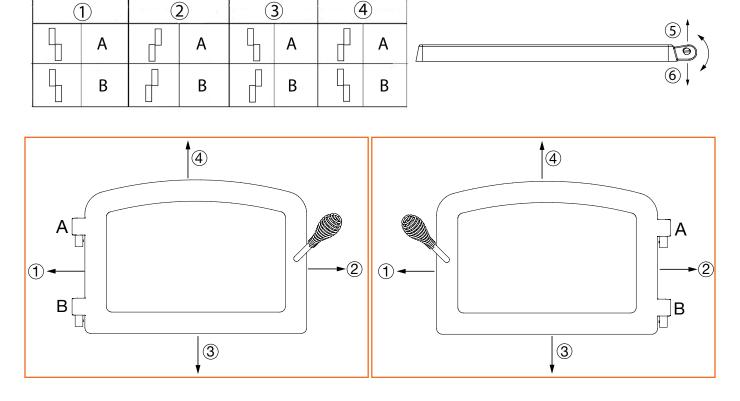



Figure 7: Removing the split pin

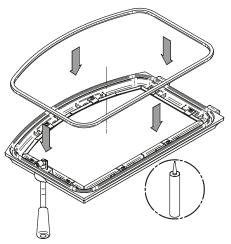





Figure 8: Installing the split pin

## 3.1.3 Door Alignment

To align, open the door and loosen the pressures screws located on the lower and upper hinges of the door using a 3/32" Allen key to free the adjustable hinge rods.




Using a flat screwdriver, turn the adjustable hinge rods in the direction shown to adjust the doors. Tighten all door hinge pressure screws when they are at the desired positions. Configurations 1-2-3-4-5-6, show in which direction these act on the adjustment of the door.



#### 3.1.4 Gasket

It is important to replace the gasket with another having the same diameter and density to maintain a good seal.

- 1. Remove the door and place it face-down on something soft like a cushion of rags or a piece of carpet.
- 2. Remove the old gasket from the door. Use a screwdriver to scrape the old gasket adhesive from the door gasket groove.
- 3. Apply a bead of approximately 3/16" (5 mm) of high temperature silicone in the door gasket groove. Starting from the middle, hinges side, press the gasket into the groove. The gasket must not be stretched during installation.
- 4. Leave about ½" (10 mm) long of the gasket when cutting and press the end into the groove. Tuck any loose fibers under the gasket and into the silicone.
- Close the door. Do not use the insert for 24 hours.



## 3.2 Mandatory Installation

• Empty the combustion chamber and install the air control handle (A) with the set screw (B) as shown below:

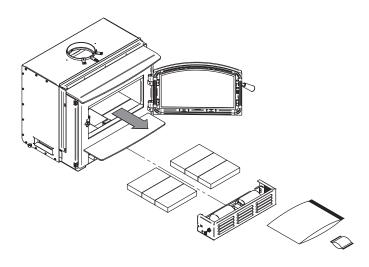



Figure 9: Empty the combustion chamber

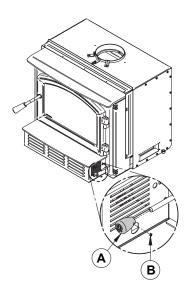



Figure 10: Installing the air control wood handle

• Install the combustion chamber side bricks as shown below.

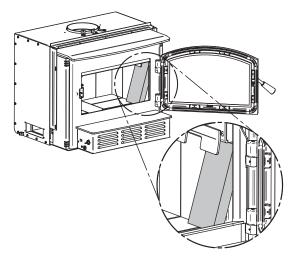
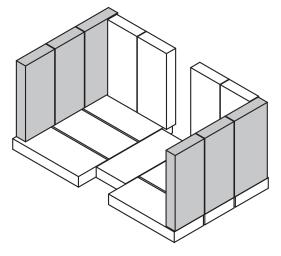
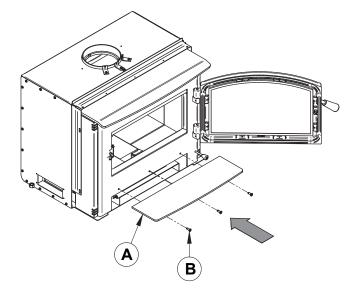
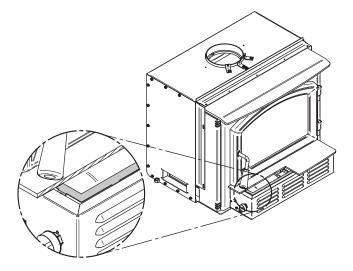



Figure 11: Install the Combustion Chamber Bricks

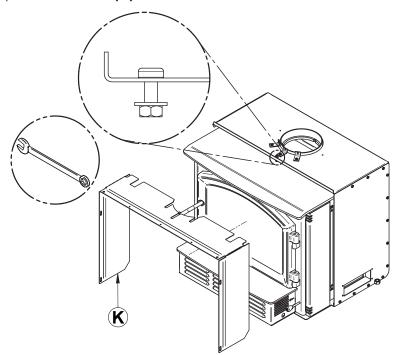





Figure 12: Combustion Chamber Bricks Layout

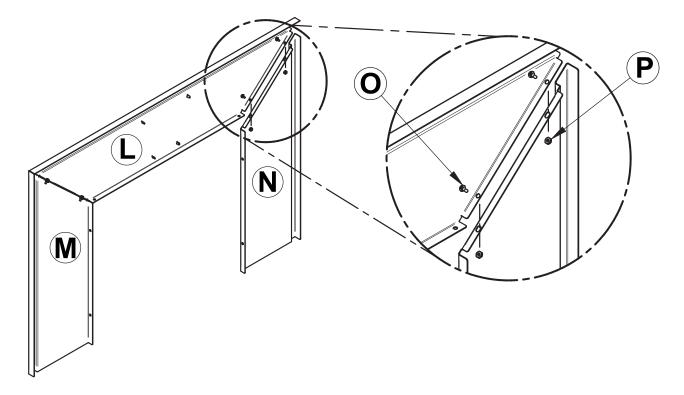
## 3.3 Blower and Ash Lip Installation

Note: The images shown are for guidance only and may be different from your product, but the assembly remains the same.

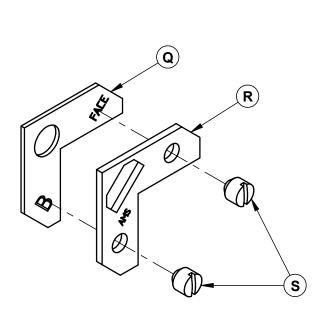
- 1. Install the ash lip (A) on the insert with three screws (B).
- 2. Center the blower on the ash lip and push it against the firebox. Then push it until it clips.

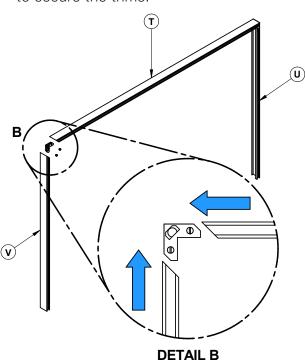




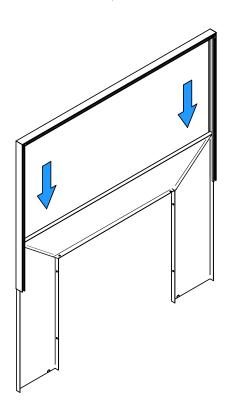


## 3.4 Faceplate and Trims Installation

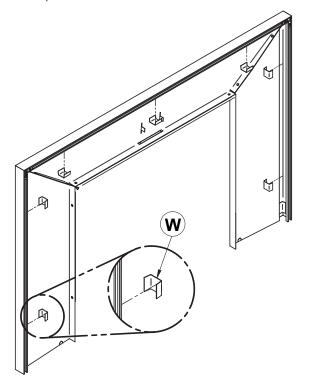
Note: The images shown are for guidance only and may be different from your product, but the assembly remains the same.


1. Remove the faceplate extension **(K)** secured between the firebox and the convection air jacket.

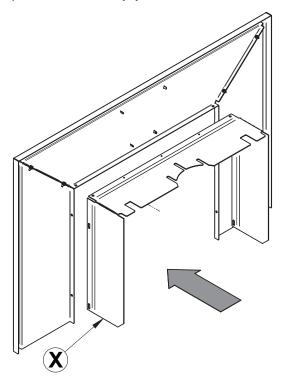



2. Lay the panels on a flat and non abrasive surface. Align the top panel holes **(L)** with the left **(N)** and right **(M)** panels. Secure together using the four bolts **(O)** and nuts **(P)** provided.

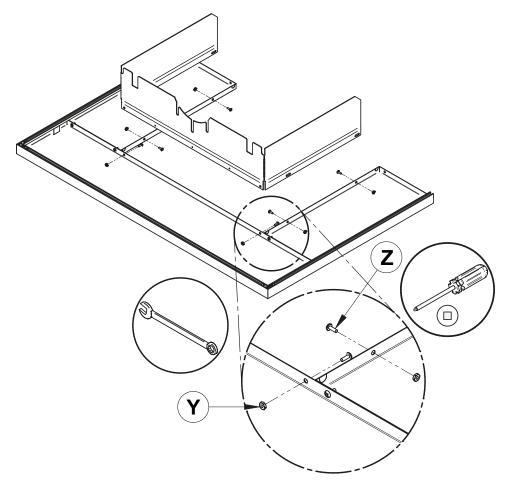




- 3. Partially thread the screws **(S)** on the trim's 4. corner bracket **(R)** then superimpose the corner brackets **(R)** and **(Q)** as shown.
  - Insert the superimposed brackets (Q) and (R) in the groove of each decorative trim (T), (U) and (V). Align the corners of the angled side of each trim, and then tighten the screws (S) to secure the trims.






- 5. Align the trim assembly with the left and 6. right edge of the faceplate and slowly slide it down over the faceplate.
- Secure the trim to the faceplate by squeezing the eight trim retainers **(W)** between the inner edge of the trim and the front of the faceplate.






7. Align the holes of the faceplate extension (X) with the holes in the faceplate panels.



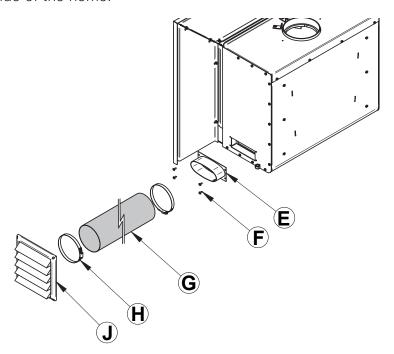
8. Screw them using bolts (Z) and nuts (Y) provided.



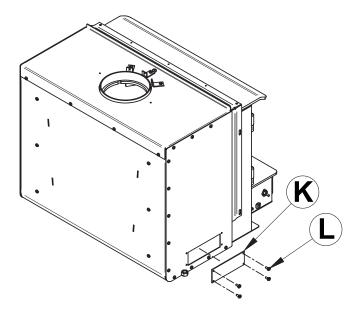
- 9. Center the insert into the fireplace opening.
- 10. Align the notch in the faceplate extension with the bolt **(CC)** welded to the air jacket located and slide the faceplate assembly just over the bolt's head and washer **(BB)**. Then push towards the fireplace.

If necessary, adjust the height of the insert using the levelling bolts (DD) on each side of the insert until the faceplate is properly seated on the floor of the hearth extension.

11. Once the faceplate is in place, secure the assembly by tightening nuts **(AA)** using a 7/16" (11 mm) open end wrench.




## 3.5 Optional Fresh Air Intake Kit Installation


Note: The images shown are for guidance only and may be different from your product, but the assembly remains the same.

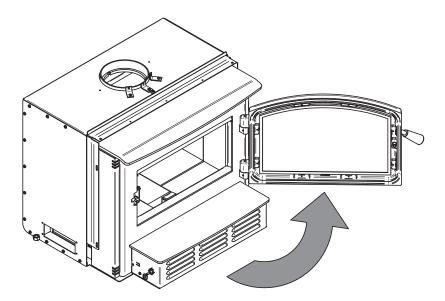
The fresh air intake kit may be installed on the right or left end side of the unit. The unused side must be covered by the plate provided in the user manual kit.

1. Install the fresh air intake adapter **(E)** with four screws **(F)** then secure the flexible pipe<sup>15</sup> **(H)** (not included) to the adapter using one of the pipe clamps **(G)**. Secure the other end of the pipe to the outside wall termination **(J)** using the other pipe clamp. The outside wall termination must be installed outside of the home.

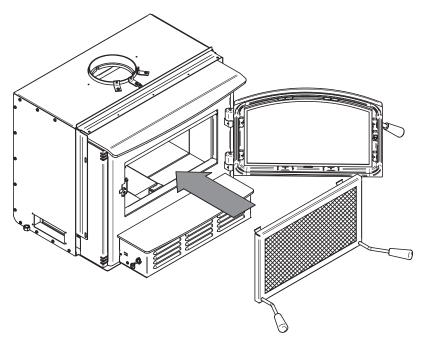


2. Install the plate **(K)** with four screws **(L)** on the unused side of the insert.



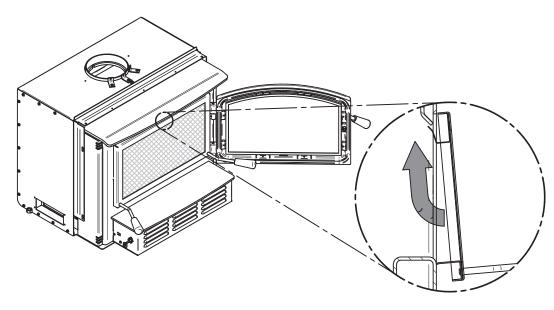

<sup>&</sup>lt;sup>15</sup> The pipe must be HVAC type, insulated, and must comply with ULC S110 and/or UL 181, Class 0 or Class 1.

## 3.6 Optional Fire Screen Installation


Note: The images shown are for guidance only and may be different from your product, but the assembly remains the same.

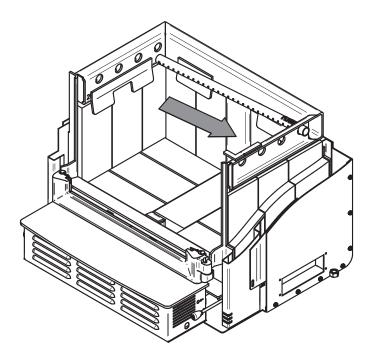
In the United States or in provinces with a particulate emissions limit (e.g.: US EPA), the use of open-door wood stoves with a rigid firescreen is prohibited.

1. Open the door.

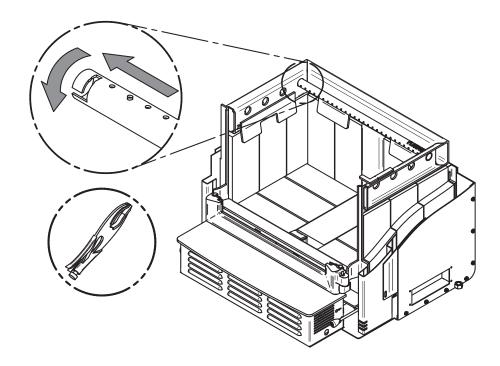



2. Hold the fire screen by the two handles and bring it close to the door opening.

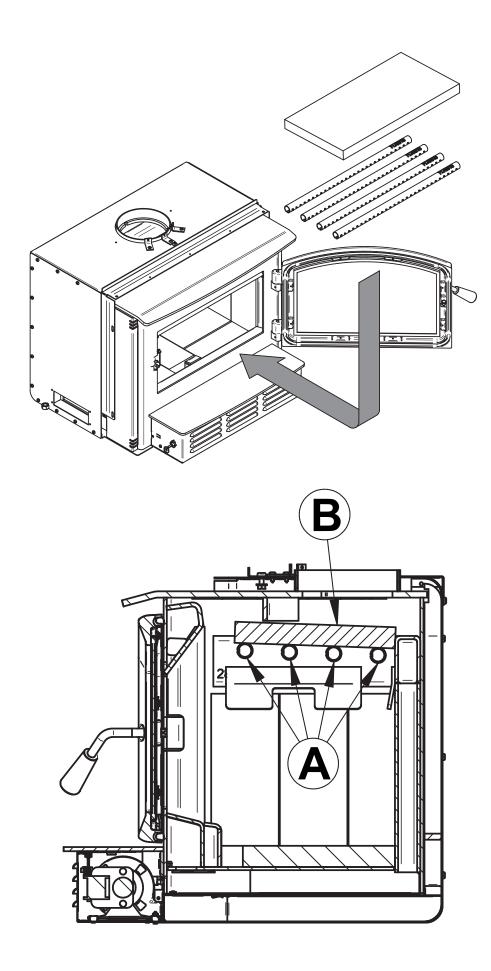



- 3. Lean the upper part of the fire screen against the top door opening making sure to insert the top fire screen brackets behind the primary air deflector.
- 4. Lift the fire screen upwards and push the bottom part towards the insert then let the fire screen rest on the bottom of the door opening.

Warning: Never leave the insert unattended while in use with the fire screen.



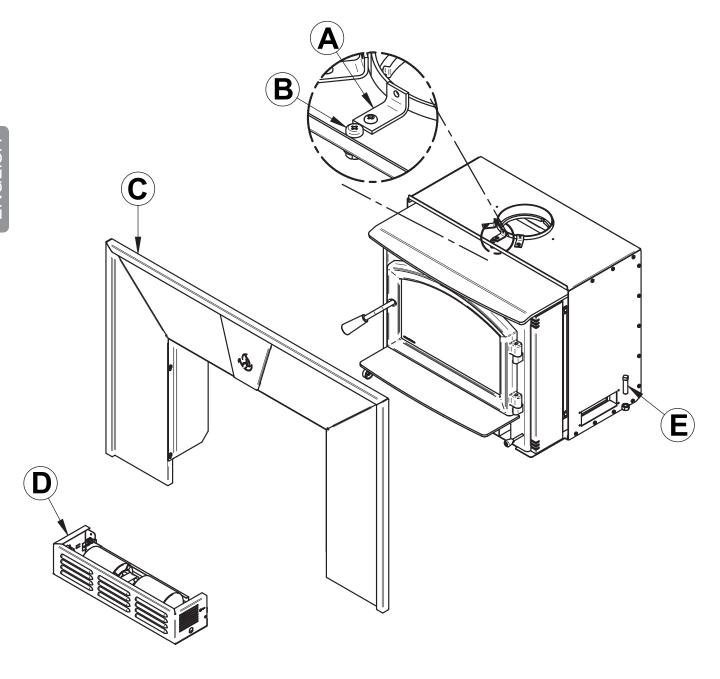

#### 3.7 Air Tubes and Baffle Installation


1. Starting with the rear tube, lean and insert the right end of the secondary air tube into the rear right channel hole. Then lift and insert the left end of the tube into the rear left channel.



- 2. Align the notch in the left end of the tube with the key of the left air channel hole. Using a « Wise grip » hold the tube and lock it in place by turning the tube as shown. Make sure the notch reaches the end of the key way.
- 3. Install the baffle.
- 4. Repeat steps 1 and 2 for the three other tubes.
- 5. To remove the tubes use the above steps in reverse order.




Note that secondary air tubes (A) can be replaced without removing the baffle board (B) and that all tubes are identical.




## 3.8 Removal Instructions

For inspecting purposes, the insert may need to be removed. To remove the insert, follow these instructions:

- Unscrew the faceplate fastener (B) holding the faceplate (C) on the insert.
- Remove faceplate (C) by pulling on it.
- Remove the blower assembly (D).
- Remove the three screws securing the pipe connector (A).
- Unscrew the bolts securing the insert to the floor on each side of the unit **(E)**.





IMPORTANT: THIS IS DATED INFORMATION. When requesting service or replacement parts for this unit, please provide the model number and the serial number. We reserve the right to change parts due to technology upgrades or availability. Contact an authorized dealer to obtain any of these parts. Never use substitute materials. Use of non-approved parts can result in poor performance and safety hazards.

| #  | Item    | Description                                                          | Qty |
|----|---------|----------------------------------------------------------------------|-----|
| 1  | AC01299 | FIRE SCREEN                                                          | 1   |
| 2  | 30569   | ROUND WOODEN HANDLE BLACK                                            | 2   |
| 3  | 30025   | 1/4-20 X 1/2" PAN-HEAD QUADREX BLACK SCREW                           | 1   |
| 4  | 30187   | STAINLESS WASHER ID 17/64" X OD 1/2"                                 | 2   |
| 5  | 30898   | ROUND WOODEN BLACK HANDLE DULL BLACK FINISH                          | 1   |
| 6  | SE24299 | SOLUTION 1.7 DOOR ASSEMBLY                                           | 1   |
| 7  | AC06500 | SILICONE AND 5/8" X 8' BLACK DOOR GASKET KIT                         | 1   |
| 8  | SE70698 | REPLACEMENT HANDLE WITH LATCH KIT                                    | 1   |
| 9  | AC09185 | DOOR LATCH KIT                                                       | 1   |
| 10 | SE23086 | ARCHED GLASS WITH GASKET                                             | 1   |
| 11 | AC06400 | 3/4" (FLAT) X 6' BLACK SELF-ADHESIVE GLASS GASKET                    | 1   |
| 12 | PL70655 | LEFT GLASS FRAME                                                     | 1   |
| 13 | PL70654 | RIGHT GLASS FRAME                                                    | 1   |
| 14 | SE53585 | GLASS RETAINER KIT WITH SCREWS (12 PER KIT)                          | 1   |
| 15 | 30507   | BLACK TORX SCREW WITH FLAT HEAD TYPE F 1/4-20 X 3/4"                 | 3   |
| 16 | SE70671 | ASH LIP ASSEMBLY                                                     | 1   |
| 17 | 30064   | 3/16" X 1" CLEVIS PIN                                                | 1   |
| 18 | 30059   | 5/32" ID PUSHNUT                                                     | 1   |
| 19 | PL70586 | DAMPER                                                               | 1   |
| 20 | PL65562 | AIR CONTRÔL DAMPER GUIDE                                             | 1   |
| 21 | 30160   | METAL SCREW #8 X 3/4" QUADREX SELF TAPPING TEK BLACK                 | 2   |
| 22 | 30102   | 1/4" CAST STEEL AIR CONTROL HANDLE INCLUDES MOUNTING SCREW           | 1   |
| 23 | SE65559 | AIR CONTROL ROD ASSEMBLY                                             | 1   |
| 24 | 30060   | THREAD-CUTTING SCREW 1/4-20 X 1/2" F HEX STEEL SLOT WASHER C102 ZINC | 1   |
| 25 | 30206   | ZINC WASHER 5/16"ID X 3/4"OD                                         | 1   |
| 26 | PL70672 | DECORATIVE PANEL                                                     | 2   |
| 27 | PL70587 | FACEPLATE EXTENSION                                                  | 1   |
| 28 | SE70668 | BLOWER ASSEMBLY                                                      | 1   |
| 29 | 44089   | DOUBLE CAGE BLOWER 144 CFM 115V - 60Hz - 1.1A                        | 1   |
| 30 | 44028   | CERAMIC THERMODISC F110-20F                                          | 1   |
| 31 | 60013   | POWER CORD 96" X 18-3 type SJT (50 pcs per carton)                   | 1   |
| 32 | 44080   | RHEOSTAT WITHOUT NUT (MODEL KBMS-13BV)                               | 1   |
| 33 | 44087   | RHEOSTAT NUT                                                         | 1   |

| #  | Item    | Description                                       | Qty |
|----|---------|---------------------------------------------------|-----|
| 34 | 44085   | RHEOSTAT KNOB                                     | 1   |
| 35 | 29011   | 4" X 9" X 1 1/4" REFRACTORY BRICK HD              | 13  |
| 36 | 29020   | 4 1/2" X 9" X 1 1/4" REFRACTORY BRICK HD          | 4   |
| 37 | PL70516 | SECONDARY AIR TUBE                                | 4   |
| 38 | 21521   | C-CAST BAFFLE 1.25" X 18.875" X 9.5"              | 1   |
| 39 | AC01287 | REGULAR FACEPLATE (29" X 44")                     | 1   |
| 40 | PL70681 | REGULAR FACEPLATE RIGHT PANEL                     | 1   |
| 41 | PL70680 | REGULAR FACEPLATE LEFT PANEL                      | 1   |
| 42 | PL70682 | FACEPLATE DECORATION                              | 1   |
| 43 | PL70679 | REGULAR FACEPLATE TOP PANEL                       | 1   |
| 44 | AC01285 | LARGE FACEPLATE (32" X 50")                       | 1   |
| 45 | PL70701 | LARGE FACEPLATE RIGHT PANEL                       | 1   |
| 46 | PL70700 | LARGE FACEPLATE LEFT PANEL                        | 1   |
| 47 | PL70703 | FACEPLATE DECORATION                              | 1   |
| 48 | PL70702 | LARGE FACEPLATE TOP PANEL                         | 1   |
| 49 | OA10123 | BRUSHED NICKEL FACEPLATE TRIMS (29" X 44")        | 1   |
| 49 | OA10122 | BLACK FACEPLATE TRIMS (29" X 44")                 | 1   |
| 50 | OA10129 | BRUSHED NICKEL LARGE FACEPLATE TRIMS (32" X 50")  | 1   |
| 50 | OA10128 | BLACK LARGE FACEPLATE TRIMS (32" X 50")           | 1   |
| 51 | PL34052 | LINER FIXATION BRACKET                            | 3   |
| 52 | 30337   | SQUARE HEAD SET SCREW 1/2-13 X 1-3/4"             | 2   |
| 53 | AC01298 | 5"Ø FRESH AIR INTAKE KIT OVAL                     | 1   |
| 54 | AC05959 | METALLIC BLACK STOVE PAINT - 342 g (12oz) AEROSOL | 1   |
| 55 | SE45983 | SOLUTION 1.7 INSERT INSTRUCTIONS MANUAL KIT       | 1   |
| 56 | 30101   | SPRING TENSION PIN 5/32"Ø X 1 1/2"L               | 1   |

### HEARTHSTONE LIMITED LIFETIME WARRANTY

The warranty of the manufacturer extends only to the original retail purchaser and is not transferable. This warranty covers brand new products only, which have not been altered, modified nor repaired since shipment from the factory. Proof of purchase (dated bill of sale), model name and serial number must be supplied when making any warranty claim to the dealer.

This warranty applies to normal residential use only. This warranty is void if the unit is used to burn material other than cordwood (for which the unit is not certified by EPA) and void if not operated according to the owner's manual. Damages caused by misuse, abuse, improper installation, lack of maintenance, over firing, negligence or accident during transportation, power failures, downdrafts, venting problems or underestimated heating area are not covered by this warranty. The recommended heated area for a given appliance is defined by the manufacturer as its capacity to maintain a minimum acceptable temperature in the designated area in case of a power failure.

This warranty does not cover any scratch, corrosion, distortion, or discoloration. Any defect or damage caused by the use of unauthorized or other than the original parts voids this warranty. An authorized qualified technician must perform the installation in accordance with the instructions supplied with this product and all local and national building codes. Any service call related to an improper installation is not covered by this warranty.

The manufacturer may require that defective products be returned or that digital pictures be provided to support the claim. Returned products are to be shipped prepaid to the manufacturer for investigation. Transportation fees to ship the product back to the purchaser will be paid by the manufacturer. Repair work covered by the warranty, executed at the purchaser's domicile by an authorized qualified technician requires the prior approval of the manufacturer. All parts and labour costs covered by this warranty are limited according to the table below.

The manufacturer, at its discretion, may decide to repair or replace any part or unit after inspection and investigation of the defect. The manufacturer may, at its discretion, fully discharge all obligations with respect to this warranty by refunding the wholesale price of any warranted but defective parts. The manufacturer shall, in no event, be responsible for any uncommon, indirect, consequential damages of any nature, which are in excess of the original purchase price of the product. A one-time replacement limit applies to all parts benefiting from lifetime coverage. This warranty applies to products purchased after March 1st 2019.

| DESCRIPTION                                                                                                                                                                                                                  |          | WARRANTY<br>APPLICATION* |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------|--|
|                                                                                                                                                                                                                              | PARTS    | LABOUR                   |  |
| Combustion chamber (welds only) and cast iron door frame.                                                                                                                                                                    | Lifetime | 5 years                  |  |
| Ceramic glass**, plating (manufacturing defect**) and convector air mate.                                                                                                                                                    | Lifetime | N/A                      |  |
| Surrounds, heat shields, ash drawer, steel legs, pedestal, trims (aluminum extrusions), C-Cast baffle**, vermiculite baffle**, secondary air tubes**, removable stainless steel combustion chamber, deflectors and supports. | 7 years  | N/A                      |  |
| Handle assembly, glass retainers and air control mechanism.                                                                                                                                                                  | 5 years  | 3 years                  |  |
| Removable carbon steel combustion chamber components.                                                                                                                                                                        | 5 years  | N/A                      |  |
| Standard and optional blower, heat sensors, switches, rheostat, wiring and electronics.                                                                                                                                      | 2 years  | 1 year                   |  |
| Paint (peeling**), gaskets, insulation, ceramic fiber blankets, firebricks and other options.                                                                                                                                |          | N/A                      |  |
| All parts replaced under the warranty.                                                                                                                                                                                       |          | N/A                      |  |

<sup>\*</sup>Subject to limitations above. \*\*Picture required.

Labour cost and repair work to the account of the manufacturer are based on a predetermined rate schedule and must not exceed the wholesale price of the replacement parts.

Shall your unit or a component be defective, contact immediately your dealer. To accelerate processing of your warranty claim, make sure to have on hand the following information when calling:

- Your name, address and telephone number;
- Bill of sale and dealer's name;
- Installation configuration;

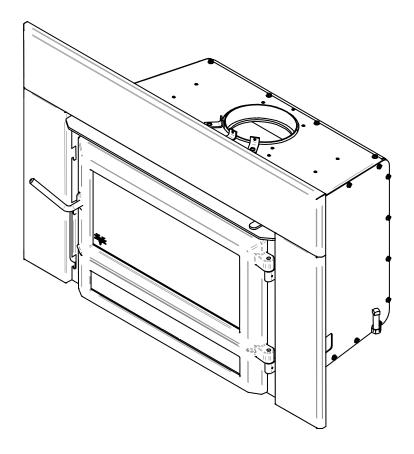
- Serial number and model name as indicated on the nameplate fixed to the back of your unit;
- Nature of the defect and any relevant information.

Before shipping your unit or defective component to our plant, you must obtain an Authorization Number from your dealer. Any merchandise shipped to our plant without authorization will be refused automatically and returned to the sender.

This document is available for free download on the manufacturer's website. It is a copyrighted document. Resale is strictly prohibited. The manufacturer may update this document from time to time and cannot be responsible for problems, injuries, or damages arising out of the use of information contained in any document obtained from unauthorized sources.

HearthStone Quality Home Heating Products, Inc.




hearthstone VValidity Doparting 317 Stafford Avenue Warranty Department Morrisville, VT 05661 https://www.hearthstonestoves.com/



# Product Specification Manual

# HEI90 INSERT

(VB00024 Model)



US Environmental Protection Agency phase II certified wood insert compliant with 2020 cord wood standard.



CONTACT LOCAL BUILDING OR FIRE OFFICIALS ABOUT RESTRICTIONS AND INSTALLATION INSPECTION REQUIREMENTS IN THE AREA.

READ THIS ENTIRE MANUAL BEFORE INSTALLATION AND USE OF THIS WOOD INSERT. FAILURE TO FOLLOW THESE INSTRUCTIONS COULD RESULT IN PROPERTY DAMAGE, BODILY INJURY OR EVEN DEATH.

## READ AND KEEP THIS MANUAL FOR REFERENCE

| ONLINE V                              | WARRANTY REGISTRATION                                                                                                                                                                                          |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| purchase invoice must be kept. The da | warranty period, proof of purchase must be provided. The ate indicated on it establishes the warranty period. If it car ill be determined by the date of manufacture of the product ter the warranty online at |
|                                       | .com/en/service-support/warranty/warranty-registration y will help to quickly find the information needed on the unit                                                                                          |
|                                       |                                                                                                                                                                                                                |
| Dealer:                               |                                                                                                                                                                                                                |
| Installer:                            |                                                                                                                                                                                                                |
| Phone Number:                         |                                                                                                                                                                                                                |
| Serial Number:                        |                                                                                                                                                                                                                |

## **CERTIFICATION PLATE**



REFER TO INTERTEK'S DIRECTORY OF BUILDING PRODUCTS FOR DETAILED INSTRUCTIONS
SE RÉFÉRER AU RÉPÉRITOIR DES PRODUITS HOMOLOGUÉS D'INTERTÉR POUR PLUS D'INFORMATION OF DINTERTER POUR PLUS D'INFORMATION ON AND INSTALLATION INSPECTION IN YOUR AREA.
COMMUNIQUES AVEC LES AUTORITÉS LOCALES DU BÂTIMENT ET DE LA PRÉVENTION DES INCENDIES AU SUIET DES RESTRICTIONS D'INSTALLATION DANS VOTRE SECTEUR.

STANDARDS / NORMES D'ESSAI: Certified to / Certifié selon ULC S628 Certified to / Certifié selon UL 1482

Control number: 4002461 (July/Juillet 2021)

Certified to / Certifié selon UL 737 Certified to/Certifié selon CSA B415.1-10 Certified to/Certifié selon ASTM E3053-17 Certified to/Certifié selon ASTM E2515-11 (R2017)

#### MODEL / MODÈLE : HEI90

Serial Number No, de Série

INSTALL AND USE ONLY IN ACCORDANCE WITH SBI STOVE BUILDER INTERNATIONAL INSTALLATION AND OPERATION INSTRUCTIONS. L'INSTALLATION ET L'OPERATION DOIT SE FAIRE SELON LES INSTRUCTIONS D'INSTALLATION ET D'UTILISATION DE SBI FABRICANT DE POÊLES INTERNATIONAL.

- PREVENT HOUSE FIRES . Install and use in accordance with the manufacturer's installation and
- operating instructions Contact local building or fire officials about restrictions and installation
- inspection in your area.
  Use with solid wood fuel only. Do not use other fuels.
- For safety, keep screen doors or glass doors fully closed, Do not overfire unit,
- Replace with only ceramic glass 4mm thick.
- Connect to a code-approved masonry chimney or listed factory-built fireplace chimney with a direct flue connector into the first chimney liner section.
- The non-combustible floor protection in front of the unit should extend 16 inches (406 mm) (USA), 18 inches (457 mm) (CANADA) without a R value even if the hearth elevation is equal with the combustible floor.

  Do not connect this unit to a chimney serving another appliance.
- Install only in masonry fireplaces. Do not remove bricks or mortar from
- · Inspect and clean chimney frequently. Under certain conditions of use,
- creosote buildup may occur rapidly.

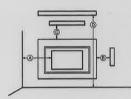
  Do not use grate or elevate fire. Build wood fire directly on hearth.
- This wood heater needs periodic inspection and repair for proper operation. Consult the owner's manual for further information, it is against US federal regulations to operate this wood heater in a manner inconsistent with the operating instructions in the owner's manual.

#### PRÉVENEZ LES INCENDIES

- Installer et utiliser conformément au manuel d'utilisation du fabricant, Contacter les autorités de votre localité ayant juridiction concernant les
- restrictions et inspection d'installation. Utiliser avec le bois seulement. Ne pas utiliser d'autres combustibles Utiliser l'appareil la porte fermée ou ouverte avec le pare-étincelle en place
- uniquement. Ouvrir la porte ou retirer le pare-étincelle seulement lors du chargement,
- Ne pas raccorder à un conduit de fumée servant déjà pour un autre appareil. Remplacer la vitre seulement avec un verre céramique de 4mm d'épaisseur
- Raccorder à une cheminée de maçonnerie respectant les codes ou à une cheminée préfabriquée homologuée, directement à la première section de cheminée gainée.
- La protection de plancher incombustible au devant de l'encastrable doit se prolonger de 16 pouces (406 mm) (USA), 18 pouces (457 mm) (CANADA), sans facteur d'isolation R au devant de l'encastrable même si l'âtre est égale au plancher combustible.
- Installer seulement dans un foyer de maçonnerie. Ne pas enlever les briques ou le mortier du foyer de maçonnerie.
- Inspecter et nettoyer la cheminée fréquemment. Dans certaines conditions, la formation de créosote peut être rapide.
- Ne pas utiliser de chenets ou de grilles pour élever le feu. Préparer le feu directement sur l'âtre. Cet appareil de chauffage requiert des instructions et réparations périodiques.
- Consulter le manuel de l'utilisateur pour plus d'information. Opérer cet appareil de chauffage de façon inconsistente par rapport au manuel de l'utilisateur consiste une violation de la loi fédérale (USA).

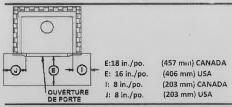


WARNING: This product can expose you to carbon monoxide, which is known to the State of California to cause cancer, birth defects or other reproductive harm. (For more information go to www.p65warnings.ca.gov)


#### LISTED SOLID FUEL BURNING INSERT APPLIANCE APPAREIL ENCASTRABLE À COMBUSTIBLE SOLIDE HOMOLOGUÉ

FOR USE WITH WOOD ONLY

POUR UTILISATION


MINIMUM CLEARANCES TO COMBUSTIBLE MATERIALS / DÉGAGEMENTS MINIMUM AUX MATÉRIAUX COMBUSTIBLES

Floor - Ceillng / Plancher - Plafond: 72 in./po. (183 cm)



Blower / Ventilateur: 115VOLTS, 0.8 AMPS, 60Hz

- A Sidewall / Mur latéral
- D Combustible shelf (from floor) /
- D Tablette combustible (du sol)
- B Combustible side surround / Parement
- latéral combustible
- Combustible top surround / Parement supérieur combustible
- A: 16 in./po. in (406 mm)
- D: 34 in./po.in (864 mm)
- B: 1 in./po.in (25 mm)
- C: 1 in./po. in. (25 mm)



U.S. ENVIRONMENTAL PROTECTION AGENCY Certified to comply with 2020 particulate emission standards using cordwood AGENCE DE PROTECTION DE L'ENVIRONNEMENT DES É.-U. Conforme aux normes d'émission de particules de 2020 avec bûche de bois.

Weighted average emission rate / Moyenne pondérée des émissions: 1.5 g/h

Tested and certified in compliance with CFR 40 part 60, subpart AAA, section 60.534(a)(1(ii))

#### CAUTION

- HOT WHILE IN OPERATION.
- DO NOT TOUCH. KEEP CHILDREN, CLOTHING AND FURNITURE AWAY.
- CONTACT MAY CAUSE SKIN BURNS. SEE NAME-PLATE AND INSTRUCTIONS.

## ATTENTION

- CHAUD EN FONCTIONNEMENT.
- NE PAS TOUCHER. GARDER LES ENFANTO, LES VÊTEMENTS ET LES MEUBLES ÉLOIGNÉS.
- UN CONTACT AVEC LA PEAU PEUT OCCASIONNER DES BRÛLURES. VOIR LES INSTRUCTIONS.

Made in St-Augustin-de-Desmaures (Qc), Canada Fabriqué à St-Augustin-de-Desmaures (Qc), Canada





24/05/2022 (#test) 27880

# **TABLE OF CONTENTS**

| Gene  | eral Information6                                                                                                       | ò                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.1   | Performances                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.2   | Specifications                                                                                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.3   | Dimensions                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.4   | EPA Loading10                                                                                                           | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Clear | rances to Combustible Material11                                                                                        | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2.1   | Minimum Masonry Opening and Clearances to Combustibles                                                                  | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2.2   | Floor Protection                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2.3   | R Value13                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Insta | Iling Options on Your Product and Replacing Parts15                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3.1   | Replacement and Adjustment15                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3.2   | Mandatory Installation17                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3.3   | Blower and Ash Lip Installation18                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3.4   | Faceplate and Trims Installation19                                                                                      | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3.5   | Optional Fresh Air Intake Kit Installation23                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3.6   | Optional Fire Screen Installation24                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3.7   | Air Tubes and Baffle Installation25                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3.8   | Removal Instructions28                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3.9   | Exploded Diagram and Parts List                                                                                         | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | 1.1<br>1.2<br>1.3<br>1.4<br>Clear<br>2.1<br>2.2<br>2.3<br>Insta<br>3.1<br>3.2<br>3.3<br>3.4<br>3.5<br>3.6<br>3.7<br>3.8 | 1.2       Specifications       7         1.3       Dimensions       8         1.4       EPA Loading       10         Clearances to Combustible Material       11         2.1       Minimum Masonry Opening and Clearances to Combustibles       11         2.2       Floor Protection       12         2.3       R Value       13         Installing Options on Your Product and Replacing Parts       15         3.1       Replacement and Adjustment       15         3.2       Mandatory Installation       17         3.3       Blower and Ash Lip Installation       18         3.4       Faceplate and Trims Installation       18         3.5       Optional Fresh Air Intake Kit Installation       23         3.6       Optional Fire Screen Installation       24         3.7       Air Tubes and Baffle Installation       25         3.8       Removal Instructions       28 |

## 1. General Information

#### 1.1 Performances

Values are as measured per test method, except for the recommended heating area, firebox volume, maximum burn time and maximum heat output.

| Models                                                                                     | HEI90 (VB00024)                                     |                         |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------|
| Fuel Type                                                                                  | Dry Cordwood                                        |                         |
| Recommended heating area (sq. ft) <sup>1</sup>                                             | 250 to 1,500 ft <sup>2</sup> (23 to 13              | 9 m²)                   |
| Nominal firebox volume                                                                     | 1.2 ft <sup>3</sup> (0.034 m <sup>3</sup> )         |                         |
| Loading volume EPA                                                                         | ading volume EPA 1.03 ft³ (0.0292 m³)               |                         |
| Maximum burn time <sup>1</sup>                                                             | 7 hours                                             |                         |
| Overall heat output rate (min. to max.) <sup>2 3</sup>                                     | 8,471 BTU/h to 31,700 BTU/h<br>(2.48 kW to 9.29 kW) |                         |
| Average overall efficiency <sup>3</sup> - Dry cordwood                                     | 75 % (HHV) <sup>4</sup>                             | 80 % (LHV) <sup>5</sup> |
| Optimum efficiency <sup>6</sup>                                                            | 82 %                                                |                         |
| Average particulate emissions rate <sup>7</sup> 1.5 g/h (EPA / CSA B415.1-10) <sup>8</sup> |                                                     | .1-10)8                 |
| Average CO <sup>9</sup> 35 g/h                                                             |                                                     |                         |

<sup>&</sup>lt;sup>1</sup> Recommended heating area and maximum burn time may vary subject to location in home, chimney draft,heat loss factors, climate, fuel type and other variables. The recommended heated area for a given appliance is defined by the manufacturer as its capacity to maintain a minimum acceptable temperature in the designated area in case of a power failure.

<sup>&</sup>lt;sup>2</sup> The maximum heat output (dry cordwood) is based on a loading density varying between 15 lb/ft3 and 20 lb/ft3. Other performances are based on a fuel load prescribed by the standard. The specified loading density varies between 7 lb/ft³ and 12 lb/ft3. The moisture content is between 19% and 25%.

<sup>&</sup>lt;sup>3</sup> As measured per CSA B415.1-10 stack loss method.

<sup>&</sup>lt;sup>4</sup> Higher Heating Value of the fuel.

<sup>&</sup>lt;sup>5</sup> Lower Heating Value of the fuel.

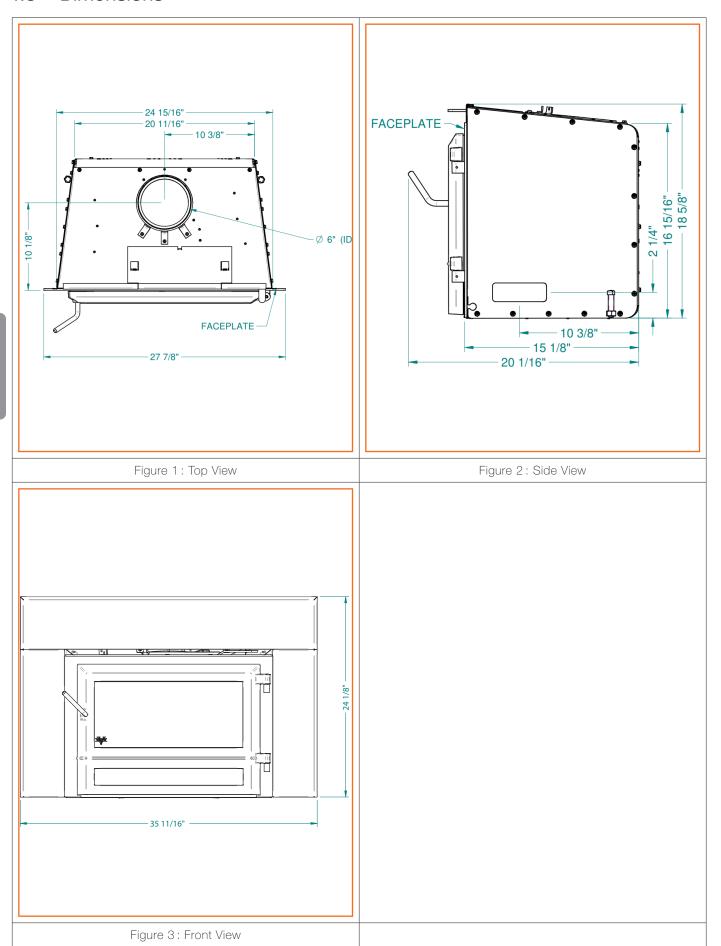
<sup>&</sup>lt;sup>6</sup> Optimum overall efficiency at a specific burn rate (LHV).

<sup>&</sup>lt;sup>7</sup> This appliance is officially tested and certified by an independent agency.

<sup>&</sup>lt;sup>8</sup> Tested and certified in compliance with CFR 40 part 60, subpart AAA, section 60.534(a)(1(ii) and ASTM E3053-17 based on the ALT-125 send by EPA on February 28<sup>th</sup>, 2018.

<sup>&</sup>lt;sup>9</sup> Carbon monoxide.

## 1.2 Specifications


| Maximum log length <sup>10</sup>                    | 17 in (432 mm) east-west             |
|-----------------------------------------------------|--------------------------------------|
| Flue outlet diameter                                | 6 in (150 mm)                        |
| Recommended connector pipe diameter                 | 6 in (150 mm)                        |
| Type of chimney                                     | ULC S635, CAN/ULC-S640, UL 1777      |
| Baffle material                                     | C-Cast or Vermiculite                |
| Approved for alcove installation                    | X                                    |
| Approved for mobile home installation <sup>11</sup> | X                                    |
| Type of door                                        | Simple, glazed, with cast iron frame |
| Type of glass                                       | Ceramic glass                        |
| Blower                                              | Included or Optional (up to XXX CFM) |
| Particulate emission standard <sup>12</sup>         | EPA / CSA B415.1-10                  |

<sup>&</sup>lt;sup>10</sup> North-south: ends of the logs visible, East-west: sides of the logs visible.

<sup>&</sup>lt;sup>11</sup> Mobile homes (Canada) or manufactured homes (USA): The US Department of Housing and Urban Development describes "manufactured homes" better known as "mobile homes" as follows; buildings built on fixed wheels and those transported on temporary wheels/axles and set on a permanent foundation. In Canada, a mobile home is a dwelling for which the manufacture and assembly of each component is completed or substantially completed prior to being moved to a site for installation on a foundation and connection to service facilities and which conforms to the CAN/CSAZ240 MH standard.

<sup>&</sup>lt;sup>12</sup> Tested and certified in compliance with CFR 40 part 60, subpart AAA, section 60.534(a)(1(ii) and ASTM E3053-17 based on the ALT-125 send by EPA on February 28th, 2018.

## 1.3 Dimensions



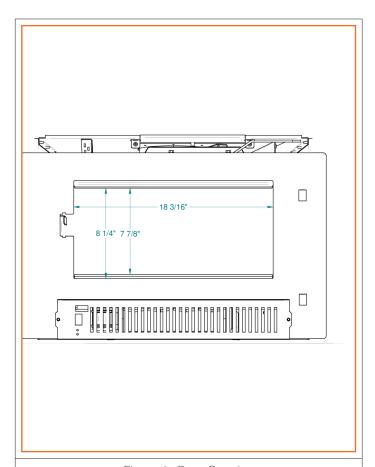
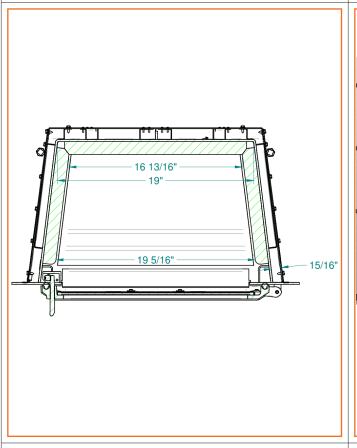




Figure 4: Door Opening



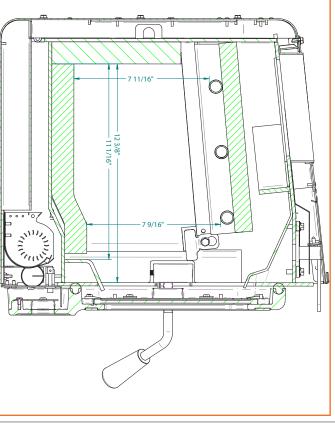
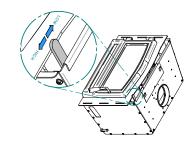



Figure 5: Top View - Combustion Chamber


Figure 6: Side View - Combustion Chamber

### 1.4 EPA Loading

The charging methods shown below are those that were used during emissions certification.

#### 1.4.1 Air control

The air control is located above the door on the right. To open the air control, push the air control handle completely to the right (High). This will increase the burn rate. To close the air control, push the air control handle completely to the left (Low). This will decrease the burn rate.



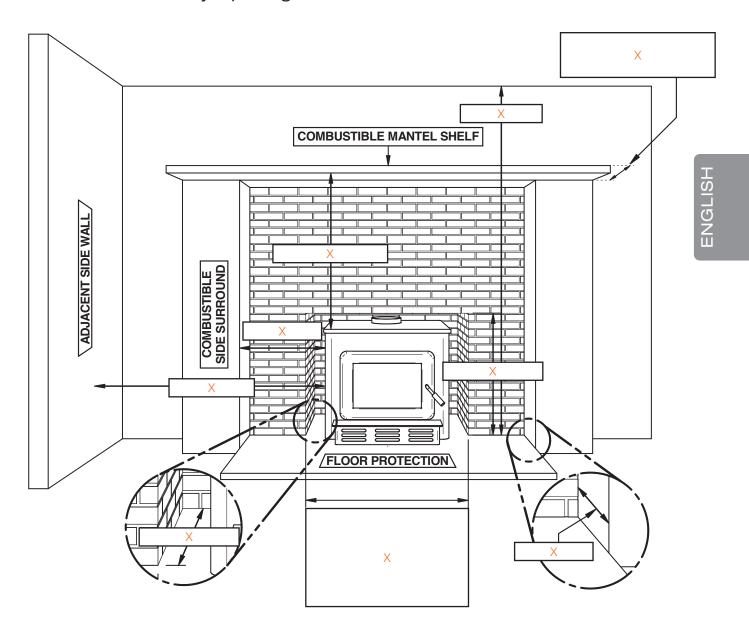
### 1.4.2 High burn rate (primary air control open)

Open the air control completely. Criss cross 6 kindling wood pieces in the back of the firebox. Then, place six small pieces (2"x2") of wood on the kindling crossing them at the greatest possible angle. Criss cross ten others kindling wood pieces on the small pieces of wood. Tie knot with five sheets of paper and place them on top of the kindling wood. Light up the paper and let the door completely open for two

When the kindling and the small pieces of wood are almost completely burnt out and it is possible to break them into pieces, level the coal bed and put four logs in the firebox in an east-west orientation. Place a medium log (about 4"x4") in front of the combustion chamber and the biggest log (about 5"x5") in the back of the combustion chamber. Place the last two medium pieces on top of the two others in an orientation that points to the right. Do not leave space between the pieces. Let the door open ajar at 90° for 5 minutes and close the door.

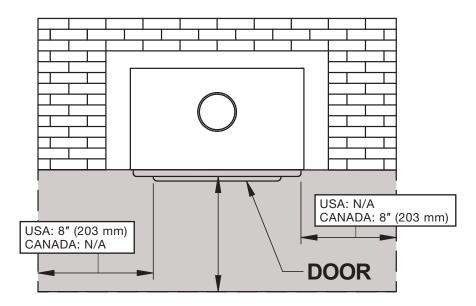
#### 1.4.3 Medium and low burn rate

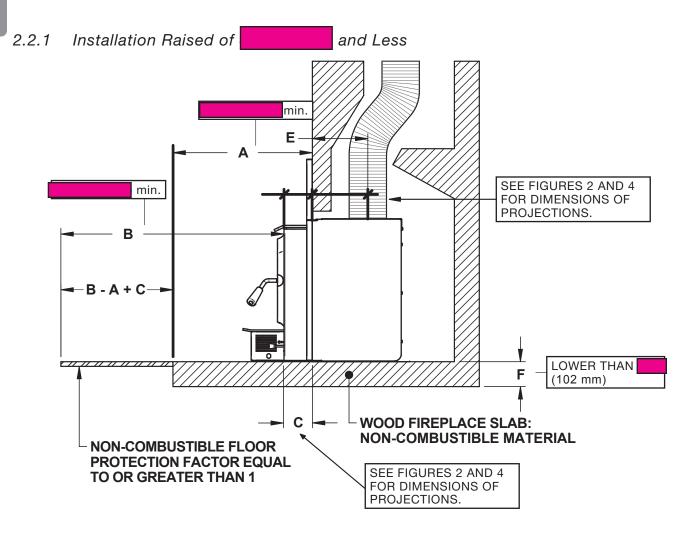
minutes. Close the door.


On a 2" coal bed that is still red, place five logs of approximatively 4"x4" or 3"x3" with an east-west orientation. Place two logs on the coal bed with approximatively 4" between them and the other three on top. There should be air space between each logs and between the logs and the bricks. Let the door ajar at 90° for 5 minutes and then close the door with the primary air control fully open. Leave to burn with the primary air control open for approximately 10 minutes and then close the primary air control completely for the low burn rate and halfway for the medium burn rate.

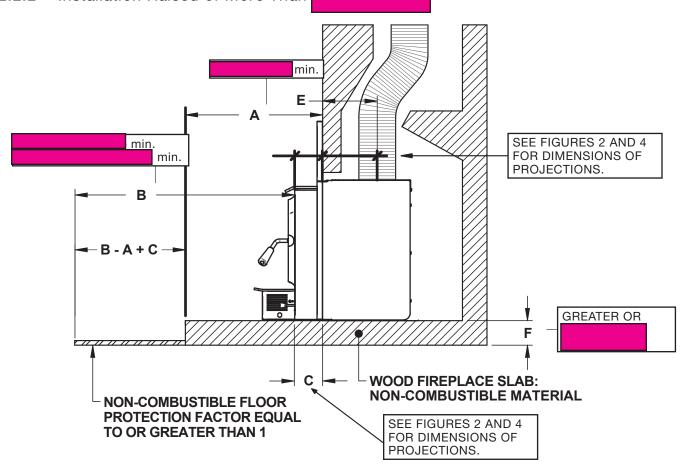
## 2. Clearances to Combustible Material

When the insert is installed so that its surfaces are at or beyond the minimum clearances specified, combustible surfaces will not overheat under normal and even abnormal operating conditions.


## NO PART OF THE INSERT MAY BE LOCATED CLOSER TO THE COMBUSTIBLE THAN THE MINIMUM CLEARANCE FIGURES GIVEN.


## 2.1 Minimum Masonry Opening and Clearances to Combustibles




#### 2.2 Floor Protection

It is necessary to have a floor protection made of non-combustible materials that meets the measurements specified below.





## 2.2.2 Installation Raised of More Than



#### 2.3 R Value

There are two ways to calculate the R-value of the floor protection. First, by adding the R-values of materials used, or by the conversion if the K factor and thickness of the floor protection are given.

To calculate the total R value from R values of the materials used, simply add the R-values of materials. If the result is equal to or greater than the R-value requirements, the combination is acceptable. R-values of some selected materials are shown below.

Table 1: Thermal Characteristics of Common Floor Protection Materials<sup>13</sup>

| MATERIAL         | CONDUCTIVITY (K) PER INCH | RESISTANCE (R) PER INCH THICKNESS |
|------------------|---------------------------|-----------------------------------|
| Micore® 160      | 0.39                      | 2.54                              |
| Micore® 300      | 0.49                      | 2.06                              |
| Durock®          | 1.92                      | 0.52                              |
| Hardibacker®     | 1.95                      | 0.51                              |
| Hardibacker® 500 | 2.3                       | 0.44                              |
| Wonderboard®     | 3.23                      | 0.31                              |
| Cement mortar    | 5.00                      | 0.2                               |

| MATERIAL                            | CONDUCTIVITY (K) PER INCH | RESISTANCE (R) PER INCH THICKNESS |
|-------------------------------------|---------------------------|-----------------------------------|
| Common brick                        | 5.00                      | 0.2                               |
| Face brick                          | 9.00                      | 0.11                              |
| Marble                              | 14.3 – 20.00              | 0.07 - 0.05                       |
| Ceramic tile                        | 12.5                      | 0.008                             |
| Concrete                            | 1.050                     | 0.950                             |
| Mineral wool insulation             | 0.320                     | 3.120                             |
| Limestone                           | 6.5                       | 0.153                             |
| Ceramic board (Fibremax)            | 0.450                     | 2.2                               |
| Horizontal still air (1/8" thick)14 | 0.135                     | 0,920**                           |

#### **Exemple:**

Required floor protection R of 1.00. Proposed materials: four inches of brick and one inch of Durock® board:

Four inches of brick ( $R = 4 \times 0.2 = 0.8$ ) plus 1 inch of Durock® ( $R = 1 \times 0.52 = 0.52$ ).

$$0.8 + 0.52 = 1.32$$
.

This R value is larger than the required 1.00 and is therefore acceptable.

In the case of a known K and thickness of alternative materials to be used in combination, convert all K values to R by dividing the thickness of each material by its K value. Add R values of the proposed materials as shown in the previous example.

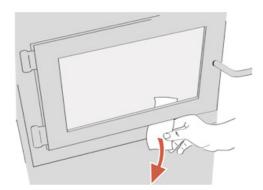
#### **Exemple:**

K value = 0.75

Thickness = 1

R value = Thickness/K = 1/0.75 = 1.33

<sup>&</sup>lt;sup>14</sup> Horizontal still air can't be «stack» to accumulate R-values; each layer must be separated with another non-combustible material.


## 3. Installing Options on Your Product and Replacing Parts

## 3.1 Replacement and Adjustment

#### 3.1.1 Door

Note: The images shown are for guidance only and may be different from your product, but the assembly remains the same.

In order for the insert to burn at its best efficiency, the door must provide a perfect seal with the firebox. Therefore, the gasket should be inspected periodically to check for a good seal. The tightness of the door seal can be verified by closing and latching the door on a strip of paper. The test must be performed all around the door. If the paper slips out easily anywhere, either adjust the door or replace the gasket.



## 3.1.2 Adjustment

The gasket seal may be improved with a simple latch mechanism adjustment:

- 1. Remove the split pin by pulling and turning it using pliers.
- 2. Turn the handle one counterclockwise turn to increase pressure.
- 3. Reinstall the split pin with a small hammer.

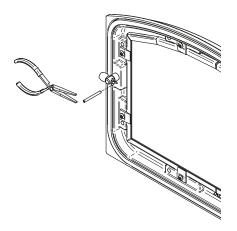
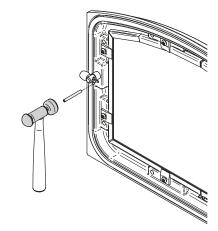
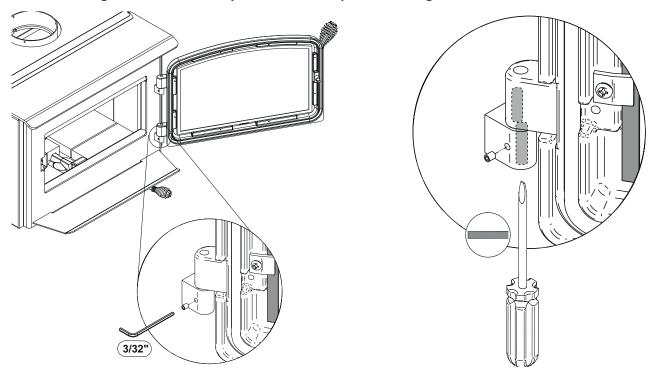
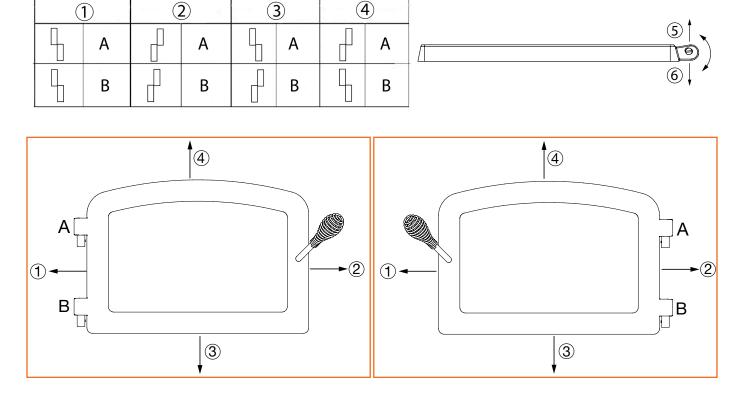



Figure 7: Removing the split pin

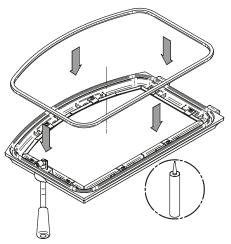





Figure 8: Installing the split pin

## 3.1.3 Door Alignment

To align, open the door and loosen the pressures screws located on the lower and upper hinges of the door using a 3/32" Allen key to free the adjustable hinge rods.




Using a flat screwdriver, turn the adjustable hinge rods in the direction shown to adjust the doors. Tighten all door hinge pressure screws when they are at the desired positions. Configurations 1-2-3-4-5-6, show in which direction these act on the adjustment of the door.



#### 3.1.4 Gasket

It is important to replace the gasket with another having the same diameter and density to maintain a good seal.

- 1. Remove the door and place it face-down on something soft like a cushion of rags or a piece of carpet.
- 2. Remove the old gasket from the door. Use a screwdriver to scrape the old gasket adhesive from the door gasket groove.
- 3. Apply a bead of approximately 3/16" (5 mm) of high temperature silicone in the door gasket groove. Starting from the middle, hinges side, press the gasket into the groove. The gasket must not be stretched during installation.
- 4. Leave about ½" (10 mm) long of the gasket when cutting and press the end into the groove. Tuck any loose fibers under the gasket and into the silicone.
- Close the door. Do not use the insert for 24 hours.



## 3.2 Mandatory Installation

• Empty the combustion chamber and install the air control handle (A) with the set screw (B) as shown below:

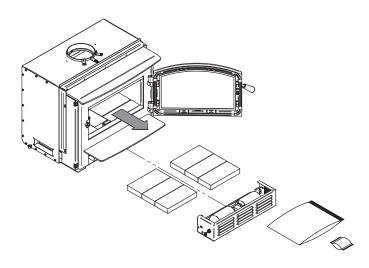



Figure 9: Empty the combustion chamber

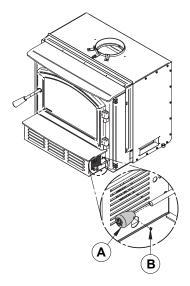



Figure 10: Installing the air control wood handle

• Install the combustion chamber side bricks as shown below.

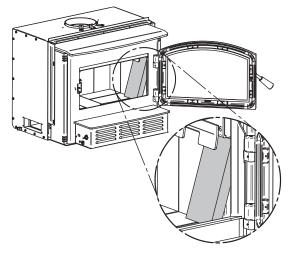
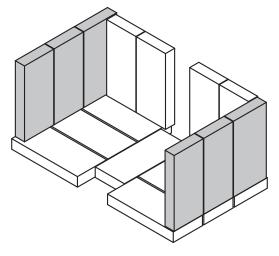
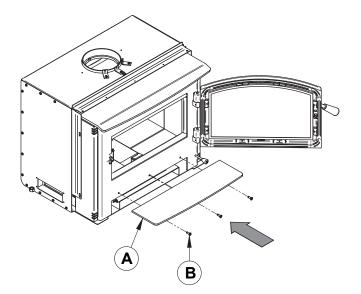
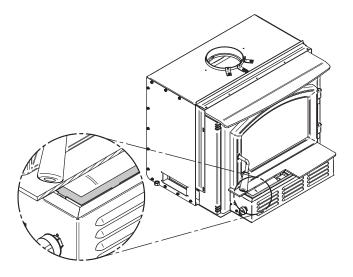



Figure 11: Install the Combustion Chamber Bricks

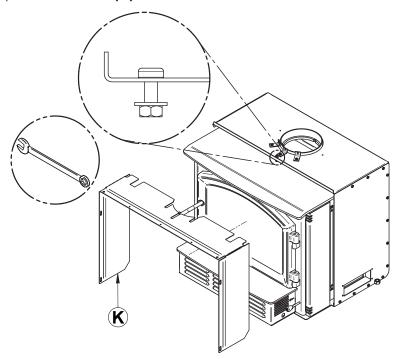





Figure 12: Combustion Chamber Bricks Layout

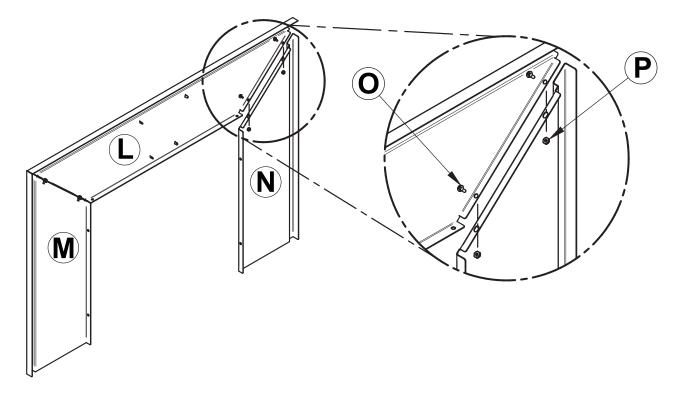
## 3.3 Blower and Ash Lip Installation

Note: The images shown are for guidance only and may be different from your product, but the assembly remains the same.

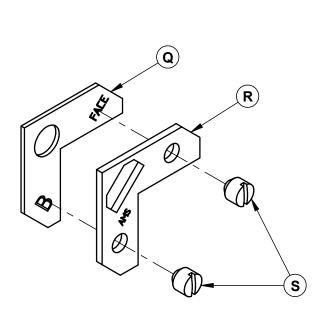
- 1. Install the ash lip (A) on the insert with three screws (B).
- 2. Center the blower on the ash lip and push it against the firebox. Then push it until it clips.

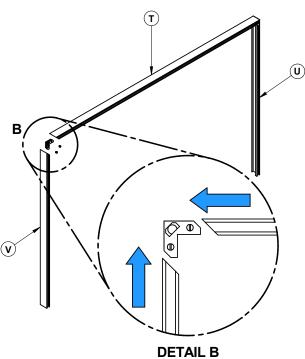




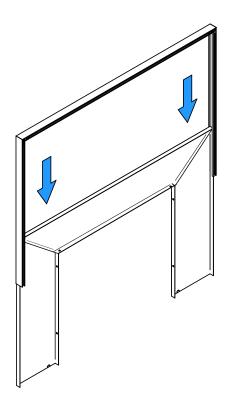


## 3.4 Faceplate and Trims Installation

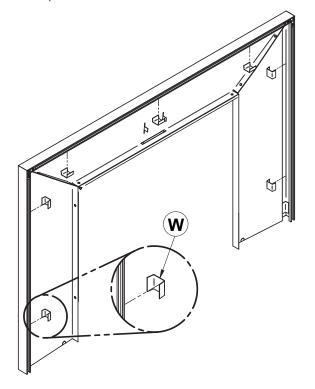
Note: The images shown are for guidance only and may be different from your product, but the assembly remains the same.


1. Remove the faceplate extension **(K)** secured between the firebox and the convection air jacket.

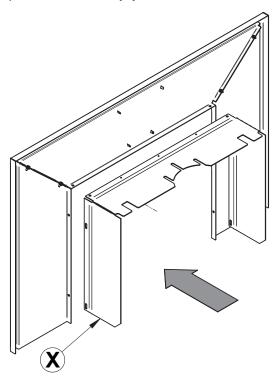



2. Lay the panels on a flat and non abrasive surface. Align the top panel holes **(L)** with the left **(N)** and right **(M)** panels. Secure together using the four bolts **(O)** and nuts **(P)** provided.

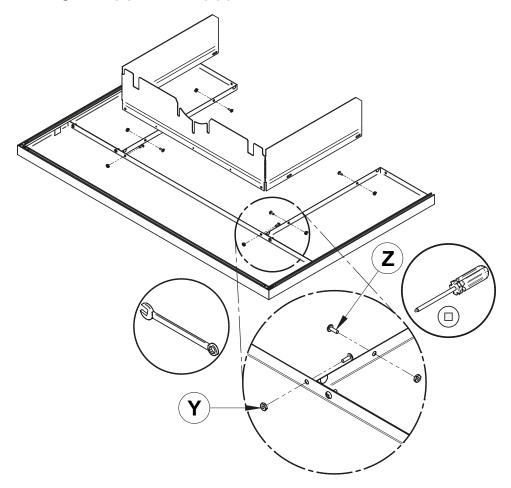




- 3. Partially thread the screws **(S)** on the trim's 4. corner bracket **(R)** then superimpose the corner brackets **(R)** and **(Q)** as shown.
- in the groove of each decorative trim (T), (U) and (V). Align the corners of the angled side of each trim, and then tighten the screws (S) to secure the trims.





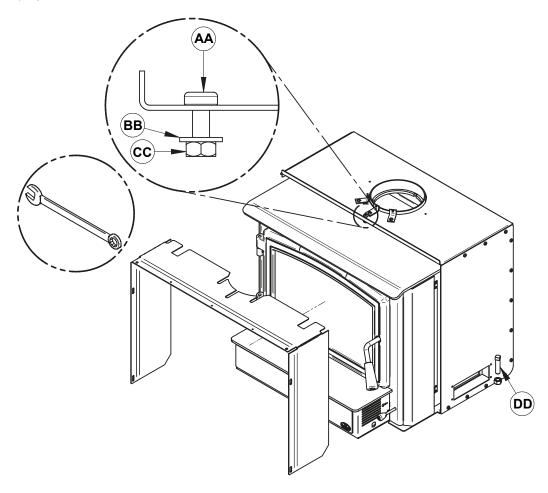

- 5. Align the trim assembly with the left and 6. right edge of the faceplate and slowly slide it down over the faceplate.
- Secure the trim to the faceplate by squeezing the eight trim retainers **(W)** between the inner edge of the trim and the front of the faceplate.






7. Align the holes of the faceplate extension (X) with the holes in the faceplate panels.



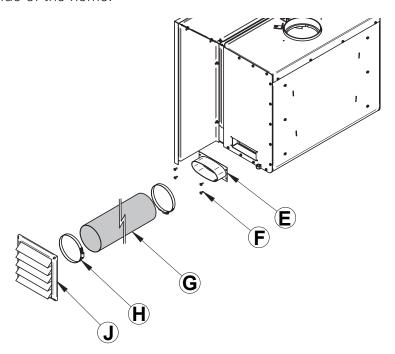

8. Screw them using bolts (Z) and nuts (Y) provided.



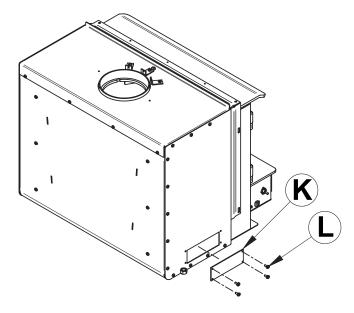
- 9. Center the insert into the fireplace opening.
- 10. Align the notch in the faceplate extension with the bolt **(CC)** welded to the air jacket located and slide the faceplate assembly just over the bolt's head and washer **(BB)**. Then push towards the fireplace.

If necessary, adjust the height of the insert using the levelling bolts (DD) on each side of the insert until the faceplate is properly seated on the floor of the hearth extension.

11. Once the faceplate is in place, secure the assembly by tightening nuts **(AA)** using a 7/16" (11 mm) open end wrench.




### 3.5 Optional Fresh Air Intake Kit Installation


Note: The images shown are for guidance only and may be different from your product, but the assembly remains the same.

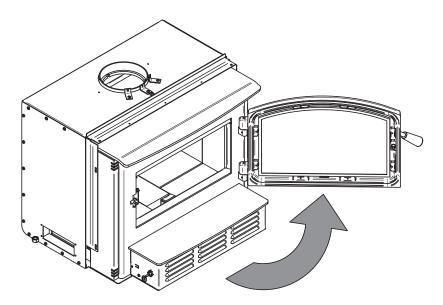
The fresh air intake kit may be installed on the right or left end side of the unit. The unused side must be covered by the plate provided in the user manual kit.

1. Install the fresh air intake adapter **(E)** with four screws **(F)** then secure the flexible pipe<sup>15</sup> **(H)** (not included) to the adapter using one of the pipe clamps **(G)**. Secure the other end of the pipe to the outside wall termination **(J)** using the other pipe clamp. The outside wall termination must be installed outside of the home.

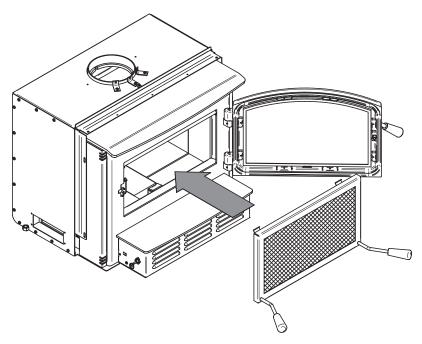


2. Install the plate **(K)** with four screws **(L)** on the unused side of the insert.



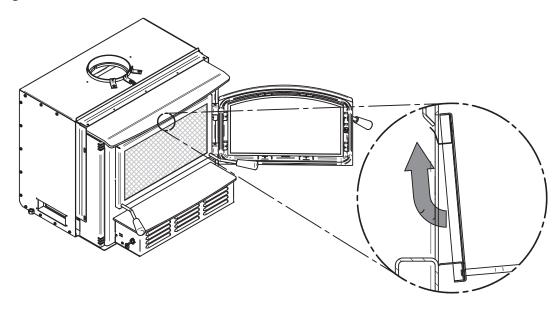

<sup>&</sup>lt;sup>15</sup> The pipe must be HVAC type, insulated, and must comply with ULC S110 and/or UL 181, Class 0 or Class 1.

## 3.6 Optional Fire Screen Installation


Note: The images shown are for guidance only and may be different from your product, but the assembly remains the same.

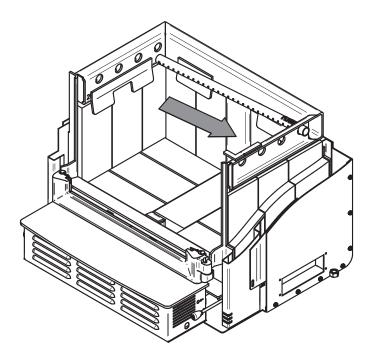
In the United States or in provinces with a particulate emissions limit (e.g.: US EPA), the use of open-door wood stoves with a rigid firescreen is prohibited.

1. Open the door.

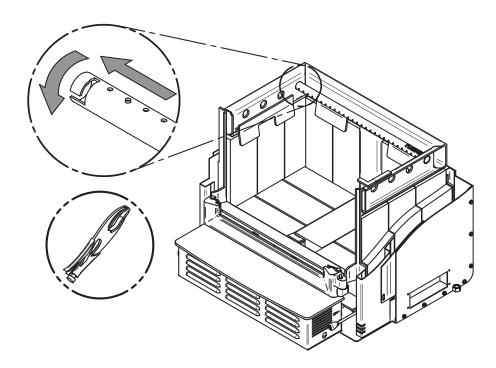



2. Hold the fire screen by the two handles and bring it close to the door opening.

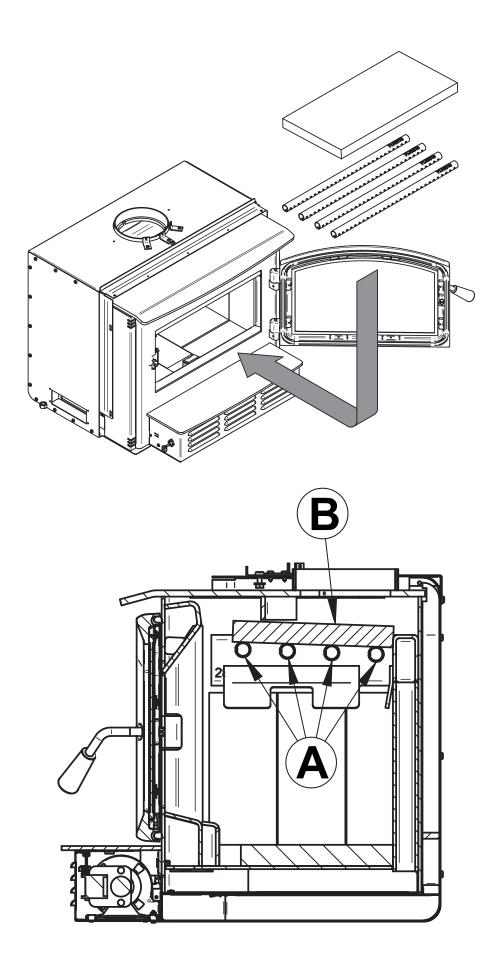



- 3. Lean the upper part of the fire screen against the top door opening making sure to insert the top fire screen brackets behind the primary air deflector.
- 4. Lift the fire screen upwards and push the bottom part towards the insert then let the fire screen rest on the bottom of the door opening.

Warning: Never leave the insert unattended while in use with the fire screen.



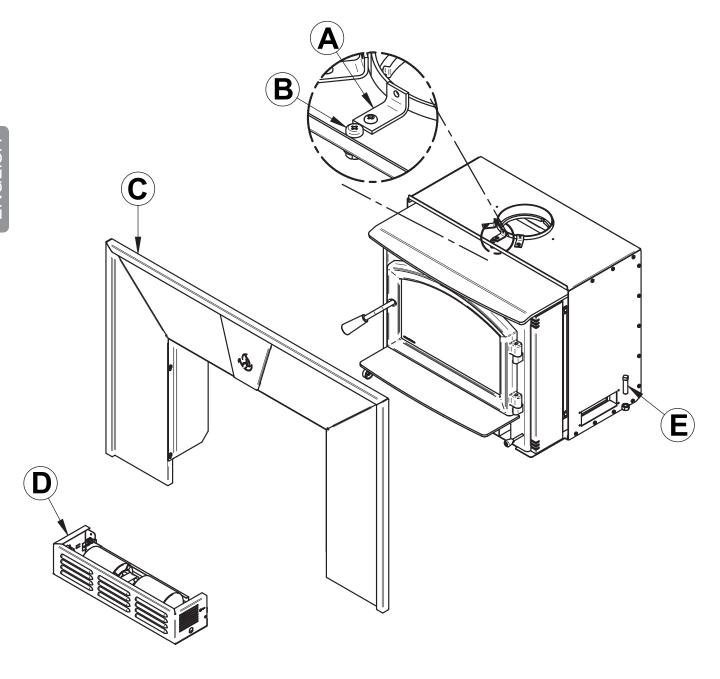

### 3.7 Air Tubes and Baffle Installation

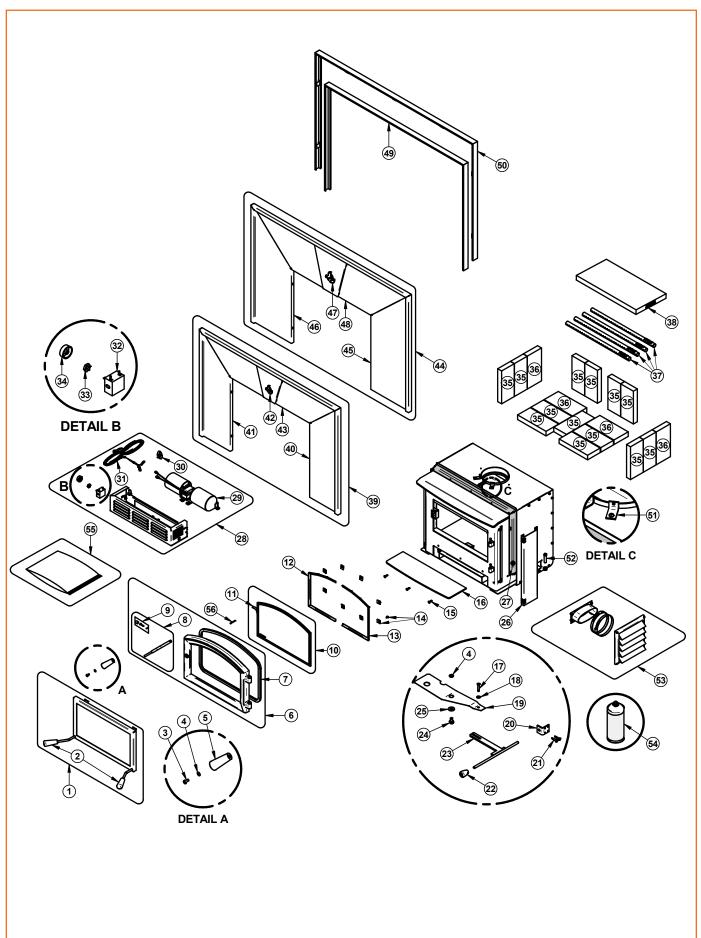

1. Starting with the rear tube, lean and insert the right end of the secondary air tube into the rear right channel hole. Then lift and insert the left end of the tube into the rear left channel.



- 2. Align the notch in the left end of the tube with the key of the left air channel hole. Using a « Wise grip » hold the tube and lock it in place by turning the tube as shown. Make sure the notch reaches the end of the key way.
- 3. Install the baffle.
- 4. Repeat steps 1 and 2 for the three other tubes.
- 5. To remove the tubes use the above steps in reverse order.




Note that secondary air tubes (A) can be replaced without removing the baffle board (B) and that all tubes are identical.




## 3.8 Removal Instructions

For inspecting purposes, the insert may need to be removed. To remove the insert, follow these instructions:

- Unscrew the faceplate fastener (B) holding the faceplate (C) on the insert.
- Remove faceplate (C) by pulling on it.
- Remove the blower assembly (D).
- Remove the three screws securing the pipe connector (A).
- Unscrew the bolts securing the insert to the floor on each side of the unit **(E)**.





IMPORTANT: THIS IS DATED INFORMATION. When requesting service or replacement parts for this unit, please provide the model number and the serial number. We reserve the right to change parts due to technology upgrades or availability. Contact an authorized dealer to obtain any of these parts. Never use substitute materials. Use of non-approved parts can result in poor performance and safety hazards.

| #  | Item    | Description                                                          | Qty |
|----|---------|----------------------------------------------------------------------|-----|
| 1  | AC01299 | FIRE SCREEN                                                          | 1   |
| 2  | 30569   | ROUND WOODEN HANDLE BLACK                                            | 2   |
| 3  | 30025   | 1/4-20 X 1/2" PAN-HEAD QUADREX BLACK SCREW                           | 1   |
| 4  | 30187   | STAINLESS WASHER ID 17/64" X OD 1/2"                                 | 2   |
| 5  | 30898   | ROUND WOODEN BLACK HANDLE DULL BLACK FINISH                          | 1   |
| 6  | SE24299 | SOLUTION 1.7 DOOR ASSEMBLY                                           | 1   |
| 7  | AC06500 | SILICONE AND 5/8" X 8' BLACK DOOR GASKET KIT                         | 1   |
| 8  | SE70698 | REPLACEMENT HANDLE WITH LATCH KIT                                    | 1   |
| 9  | AC09185 | DOOR LATCH KIT                                                       | 1   |
| 10 | SE23086 | ARCHED GLASS WITH GASKET                                             | 1   |
| 11 | AC06400 | 3/4" (FLAT) X 6' BLACK SELF-ADHESIVE GLASS GASKET                    | 1   |
| 12 | PL70655 | LEFT GLASS FRAME                                                     | 1   |
| 13 | PL70654 | RIGHT GLASS FRAME                                                    | 1   |
| 14 | SE53585 | GLASS RETAINER KIT WITH SCREWS (12 PER KIT)                          | 1   |
| 15 | 30507   | BLACK TORX SCREW WITH FLAT HEAD TYPE F 1/4-20 X 3/4"                 | 3   |
| 16 | SE70671 | ASH LIP ASSEMBLY                                                     | 1   |
| 17 | 30064   | 3/16" X 1" CLEVIS PIN                                                | 1   |
| 18 | 30059   | 5/32" ID PUSHNUT                                                     | 1   |
| 19 | PL70586 | DAMPER                                                               | 1   |
| 20 | PL65562 | AIR CONTRÔL DAMPER GUIDE                                             | 1   |
| 21 | 30160   | METAL SCREW #8 X 3/4" QUADREX SELF TAPPING TEK BLACK                 | 2   |
| 22 | 30102   | 1/4" CAST STEEL AIR CONTROL HANDLE INCLUDES MOUNTING SCREW           | 1   |
| 23 | SE65559 | AIR CONTROL ROD ASSEMBLY                                             | 1   |
| 24 | 30060   | THREAD-CUTTING SCREW 1/4-20 X 1/2" F HEX STEEL SLOT WASHER C102 ZINC | 1   |
| 25 | 30206   | ZINC WASHER 5/16"ID X 3/4"OD                                         | 1   |
| 26 | PL70672 | DECORATIVE PANEL                                                     | 2   |
| 27 | PL70587 | FACEPLATE EXTENSION                                                  | 1   |
| 28 | SE70668 | BLOWER ASSEMBLY                                                      |     |
| 29 | 44089   | DOUBLE CAGE BLOWER 144 CFM 115V - 60Hz - 1.1A                        |     |
| 30 | 44028   | CERAMIC THERMODISC F110-20F                                          |     |
| 31 | 60013   | POWER CORD 96" X 18-3 type SJT (50 pcs per carton)                   |     |
| 32 | 44080   | RHEOSTAT WITHOUT NUT (MODEL KBMS-13BV)                               | 1   |
| 33 | 44087   | RHEOSTAT NUT                                                         | 1   |

| #  | Item    | Description                                       | Qty |
|----|---------|---------------------------------------------------|-----|
| 34 | 44085   | RHEOSTAT KNOB                                     | 1   |
| 35 | 29011   | 4'' X 9" X 1 1/4" REFRACTORY BRICK HD             | 13  |
| 36 | 29020   | 4 1/2" X 9" X 1 1/4" REFRACTORY BRICK HD          | 4   |
| 37 | PL70516 | SECONDARY AIR TUBE                                | 4   |
| 38 | 21521   | C-CAST BAFFLE 1.25" X 18.875" X 9.5"              | 1   |
| 39 | AC01287 | REGULAR FACEPLATE (29" X 44")                     | 1   |
| 40 | PL70681 | REGULAR FACEPLATE RIGHT PANEL                     | 1   |
| 41 | PL70680 | REGULAR FACEPLATE LEFT PANEL                      | 1   |
| 42 | PL70682 | FACEPLATE DECORATION                              | 1   |
| 43 | PL70679 | REGULAR FACEPLATE TOP PANEL                       | 1   |
| 44 | AC01285 | LARGE FACEPLATE (32" X 50")                       | 1   |
| 45 | PL70701 | LARGE FACEPLATE RIGHT PANEL                       | 1   |
| 46 | PL70700 | LARGE FACEPLATE LEFT PANEL                        |     |
| 47 | PL70703 | FACEPLATE DECORATION                              |     |
| 48 | PL70702 | LARGE FACEPLATE TOP PANEL                         |     |
| 49 | OA10123 | BRUSHED NICKEL FACEPLATE TRIMS (29" X 44")        |     |
| 49 | OA10122 | BLACK FACEPLATE TRIMS (29" X 44")                 | 1   |
| 50 | OA10129 | BRUSHED NICKEL LARGE FACEPLATE TRIMS (32" X 50")  | 1   |
| 50 | OA10128 | BLACK LARGE FACEPLATE TRIMS (32" X 50")           | 1   |
| 51 | PL34052 | LINER FIXATION BRACKET                            | 3   |
| 52 | 30337   | SQUARE HEAD SET SCREW 1/2-13 X 1-3/4"             |     |
| 53 | AC01298 | 5"Ø FRESH AIR INTAKE KIT OVAL                     |     |
| 54 | AC05959 | METALLIC BLACK STOVE PAINT - 342 g (12oz) AEROSOL |     |
| 55 | SE45983 | SOLUTION 1.7 INSERT INSTRUCTIONS MANUAL KIT 1     |     |
| 56 | 30101   | SPRING TENSION PIN 5/32"Ø X 1 1/2"L               | 1   |

#### VENTIS LIMITED LIFETIME WARRANTY

The warranty of the manufacturer extends only to the original retail purchaser and is not transferable. This warranty covers brand new products only, which have not been altered, modified nor repaired since shipment from the factory. Proof of purchase (dated bill of sale), model name and serial number must be supplied when making any warranty claim to the dealer.

This warranty applies to normal residential use only. This warranty is void if the unit is used to burn material other than cordwood (for which the unit is not certified by EPA) and void if not operated according to the owner's manual. Damages caused by misuse, abuse, improper installation, lack of maintenance, over firing, negligence or accident during transportation, power failures, downdrafts, venting problems or underestimated heating area are not covered by this warranty. The recommended heated area for a given appliance is defined by the manufacturer as its capacity to maintain a minimum acceptable temperature in the designated area in case of a power failure.

This warranty does not cover any scratch, corrosion, distortion, or discoloration. Any defect or damage caused by the use of unauthorized or other than the original parts voids this warranty. An authorized qualified technician must perform the installation in accordance with the instructions supplied with this product and all local and national building codes. Any service call related to an improper installation is not covered by this warranty.

The manufacturer may require that defective products be returned or that digital pictures be provided to support the claim. Returned products are to be shipped prepaid to the manufacturer for investigation. Transportation fees to ship the product back to the purchaser will be paid by the manufacturer. Repair work covered by the warranty, executed at the purchaser's domicile by an authorized qualified technician requires the prior approval of the manufacturer. All parts and labour costs covered by this warranty are limited according to the table below.

The manufacturer, at its discretion, may decide to repair or replace any part or unit after inspection and investigation of the defect. The manufacturer may, at its discretion, fully discharge all obligations with respect to this warranty by refunding the wholesale price of any warranted but defective parts. The manufacturer shall, in no event, be responsible for any uncommon, indirect, consequential damages of any nature, which are in excess of the original purchase price of the product. A one-time replacement limit applies to all parts benefiting from lifetime coverage. This warranty applies to products purchased after March 1st 2019.

| DESCRIPTION                                                                                                                                                                                                                  |          | WARRANTY<br>APPLICATION* |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------|--|
|                                                                                                                                                                                                                              | PARTS    | LABOUR                   |  |
| Combustion chamber (welds only) and cast iron door frame.                                                                                                                                                                    | Lifetime | 5 years                  |  |
| Ceramic glass**, plating (manufacturing defect**) and convector air mate.                                                                                                                                                    | Lifetime | N/A                      |  |
| Surrounds, heat shields, ash drawer, steel legs, pedestal, trims (aluminum extrusions), C-Cast baffle**, vermiculite baffle**, secondary air tubes**, removable stainless steel combustion chamber, deflectors and supports. | 7 years  | N/A                      |  |
| Handle assembly, glass retainers and air control mechanism.                                                                                                                                                                  | 5 years  | 3 years                  |  |
| Removable carbon steel combustion chamber components.                                                                                                                                                                        | 5 years  | N/A                      |  |
| Standard and optional blower, heat sensors, switches, rheostat, wiring and electronics.                                                                                                                                      | 2 years  | 1 year                   |  |
| Paint (peeling**), gaskets, insulation, ceramic fiber blankets, firebricks and other options.                                                                                                                                | 1 year   | N/A                      |  |
| All parts replaced under the warranty.                                                                                                                                                                                       | 90 days  | N/A                      |  |

<sup>\*</sup>Subject to limitations above. \*\*Picture required.

Labour cost and repair work to the account of the manufacturer are based on a predetermined rate schedule and must not exceed the wholesale price of the replacement parts.

Shall your unit or a component be defective, contact immediately your dealer. To accelerate processing of your warranty claim, make sure to have on hand the following information when calling:

- Your name, address and telephone number;
- Bill of sale and dealer's name;
- Installation configuration;

- Serial number and model name as indicated on the nameplate fixed to the back of your unit;
- Nature of the defect and any relevant information.

Before shipping your unit or defective component to our plant, you must obtain an Authorization Number from your dealer. Any merchandise shipped to our plant without authorization will be refused automatically and returned to the sender.

This document is available for free download on the manufacturer's website. It is a copyrighted document. Resale is strictly prohibited. The manufacturer may update this document from time to time and cannot be responsible for problems, injuries, or damages arising out of the use of information contained in any document obtained from unauthorized sources.

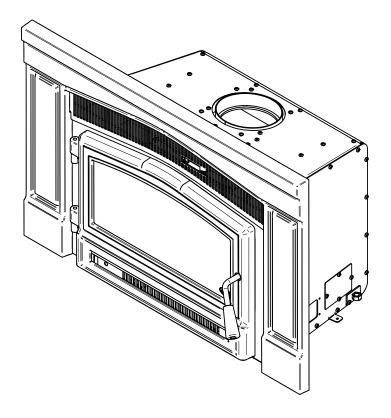


Stove Builder International inc. 250, rue de Copenhague, St-Augustin-de-Desmaures (Québec) Canada G3A 2H3 418-908-8002

http://www.occanada.com/entech@sbi-international.com






## Wood Insert Owner's Manual

## Part 2 of 2

INSTALLATION AND OPERATION REQUIREMENTS

# MATRIX 1900 INSERT

(OB01900 Model)



Safety tested according to ULC S628, UL 1482 and UL 737 by an accredited laboratory.

US Environmental Protection Agency phase II certified wood insert compliant with 2020 cord wood standard.



CONTACT LOCAL BUILDING OR FIRE OFFICIALS ABOUT RESTRICTIONS AND INSTALLATION INSPECTION REQUIREMENTS IN THE AREA.

READ THIS ENTIRE MANUAL BEFORE INSTALLATION AND USE OF THIS WOOD INSERT. FAILURE TO FOLLOW THESE INSTRUCTIONS COULD RESULT IN PROPERTY DAMAGE, BODILY INJURY OR EVEN DEATH.

## READ AND KEEP THIS MANUAL FOR REFERENCE

#### **ONLINE WARRANTY REGISTRATION**

If the unit requires repairs during the warranty period, proof of purchase must be provided. The purchase invoice must be kept. The date indicated on it establishes the warranty period. If it can not be provided, the warranty period will be determined by the date of manufacture of the product. It is also highly recommended to register the warranty online at



https://www.osburn-mfg.com/en/warranty/warranty-registration/

Registering the warranty will help to quickly find the information needed on the unit.

| Dealer:    |    |
|------------|----|
| Installer: |    |
|            | Α. |

#### CERTIFICATION PLATE



REFER TO INTERTEX'S DIRECTORY OF BUILDING PRODUCTS FOR DEFAULD INSTRUCTIONS SE RÉFÉRER AU RÉPORTORE DES PRODUCTS HOMOLOGUÉS D'INTERTEX POUR PLUS D'INFORMATION

COMMONIQUE NECES AUTOMITÉS DE RESTRICTIONS O INSTALLATION DES INCENDIES AUTOMITÉS LOCALES DU BÂTIMENT ET DE LA PRÉVENTION DES INCENDIES AU SUIET DES RESTRICTIONS O INSTALLATION DANS VOTRE SECTEUR.

STANDARDS / NORMES D'ESSAI: Certified to / Certifié selon ULC 5628 Certified to / Certifié selon UL 1482

Certified to / Certifié selon UL 737 Certified to/Certifié selon CSA B415.1-10 Certifled to/Certiflé selon ASTM E3053-17 Certified to/Certifié selon ASTM E2515-11 (R2017)

Control number: 4002461 (July/Juillet 2021)

#### MODEL / MODÈLE : MATRIX 1900

Serial Number No. de Série

INSTALL AND USE ONLY IN ACCORDANCE WITH SBI STOVE BUILDER INTERNATIONAL INSTALLATION AND OPERATION INSTRUCTIONS. L'INSTALLATION ET L'OPERATION DOIT SE FAIRE SELON LES INSTRUCTIONS D'INSTALLATION ET D'UTILISATION DE SBI FABRICANT DE POÊLES INTERNATIONAL.

#### PREVENT HOUSE FIRES

- Install and use in accordance with the manufacturer's installation and operating Instructions.
- Contact local building or fire officials about restrictions and installation inspection in your area
- Use with solld wood fuel only. Do not use other fuels
- For safety, keep screen doors or glass doors fully closed
- Do not overfire unit.
- Replace with only ceramic glass 4mm thick.
- Connect to a code-approved masonry chimney or listed factory-built fireplace chimney with a direct flue connector into the first chimney liner section.
- The non-combustible floor protection in front of the unit should extend 16 inches (406 mm) (USA), 1B inches (457 mm) (CANADA) without a R value even if the hearth elevation is equal with the combustible floor.
- Do not connect this unit to a chimney serving another appliance Install only in masonry fireplaces. Do not remove bricks or mortar from
- Inspect and clean chimney frequently. Under certain conditions of use,
- creosote buildup may occur rapidly.

  Do not use grate or elevate fire. Build wood fire directly on hearth.
- This wood heater needs periodic inspection and repair for proper operation. Consult the owner's manual for further information. It is against US federal regulations to operate this wood heater in a manner inconsistent with the perating instructions in the owner's manual.

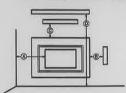
#### PRÉVENEZ LES INCENDIES

- Installer et utiliser conformément au manuel d'utilisation du fabricant. Contacter les autorités de votre localité ayant juridiction concernant les
- restrictions et inspection d'installation. Utiliser avec le bois seulement. Ne pas utiliser d'autres combustibles. Utiliser l'appareil la porte fermée ou ouverte avec le pare-étincelle en place
- uniquement. Ouvrir la porte ou retirer le pare-étincelle seulement lors du chargement.
- Ne pas raccorder à un conduit de fumée servant déjà pour un autre appareil. Remplacer la vitre seulement avec un verre céramique de 4mm d'épaisseur.
- Raccorder à une cheminée de maçonnerie respectant les codes ou à une cheminée préfabriquée homologuée, directement à la première section de cheminée galnée.
- La protection de plancher incombustible au devant de l'encastrable doit se prolonger de 16 pouces (406 mm) (USA), 18 pouces (457 mm) (CANADA), sans facteur d'isolation R au devant de l'encastrable même si l'âtre est égale au plancher combustible.
- Installer seulement dans un foyer de maçonnerie. Ne pas enlever les briques ou
- Installer Seulement dans un loyer de majorinene, ne pas cinices la soliques o le mortler du fover de majorinerie. Inspecter et nettoyer la cheminée fréquemment. Dans certaines conditions, la formation de créosote peut être rapide.
- Ne pas utiliser de chenets ou de grilles pour élever le feu. Préparer le feu
- Cet appareil de chauffage requiert des instructions et réparations périodiques. Consulter le manuel de l'utilisateur pour plus d'information. Opérer cet appareil de chauffage de façon inconsistente par rapport au manuel de l'utilisateur consiste une violation de la loi fédérale (USA).



WARNING: This product can expose you to carbon monoxide, which is known to the State of California to cause cancer, birth defects or other reproductive harm. (For more information go to www.p65warnings.ca.gov)

#### LISTED SOLID FUEL BURNING INSERT APPLIANCE


#### APPAREIL ENCASTRABLE À COMBUSTIBLE SOLIDE HOMOLOGUÉ

FOR USE WITH WOOD ONLY

POUR UTILISATION AVEC BOIS SEULEMENT

MINIMUM CLEARANCES TO COMBUSTIBLE MATERIALS / DÉGAGEMENTS MINIMUM AUX MATÉRIAUX COMBUSTIBLES

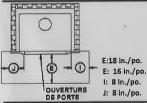
Floor - Ceiling / Plancher - Plafond: 72 in./po. (183 cm)



Blower / Ventilateur: 115VOLTS, 0.8 AMPS, 60Hz

> A: 16 in./po. in (406 mm) D: 34 in./po.in (864 mm)

A - Sidewall (from door opening)/Mur latéral (de l'ouverture de porte): D - Combustible shelf (from base of the fireplace


insert)/

D - Tablette combustible (de la base de l'encastrable) : B - Combustible side surround (from faceplate)/Parement latéral combustible (de la façade):

C - Combustible top surround (from faceplate)/Parement supérieur combustible (de la

B: 1 in./po.in (25 mm)

C: 1 in./po. in. (25 mm)



(457 mm) CANADA (406 mm) USA (203 mm) CANADA (203 mm) USA

U.S. ENVIRONMENTAL PROTECTION AGENCY Certified to comply with 2020 particulate emission standards using cordwood. AGENCE DE PROTECTION DE L'ENVIRONNEMENT DES É.-U. Conforme aux normes d'émission de particules de 2020 avec bûche de bois.

Weighted average emission rate / Moyenne pondérée des émissions: 1.5 g/h

Tested and certified in compliance with CFR 40 part 60, subpart AAA, section 60.534(a)(1(ii))

## CAUTION

- HOT WHILE IN OPERATION.
- DO NOT TOUCH. KEEP CHILDREN, CLOTHING AND FURNITURE AWAY.
- CONTACT MAY CAUSE SKIN BURNS. SEE NAME-PLATE AND INSTRUCTIONS.

#### ATTENTION

- CHAUD EN FONCTIONNEMENT.
- NE PAS TOUCHER. GARDER LES ENFANTS, LES VÊTEMENTS ET LES MEUBLES ÉLOIGNÉS.
- UN CONTACT AVEC LA PEAU PEUT OCCASIONNER DES BRÛLURES. VOIR LES INSTRUCTIONS.

Made in St-Augustin-de-Desmaures (Qc), Canada Fabriqué à St-Augustin-de-Desmaures (Qc), Canada





20/07/2021 (#test) 27877

## TABLE DES MATIÈRES

| 1. | Gene  | eral Information                                       | 6  |
|----|-------|--------------------------------------------------------|----|
|    | 1.1   | Performances                                           | 6  |
|    | 1.2   | Specifications                                         | 7  |
|    | 1.3   | Dimensions                                             | 8  |
|    | 1.4   | EPA Loading                                            | 10 |
| 2. | Clea  | rances to Combustible Material                         | 11 |
|    | 2.1   | Minimum Masonry Opening and Clearances to Combustibles | 11 |
|    | 2.2   | Floor Protection                                       | 12 |
|    | 2.3   | R Value                                                | 13 |
| 3. | Insta | Illing Options on Your Product and Replacing Parts     | 15 |
|    | 3.1   | Replacement and Adjustment                             | 15 |
|    | 3.2   | Removal of Refractory Stones                           | 17 |
|    | 3.3   | Connecting the Blower With a BX Wire                   | 18 |
|    | 3.4   | Changing the Side of the Blower Power Cord             | 21 |
|    | 3.5   | Blower Removal                                         | 24 |
|    | 3.6   | Removable Air Control Handle                           | 25 |
|    | 3.7   | Faceplate Removal                                      | 26 |
|    | 3.8   | Faceplate Decorative Panel Installation/Removal        | 27 |
|    | 3.9   | Door Overlay Installation                              | 28 |
|    | 3.10  | Optional Fresh Air Intake Kit Installation             | 29 |
|    | 3.11  | Optional Fire Screen Installation                      | 30 |
|    | 3.12  | Air Tubes and Baffle Installation                      | 31 |
|    |       | Removal Instructions                                   |    |
|    | 3.14  | Exploded Diagram and Parts List                        | 35 |
| 4. | OSB   | URN LIMITED LIFETIME WARRANTY                          | 38 |

#### 1. General Information

#### 1.1 Performances

Values are as measured per test method, except for the recommended heating area, firebox volume, maximum burn time and maximum heat output.

| Models                                                 | Matrix 1900 (OB01900)                               |                         |  |
|--------------------------------------------------------|-----------------------------------------------------|-------------------------|--|
| Type of combustion                                     | Non-catalytic                                       |                         |  |
| Fuel Type                                              | Dry Cordwood                                        |                         |  |
| Recommended heating area (sq. ft) <sup>1</sup>         | 250 to 1,200 ft <sup>2</sup> (23 to 11              | 1 m²)                   |  |
| Nominal firebox volume                                 | 1.2 ft <sup>3</sup> (0.034 m <sup>3</sup> )         |                         |  |
| Loading volume EPA                                     | 1.03 ft³ (0.0292 m³)                                |                         |  |
| Maximum burn time <sup>1</sup>                         | 7 hours                                             |                         |  |
| Overall heat output rate (min. to max.) <sup>2 3</sup> | 8,471 BTU/h to 31,700 BTU/h<br>(2.48 kW to 9.29 kW) |                         |  |
| Average overall efficiency <sup>3</sup> - Dry cordwood | 75 % (HHV) <sup>4</sup>                             | 80 % (LHV) <sup>5</sup> |  |
| Optimum efficiency <sup>6</sup>                        | 82 %                                                |                         |  |
| Optimum heat transfert efficiency <sup>7</sup>         | 78 %                                                |                         |  |
| Average particulate emissions rate <sup>8</sup>        | 1.5 g/h (EPA / CSA B415.1-10) <sup>9</sup>          |                         |  |
| Average CO <sup>10</sup>                               | 34 g/h                                              |                         |  |

<sup>&</sup>lt;sup>1</sup> Recommended heating area and maximum burn time may vary subject to location in home, chimney draft,heat loss factors, climate, fuel type and other variables. The recommended heated area for a given appliance is defined by the manufacturer as its capacity to maintain a minimum acceptable temperature in the designated area in case of a power failure.

<sup>&</sup>lt;sup>2</sup> The maximum heat output (dry cordwood) is based on a loading density varying between 15 lb/ft3 and 20 lb/ft3. Other performances are based on a fuel load prescribed by the standard. The specified loading density varies between 7 lb/ft³ and 12 lb/ft³. The moisture content is between 19% and 25%.

<sup>&</sup>lt;sup>3</sup> As measured per CSA B415.1-10 stack loss method.

<sup>&</sup>lt;sup>4</sup> Higher Heating Value of the fuel.

<sup>&</sup>lt;sup>5</sup> Lower Heating Value of the fuel.

<sup>&</sup>lt;sup>6</sup> Optimum overall efficiency at a specific burn rate (LHV).

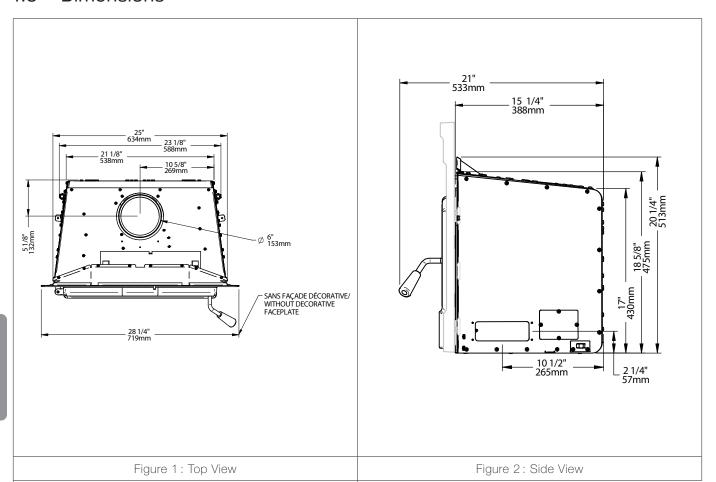
<sup>&</sup>lt;sup>7</sup> The optimum heat transfer efficiency is for the low burn rate and represents the appliance's ability to convert the energy contained in the wood logs into energy transferred to the room in the form of heat and does not take into account the chemical losses during combustion.

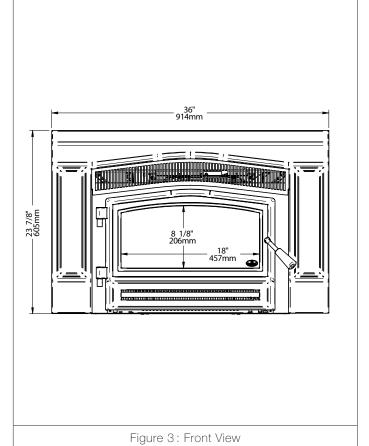
<sup>&</sup>lt;sup>8</sup> This appliance is officially tested and certified by an independent agency.

<sup>&</sup>lt;sup>9</sup> Tested and certified in compliance with CFR 40 part 60, subpart AAA, section 60.534(a)(1(ii) and draft ASTM WK47329-14 based on the ATM send by EPA on October 12th, 2017.

<sup>&</sup>lt;sup>10</sup> Carbon monoxide.

## 1.2 Specifications


| 16 in (406 mm) east-west             |
|--------------------------------------|
| 17 in (432 mm) east-west             |
| 6 in (150 mm)                        |
| 6 in (150 mm)                        |
| ULC S635, CAN/ULC-S640, UL 1777      |
| 12 feet                              |
| C-Cast or equivalent                 |
| No                                   |
| No                                   |
| Simple, glazed, with cast iron frame |
| Ceramic glass                        |
| Included (up to 90 CFM)              |
| EPA / CSA B415.1-10                  |
| UL 1482, UL 737                      |
| ULC-S628                             |
|                                      |


<sup>&</sup>lt;sup>11</sup> North-south: ends of the logs visible, East-west: sides of the logs visible.

<sup>&</sup>lt;sup>12</sup> Mobile homes (Canada) or manufactured homes (USA): The US Department of Housing and Urban Development describes "manufactured homes" better known as "mobile homes" as follows; buildings built on fixed wheels and those transported on temporary wheels/axles and set on a permanent foundation. In Canada, a mobile home is a dwelling for which the manufacture and assembly of each component is completed or substantially completed prior to being moved to a site for installation on a foundation and connection to service facilities and which conforms to the CAN/CSAZ240 MH standard.

<sup>&</sup>lt;sup>13</sup> Tested and certified in compliance with CFR 40 part 60, subpart AAA, section 60.534(a)(1(ii) and draft ASTM WK47329-14 based on the ATM send by EPA on October 12th, 2017.

## 1.3 Dimensions





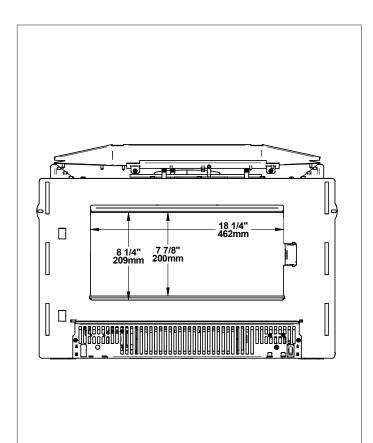



Figure 4: Door Opening

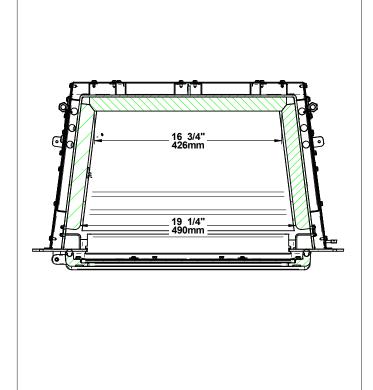
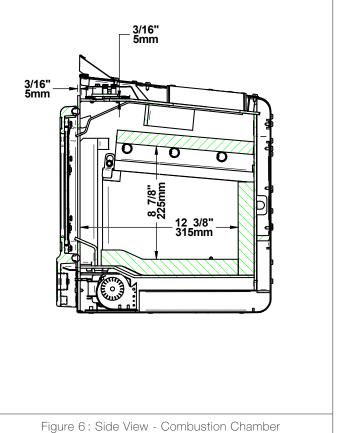
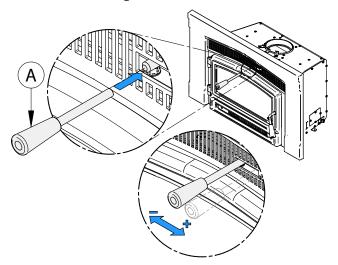




Figure 5: Top View - Combustion Chamber




Product Specification Manual - Matrix 1900

#### 1.4 EPA Loading

The loading methods shown below are those that were used during emissions certification.

#### 1.4.1 Air control

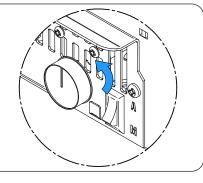
The air control is located above the door. To open the air control, insert the removable handle onto the air control and push the air control handle completely to the right (High). This will increase the burn rate. To close the air control, push the air control handle completely to the left (Low). This will decrease the burn rate. **Do not leave the handle on the air control after use, as it will get very hot.** 



# 1.4.2 High burn rate (primary air control open)

Open the air control completely. Criss cross 6 kindling wood pieces in the back of the firebox. Then, place six small pieces (2"x2") of wood on the kindling crossing them at the greatest possible angle. Criss cross ten others kindling wood pieces on the small pieces of wood. Tie knot with five sheets of paper and place them on top of the kindling wood. Light up the paper and let the door completely open for two minutes. Close the door.

When the kindling and the small pieces of wood are almost completely burnt out and it is possible to break them into pieces, level the coal bed and put four logs in the firebox in an east-west orientation. Place a medium log (about 4"x4") in front of the combustion chamber and the biggest log (about 5"x5") in the back of the combustion chamber. Place the last two medium pieces on top of the two others in an orientation that points to the right. Do not leave space between the pieces. Let the door open ajar at 90° for 5 minutes and close the door.


#### 1.4.3 Medium and low burn rate

On a 2" coal bed that is still red, place five logs of approximatively 4"x4" or 3"x3" with an east-west orientation. Place two logs on the coal bed with approximatively 4" between them and the other three on top. There should be air space between each logs and between the logs and the bricks. Let the door ajar at 90° for 5 minutes and then close the door with the primary air control fully open. Leave to burn with the primary air control open for approximately 10 minutes and then close the primary air control completely for the low burn rate and halfway for the medium burn rate.

#### WARNING



Before opening the door completely to add wood to the insert, the fan must be turned OFF to avoid blowing ash outside the combustion chamber. Refer to section "5.1 Blower" of the owner's manual for how to turn OFF the fan.



#### 2. Clearances to Combustible Material

When the insert is installed so that its surfaces are at or beyond the minimum clearances specified, combustible surfaces will not overheat under normal and even abnormal operating conditions.

# NO PART OF THE INSERT MAY BE LOCATED CLOSER TO THE COMBUSTIBLE THAN THE MINIMUM CLEARANCE FIGURES GIVEN.

#### 2.1 Minimum Masonry Opening and Clearances to Combustibles

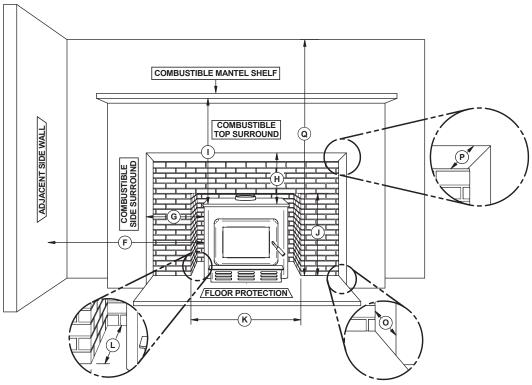



Figure 7 : Ouverture de l'âtre et dégagements aux combustibles

|   | MINIMUM CLEARANCES |
|---|--------------------|
| F | 16" (406 mm)       |
| I | 34" (864 mm)       |
| Q | 72" (183 cm)       |

|   | MAXIMUM THICKNESS |
|---|-------------------|
| 0 | 3" (76 mm)        |
| Р | 1.5" (38 mm)      |
| R | 12" (305 mm)      |

|                        | MINIMUM MASONRY<br>OPENING |  |  |  |
|------------------------|----------------------------|--|--|--|
| J                      | 19" (483 mm)               |  |  |  |
| <b>K</b> <sup>14</sup> | 25" (635 mm)               |  |  |  |
| L                      | 15 ½" (394 mm)             |  |  |  |

|                                | FACADE<br>CLEARANCES |
|--------------------------------|----------------------|
| From combustible side surround | 1" (25 mm)           |
| From combustible top surround  | 1" (25 mm)           |

<sup>&</sup>lt;sup>14</sup> If a fresh air intake is required, it is recommended to add at least 4" to the width of the minimum opening of the hearth.

#### 2.2 Floor Protection

It is necessary to have a floor protection made of non-combustible materials that meets the measurements specified below.

**Table 1: Floor Protection** 

|                        | FLOOR PROTECTION |              |  |  |  |
|------------------------|------------------|--------------|--|--|--|
|                        | Canada USA       |              |  |  |  |
| <b>B</b> <sup>15</sup> | 18" (457 mm)     | 16" (406 mm) |  |  |  |
| М                      | 8" (203 mm)      | N/A          |  |  |  |
| N                      | N/A              | 8" (203 mm)  |  |  |  |

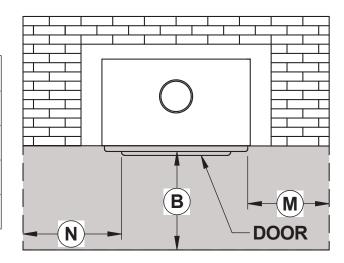



Figure 8: Floor Protection

To determine the need to add floor protection **(D)** beyond the hearth extension **(A)**, the following calculation must be done using the data in "Table 2: Data for Floor Protection Calculation" of this section: D = B - G, where G = A-C.

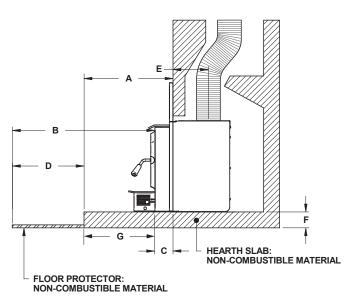



Figure 9: Additional Floor Protection - Raised Installation

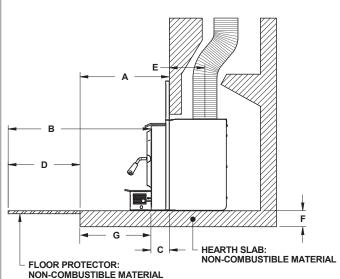



Figure 10: Additional Floor Protection - Not Raised Installation

**Table 2: Data for Floor Protection Calculation** 

|                     | Α                                 | В                       | С            | D                   | E                   | Air Jacket                        |
|---------------------|-----------------------------------|-------------------------|--------------|---------------------|---------------------|-----------------------------------|
| Minimum<br>Extended | Dimension of the hearth extension | See raised installation | 0"<br>(0 mm) | G = (A-C)<br>D=B- G | 10 1/8"<br>(257 mm) | flush with<br>fireplace<br>facing |

<sup>&</sup>lt;sup>15</sup>From door opening. The depth of the hearth extension in front of the insert is included in the calculation of the floor protector's dimensions.

If the value **(D)** is negative or zero, additional floor protection in front of the unit is not needed because the masonry fireplace hearth extension is long enough. If the value **(D)** is positive, an additional floor protection in front of the hearth extension at least equivalent to the result **(D)** must be added.

#### 2.3 R Value

There are two ways to calculate the R-value of the floor protection. First, by adding the R-values of materials used, or by the conversion if the K factor and thickness of the floor protection are given.

To calculate the total R value from R values of the materials used, simply add the R-values of materials. If the result is equal to or greater than the R-value requirements, the combination is acceptable. R-values of some selected materials are shown below.

Table 3: Thermal Characteristics of Common Floor Protection Materials<sup>16</sup>

| MATERIAL                                        | CONDUCTIVITY (K) PER INCH | RESISTANCE (R) PER INCH THICKNESS |
|-------------------------------------------------|---------------------------|-----------------------------------|
| Micore® 160                                     | 0.39                      | 2.54                              |
| Micore® 300                                     | 0.49                      | 2.06                              |
| Durock®                                         | 1.92                      | 0.52                              |
| Hardibacker®                                    | 1.95                      | 0.51                              |
| Hardibacker® 500                                | 2.3                       | 0.44                              |
| Wonderboard®                                    | 3.23                      | 0.31                              |
| Cement mortar                                   | 5.00                      | 0.2                               |
| Common brick                                    | 5.00                      | 0.2                               |
| Face brick                                      | 9.00                      | 0.11                              |
| Marble                                          | 14.3 – 20.00              | 0.07 - 0.05                       |
| Ceramic tile                                    | 12.5                      | 0.008                             |
| Concrete                                        | 1.050                     | 0.950                             |
| Mineral wool insulation                         | 0.320                     | 3.120                             |
| Limestone                                       | 6.5                       | 0.153                             |
| Ceramic board (Fibremax)                        | 0.450                     | 2.2                               |
| Horizontal still air (1/8" thick) <sup>17</sup> | 0.135                     | 0,920**                           |

#### **Exemple:**

Required floor protection R of 1.00. Proposed materials: four inches of brick and one inch of Durock® board:

Four inches of brick ( $R = 4 \times 0.2 = 0.8$ ) plus 1 inch of Durock® ( $R = 1 \times 0.52 = 0.52$ ).

<sup>&</sup>lt;sup>16</sup> Information as reported by manufacturers and other resources.

<sup>&</sup>lt;sup>17</sup> Horizontal still air can't be «stack» to accumulate R-values; each layer must be separated with another non-combustible material.

This R value is larger than the required 1.00 and is therefore acceptable.

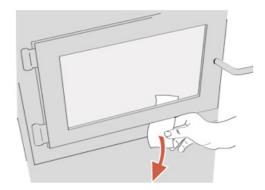
In the case of a known K and thickness of alternative materials to be used in combination, convert all K values to R by dividing the thickness of each material by its K value. Add R values of the proposed materials as shown in the previous example.

#### **Exemple:**

K value = 0.75

Thickness = 1

R value = Thickness/K = 1/0.75 = 1.33


# 3. Installing Options on Your Product and Replacing Parts

#### 3.1 Replacement and Adjustment

#### 3.1.1 Door

Note: The images shown are for guidance only and may be different from your product, but the assembly remains the same.

In order for the insert to burn at its best efficiency, the door must provide a perfect seal with the firebox. Therefore, the gasket should be inspected periodically to check for a good seal. The tightness of the door seal can be verified by closing and latching the door on a strip of paper. The test must be performed all around the door. If the paper slips out easily anywhere, either adjust the door or replace the gasket.



#### 3.1.2 Adjustment

The gasket seal may be improved with a simple latch mechanism adjustment:

- 1. Remove the split pin by pulling and turning it using pliers.
- 2. Turn the handle one counterclockwise turn to increase pressure.
- 3. Reinstall the split pin with a small hammer.

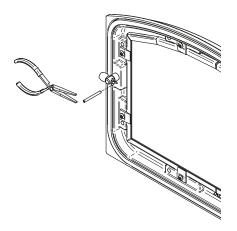
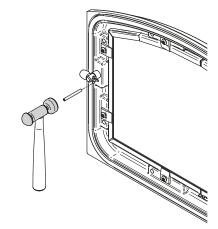
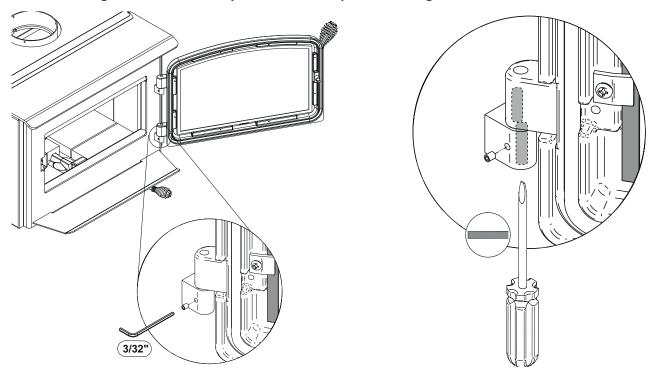
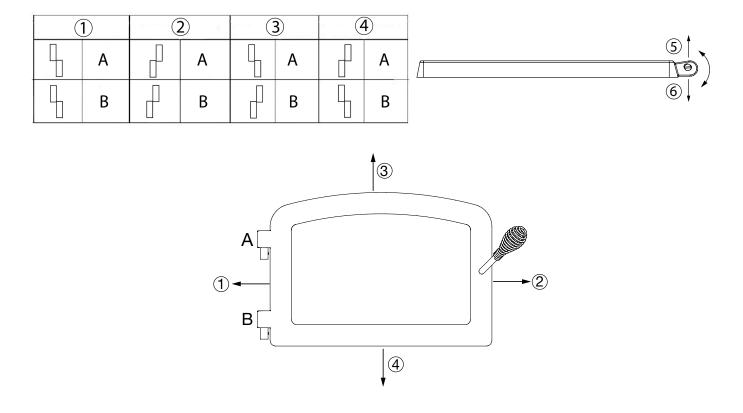



Figure 11: Removing the split pin

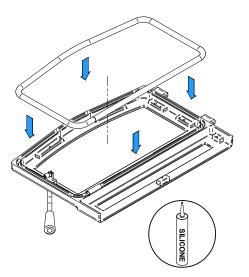





Figure 12: Installing the split pin

## 3.1.3 Door Alignment

To align, open the door and loosen the pressures screws located on the lower and upper hinges of the door using a 3/32" Allen key to free the adjustable hinge rods.




Using a flat screwdriver, turn the adjustable hinge rods in the direction shown to adjust the doors. Tighten all door hinge pressure screws when they are at the desired positions. Configurations 1-2-3-4-5-6, show in which direction these act on the adjustment of the door.



#### 3.1.4 Gasket

It is important to replace the gasket with another having the same diameter and density to maintain a good seal.

- 1. Remove the door and place it face-down on something soft like a cushion of rags or a piece of carpet.
- 2. Remove the old gasket from the door. Use a screwdriver to scrape the old gasket adhesive from the door gasket groove.
- 3. Apply a bead of approximately 3/16" (5 mm) of high temperature silicone in the door gasket groove. Starting from the middle, hinges side, press the gasket into the groove. The gasket must not be stretched during installation.
- 4. Leave about ½" (10 mm) long of the gasket when cutting and press the end into the groove. Tuck any loose fibers under the gasket and into the silicone.
- 5. Close the door. Do not use the insert for 24 hours.



# 3.2 Removal of Refractory Stones

1. Empty the combustion chamber.

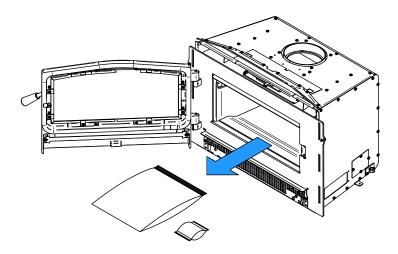



Figure 13: Empty the combustion chamber

2. Unscrew the two supports **(B)** of the refractory bricks from the sides. The stones can then be removed in the order shown in Figure 12.

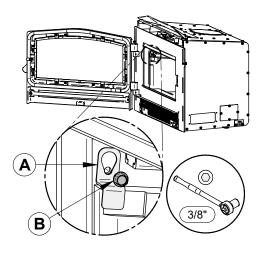



Figure 14: Install the Combustion Chamber Bricks

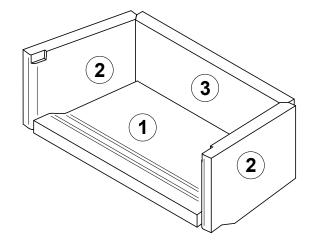
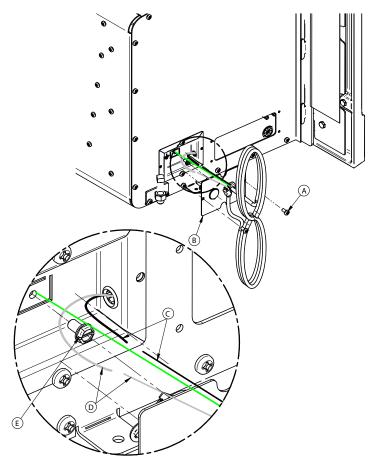
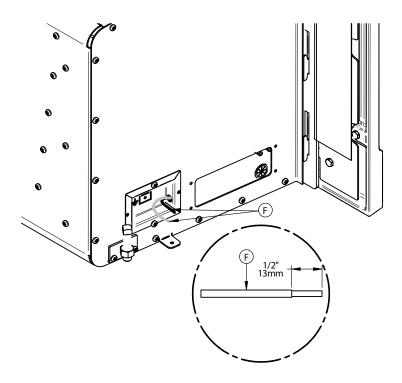


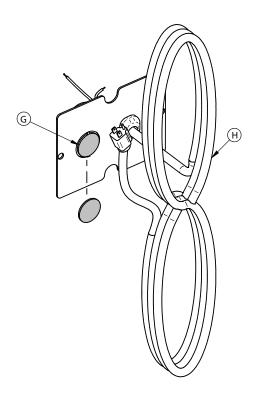

Figure 15: Stones scheme


#### 3.3 Connecting the Blower With a BX Wire

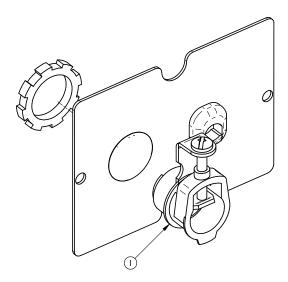



#### CAUTION RISK OF ELECTROCUTION.

All electrical connections should be performed by a certified electrician.


- Remove the screws (A) to remove the plate
   (B) and gain access to the wires. Save the screws for later.
- 2. Disconnect the black **(C)** and white **(D)** wires.
- 3. Remove the ground screw **(E)** to remove the green wire. Save the screw for later.



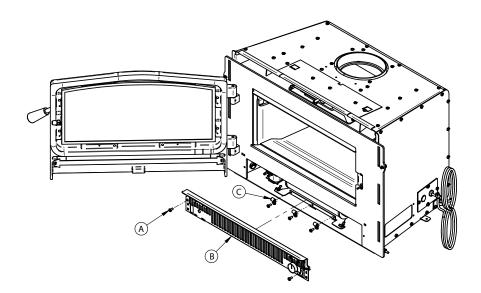

4. Strip a section of  $\frac{1}{2}$ " of the black and white wires **(F)** that are in the box attached to the insert.



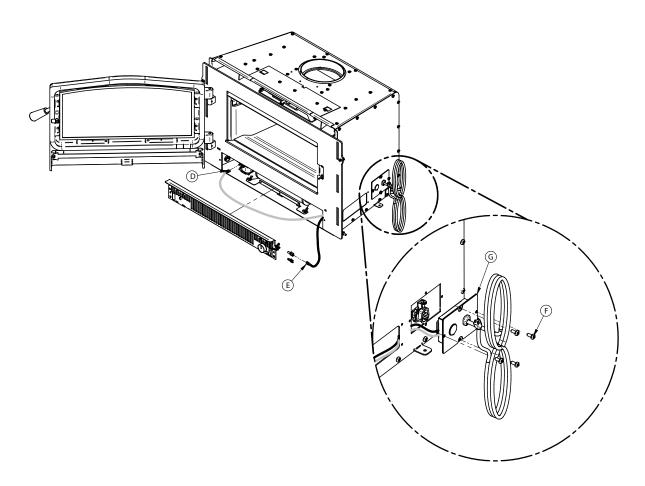

5. Remove the piece of metal **(G)** from the plate **(B)** obstructing the hole to the left of the power cord **(H)** using pliers or a screwdriver. Cut the power cord **(H)** on each side of the black clamp.



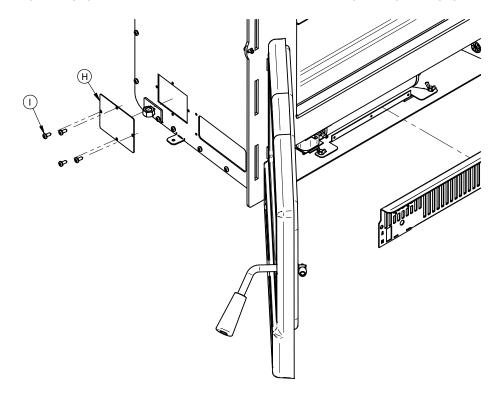
6. Install the connector (I) supplied with the manual kit in the hole formed in the plate (B) in step 5.



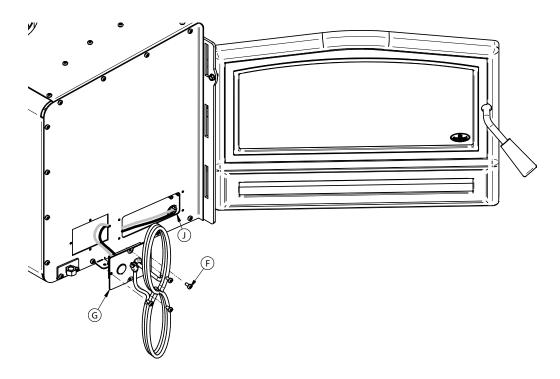

- 7. Pass the new wires through the connector (I) and install the sleeve (J) supplied with the manual kit on the BX wire.
- 8. Join the black and white wires using marettes **(K)** (not supplied) and secure the ground wire with the screw **(E)** kept in step 3.
- 9. Close the connection box by screwing in the plate (B) with the two screws (A) kept in step 1 and secure the BX wire by tightening the screw (L) of the connector (I).



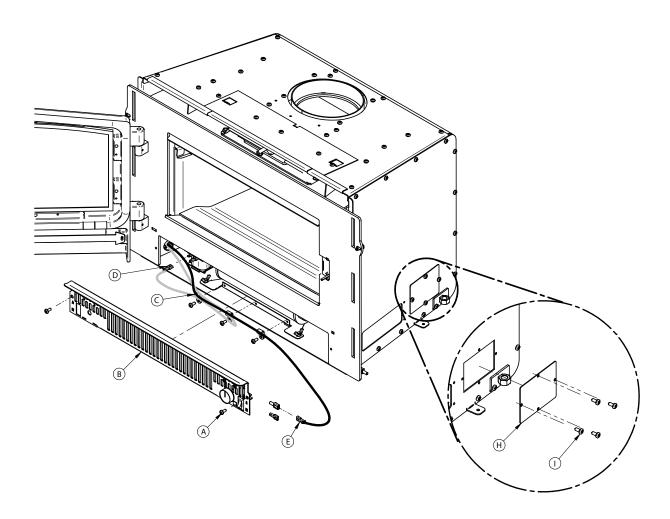

#### 3.4 Changing the Side of the Blower Power Cord


1. Open the door and unscrew the screws (A) to remove the grille (B) in front of the fan. Then unscrew the three plastic grommets (C) located on the base of the fan. Remove the wires from the grommets. Keep the screws.



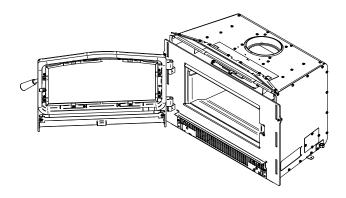

2. Disconnect the white wire **(D)** and the black wire **(E)** (follow the wires coming from the inside of the insert). Remove the four screws **(F)** that hold the connection box **(G)** to the insert and gently pull it out until the white and black wires come out of the insert. Keep the screws.

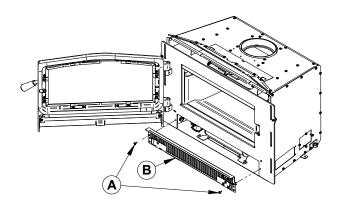



3. Unscrew the plate (H) on the other side of the insert. Keep the plate (H) and screws (I).

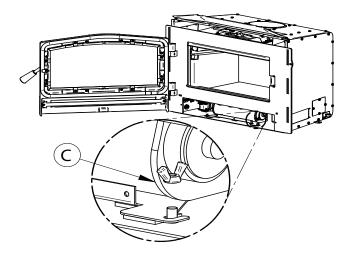


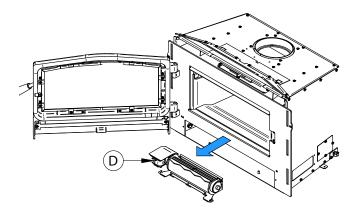
- 4. Pass the white **(D)** and black **(E)** wires through the hole formed in the previous step by pulling them towards the front of the insert. Then pass the wires through the grommet **(J)** located on the side at the front of the device.
- 5. Screw the connection box (G) with the four screws (F) kept in step 2.





- 6. Install the plate **(H)** with the screws **(I)** kept in step 3 to the initial location of the connection box **(G)**.
- 7. Pull the excess black and white wires into the insert to be able to connect them to their respective locations (the black wire is connected to the rheostat and the white wire is connected to the blower). An extension cable must be installed on the black wire to get to the rheostat (extension supplied with the manual kit).
- 8. Secure the excess wires using the three plastic grommets (C) removed in step 1.
- 9. Reinstall the grille (B) with the screws (A) kept in step 1.



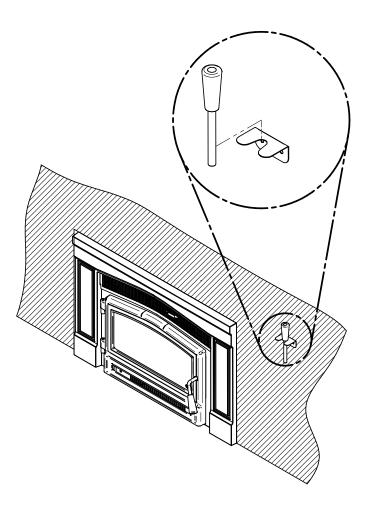

#### 3.5 Blower Removal


- 1. Open the insert door to gain access to the fan grille (B).
- 2. Remove the two screws (A) on each side of the grille (B) to be able to remove it.



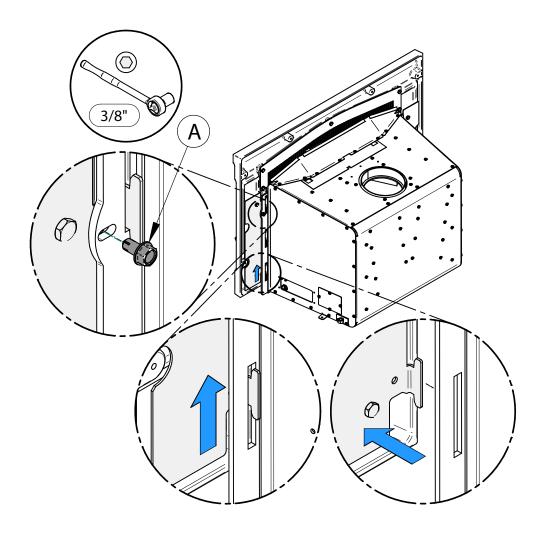


- 3. Unscrew the two wing nuts **(C)** on each 4. Take out the fan **(D)**. side of the fan.






## 3.6 Removable Air Control Handle

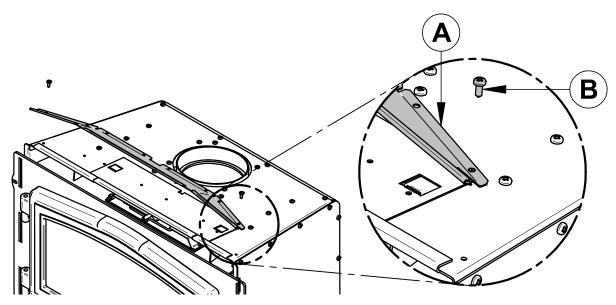

This insert comes with a removable handle for the primary air control. A holder for the handle is supplied with the manual. Here is an example of the holder installation.

CAUTION: Do not leave the handle on the air control after use, as it will get very hot.



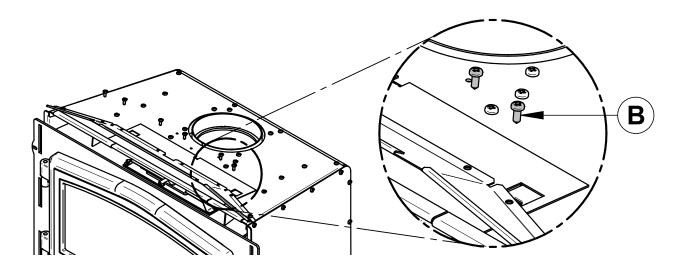
# 3.7 Faceplate Removal

• Remove the screws (A) that hold the faceplate on each side of the insert. Then lift and pull the faceplate towards you to remove it. It is not necessary to keep the screws (A), since they were only useful for the transport of the insert.




## 3.8 Faceplate Decorative Panel Installation/Removal

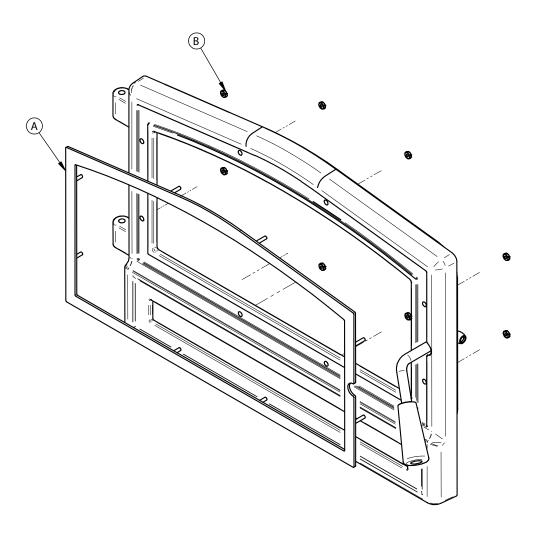
It is possible to install the insert with or without the faceplate decorative panel. The latter is included with the insert and is already partially installed with two screws at each end. Here are the steps to remove or keep it:


#### Faceplate decorative panel removal

• Remove the screws **(B)** at each end of the panel **(A)** to be able to remove it afterwards.



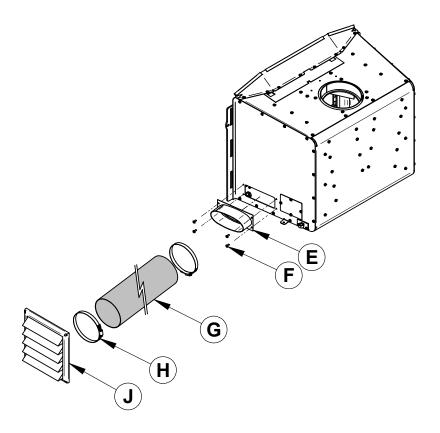
#### Faceplate decorative panel installation


Screw the panel with 6 additional screws (B).



# 3.9 Door Overlay Installation

Position the overlay (A) on the door frame and secure using the bolts (B). To facilitate the installation, do not tighten the nuts until they are all installed.

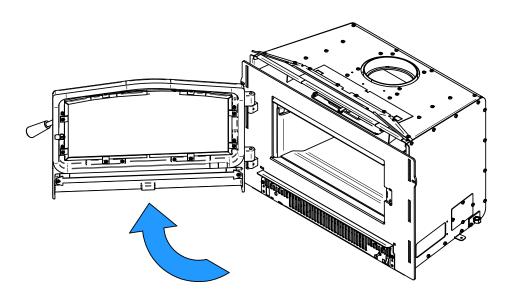

Note: It is not necessary to remove the glass or any other component to install the overlay..



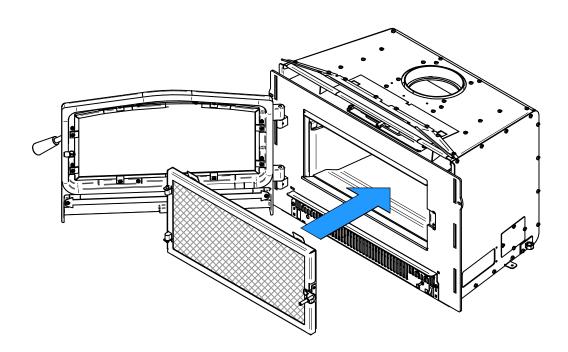
#### 3.10 Optional Fresh Air Intake Kit Installation

The fresh air intake kit may be installed on the right or left end side of the unit. The unused side must be covered by the plate provided in the user manual kit.

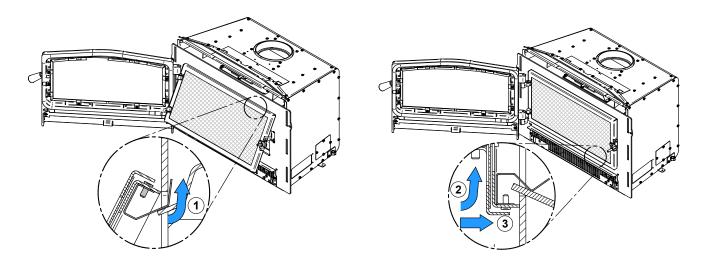
• Install the fresh air intake adapter **(E)** with four screws **(F)** then secure the flexible pipe<sup>18</sup> **(H)** (not included) to the adapter using one of the pipe clamps **(G)**. Secure the other end of the pipe to the outside wall termination **(J)** using the other pipe clamp. The outside wall termination must be installed outside of the home.




<sup>&</sup>lt;sup>15</sup> The pipe must be HVAC type, insulated, and must comply with ULC S110 and/or UL 181, Class 0 or Class 1.


# 3.11 Optional Fire Screen Installation

In the United States or in provinces with a particulate emissions limit (e.g.: US EPA), the use of open-door wood stoves with a rigid firescreen is prohibited.


1. Open the door.

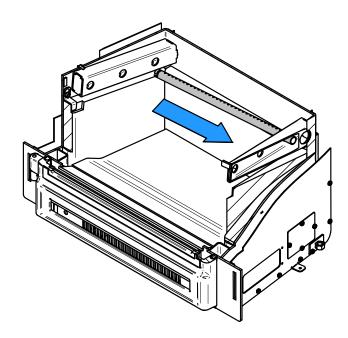


2. Hold the fire screen by the two handles and bring it close to the door opening.

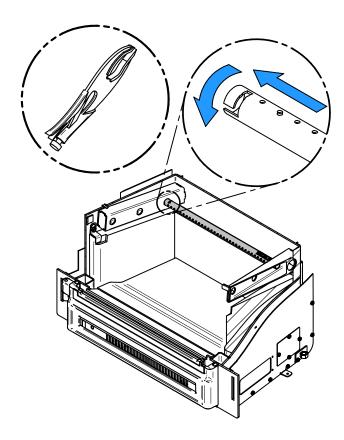


- 3. Lean the upper part of the fire screen against the top door opening making sure to insert the top fire screen brackets in front of the primary air deflector.
- 4. Lift the fire screen upwards and push the bottom part towards the insert then let the fire screen rest on the bottom of the door opening.

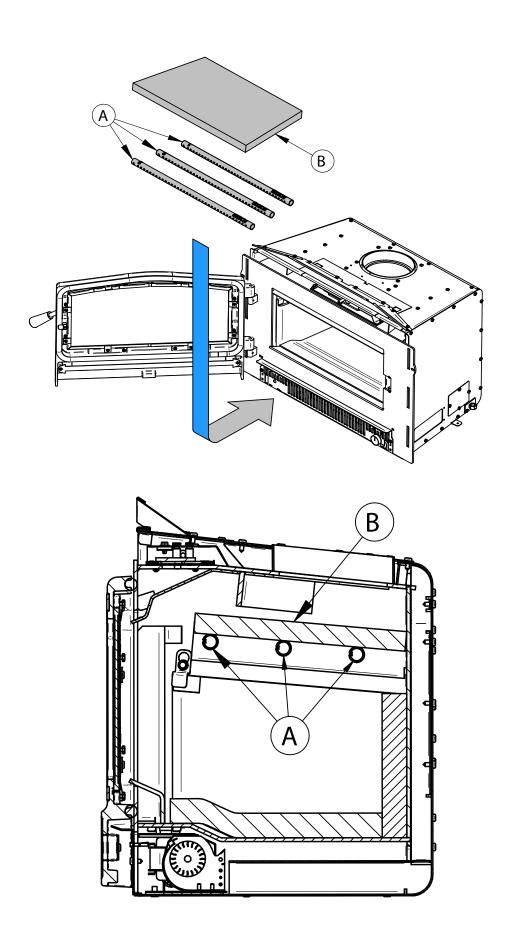





Never leave the insert unattended while in use with the fire screen.


Do not use the blower with the fire screen installed. May cause smoke spillage. Do not use the fire screen with a offset liner adaptor.

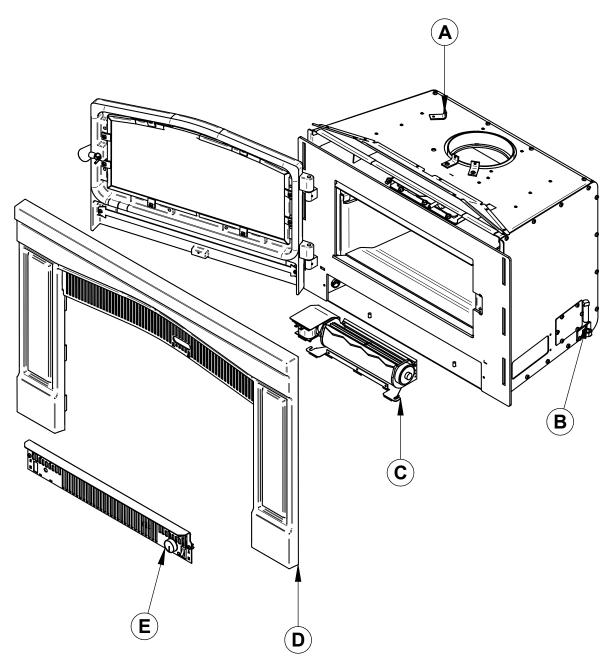
#### 3.12 Air Tubes and Baffle Installation


1. Starting with the rear tube, lean and insert the right end of the secondary air tube into the rear right channel hole. Then lift and insert the left end of the tube into the rear left channel.

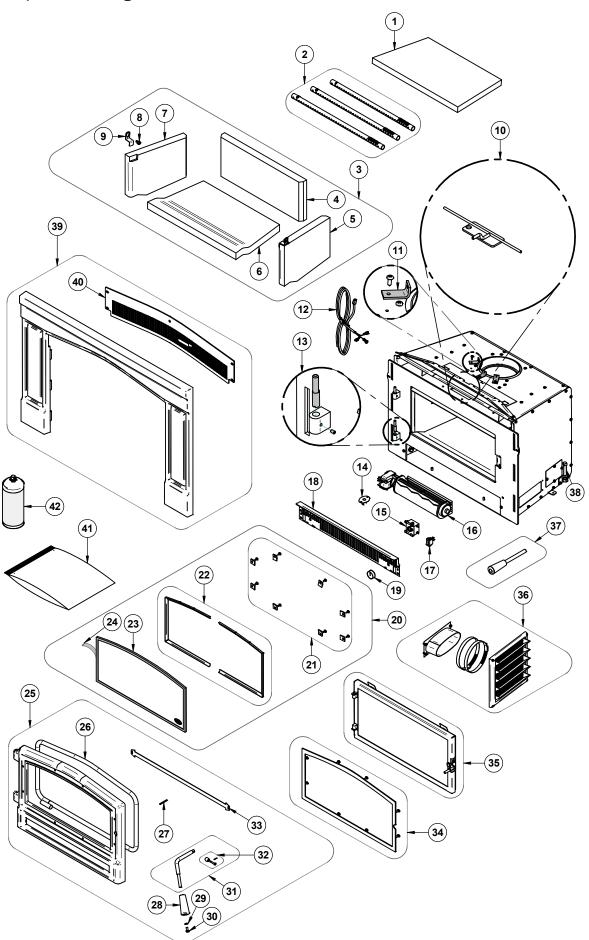


- 2. Align the notch in the left end of the tube with the key of the left air channel hole. Using a « Wise grip » hold the tube and lock it in place by turning the tube as shown. Make sure the notch reaches the end of the key way.
- 3. Install the baffle.
- 4. Repeat steps 1 and 2 for the two other tubes.
- 5. To remove the tubes use the above steps in reverse order.




Note that secondary air tubes (A) can be replaced without removing the baffle board (B) and that all tubes are identical.




#### 3.13 Removal Instructions

For inspecting purposes, the insert may need to be removed. To remove the insert, follow these instructions:

- Remove faceplate (D) by lifting it and then pulling on it.
- Remove the three screws securing the pipe connector (A).
- Unscrew the bolts securing the insert to the floor on each side of the unit (B).



# 3.14 Exploded Diagram and Parts List



IMPORTANT: THIS IS DATED INFORMATION. When requesting service or replacement parts for this unit, please provide the model number and the serial number. We reserve the right to change parts due to technology upgrades or availability. Contact an authorized dealer to obtain any of these parts. Never use substitute materials. Use of non-approved parts can result in poor performance and safety hazards.

| #  | Item    | Description                                                          | Qty |
|----|---------|----------------------------------------------------------------------|-----|
| 1  | 21636   | 2.1 SERIE BAFFLE                                                     | 1   |
| 2  | SE74778 | SECONDARY AIR TUBE KIT                                               | 1   |
| 3  | SE22420 | SET OF BRICKS                                                        | 1   |
| 4  | 22420   | REAR REFRACTORY BRICK                                                | 1   |
| 5  | 22421   | RIGHT REFRACTORY BRICK                                               | 1   |
| 6  | 22419   | BOTTOM REFRACTORY BRICK                                              | 1   |
| 7  | 22422   | LEFT REFRACTORY BRICK                                                | 1   |
| 8  | 30060   | THREAD-CUTTING SCREW 1/4-20 X 1/2" F HEX STEEL SLOT WASHER C102 ZINC | 2   |
| 9  | PL74789 | STONE RETENEUR                                                       | 2   |
| 10 | SE74766 | DAMPER ASSEMBLY                                                      | 1   |
| 11 | PL34052 | LINER FIXATION BRACKET                                               | 1   |
| 12 | 60013   | POWER CORD 96" X 18-3 type SJT (50 pcs per carton)                   | 1   |
| 13 | SE74167 | DOOR HINGE REPLACEMENT KIT                                           | 1   |
| 14 | 44028   | CERAMIC THERMODISC F110-20F                                          | 1   |
| 15 | PL74813 | RHEOSTAT SUPPORT                                                     | 1   |
| 16 | 44075   | TANGENTIAL BLOWER 1800 115V-60hZ-30W (S) 90 CFM                      | 1   |
| 17 | 44091   | ROCKER SWITCH 2 POSITION MSR-8                                       | 1   |
| 18 | PL74793 | BOTTOM DOOR GRILL                                                    | 1   |
| 19 | 44085   | RHEOSTAT KNOB                                                        | 1   |
| 20 | SE74784 | GLASS, GASKET AND MOULDING KIT                                       | 1   |
| 21 | SE53585 | GLASS RETAINER KIT WITH SCREWS (12 PER KIT)                          | 1   |
| 22 | SE74783 | GLASS FRAMES KIT                                                     | 1   |
| 23 | SE74718 | ARCHED GLASS WITH GASKET 19 1/8" X 9 1/4"                            | 1   |
| 24 | AC06400 | 3/4" X 6' FLAT BLACK SELF-ADHESIVE GLASS GASKET                      | 1   |
| 25 | SE24371 | MATRIX 1900 CAST IRON DOOR ASSEMBLY                                  | 1   |
| 26 | AC06500 | SILICONE AND 5/8" X 8' BLACK DOOR GASKET KIT                         | 1   |
| 27 | 30101   | SPRING TENSION PIN 5/32"Ø X 1 1/2"L                                  | 1   |
| 28 | 30898   | ROUND WOODEN BLACK HANDLE                                            | 1   |
| 29 | 30187   | STAINLESS WASHER ID 17/64" X OD 1/2"                                 | 1   |
| 30 | 30025   | 1/4-20 X 1/2" PAN-HEAD QUADREX BLACK SCREW                           | 1   |
| 31 | SE65024 | REPLACEMENT HANDLE WITH LATCH KIT                                    | 1   |
| 32 | AC09185 | DOOR LATCH KIT                                                       | 1   |
| 33 | PL74795 | DECORATIVE DOOR PLATE                                                | 1   |

| #  | Item    | Description                                       | Qty |
|----|---------|---------------------------------------------------|-----|
| 34 | OA10042 | BRUSHED NICKEL DOOR OVERLAY                       | 1   |
| 34 | OA10041 | BLACK DOOR OVERLAY                                | 1   |
| 36 | AC01298 | 5"Ø FRESH AIR INTAKE KIT                          | 1   |
| 37 | SE74166 | HANDLE 30898 REPLACEMENT KIT                      | 1   |
| 38 | 30337   | SQUARE HEAD SET SCREW 1/2-13 X 1-3/4"             | 2   |
| 39 | SE24372 | MATRIX 1900 FACEPLATE ASSEMBLY                    | 1   |
| 40 | PL74839 | GRILL                                             | 1   |
| 41 | SE46278 | MATRIX 1900(OB01900) MANUAL KIT                   | 1   |
| 42 | AC05959 | METALLIC BLACK STOVE PAINT - 342 g (12oz) AEROSOL | 1   |

#### 4. OSBURN LIMITED LIFETIME WARRANTY

The warranty of the manufacturer extends only to the original retail purchaser and is not transferable. This warranty covers brand new products only, which have not been altered, modified nor repaired since shipment from factory. <u>Proof of purchase (dated bill of sale)</u>, model name and serial number must be supplied when making any warranty claim to your OSBURN dealer.

This warranty applies to normal residential use only. This warranty is void if the unit is used to burn material other than cordwood (for which the unit is not certified by EPA) and void if not operated according to the owner's manual. Damages caused by misuse, abuse, improper installation, lack of maintenance, over firing, negligence or accident during transportation, power failures, downdrafts, venting problems or under-estimated heating area are not covered by this warranty. The recommended heated area for a given appliance is defined by the manufacturer as its capacity to maintain a minimum acceptable temperature in the designated area in case of a power failure.

This warranty does not cover any scratch, corrosion, distortion, or discoloration. Any defect or damage caused by the use of unauthorized or other than original parts voids this warranty. An authorized qualified technician must perform the installation in accordance with the instructions supplied with this product and all local and national building codes. Any service call related to an improper installation is not covered by this warranty.

The manufacturer may require that defective products be returned or that digital pictures be provided to support the claim. Returned products are to be shipped prepaid to the manufacturer for investigation. Transportation fees to ship the product back to the purchaser will be paid by the manufacturer. Repair work covered by the warranty, executed at the purchaser's domicile by an authorized qualified technician requires the prior approval of the manufacturer. All parts and labour costs covered by this warranty are limited according to the table below.

The manufacturer, at its discretion, may decide to repair or replace any part or unit after inspection and investigation of the defect. The manufacturer may, at its discretion, fully discharge all obligations with respect to this warranty by refunding the wholesale price of any warranted but defective parts. The manufacturer shall, in no event, be responsible for any uncommon, indirect, consequential damages of any nature, which are in excess of the original purchase price of the product. A one-time replacement limit applies to all parts benefiting from lifetime coverage. This warranty applies to products purchased after June 1st, 2015.

|                                                                                                                                                                                                                                          | WARRANTY APPLICATION* |         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------|
| DESCRIPTION                                                                                                                                                                                                                              | PARTS                 | LABOUR  |
| Combustion chamber (welds only) and cast iron door frame                                                                                                                                                                                 | Lifetime***           | 5 years |
| Ceramic glass**, plating (manufacturing defect**), and convector air-mate                                                                                                                                                                | Lifetime***           | N/A     |
| Surrounds, heat shields, ash drawer, steel legs, pedestal, trims (aluminum extrusions), vermiculite, <i>C-Cast</i> or equivalent baffle**, secondary air tubes**, removable stainless steel combustion chamber, deflectors, and supports | 7 years***            | N/A     |
| Handle assembly, glass retainers and air control mechanism                                                                                                                                                                               | 5 years               | 3 years |
| Removable carbon steel combustion chamber components                                                                                                                                                                                     | 5 years               | N/A     |
| Standard and optional blower, heat sensors, switches, rheostat, wiring, and electronics                                                                                                                                                  | 2 years               | 1 year  |
| Paint (peeling**), gaskets, insulation, ceramic fiber blankets, refractory bricks (fireplace only***), and other options                                                                                                                 | 1 year                | N/A     |
| All parts replaced under the warranty                                                                                                                                                                                                    | 90 days               | N/A     |

<sup>\*</sup>Subject to limitations above \*\*Picture required \*\*\*limited to one replacement

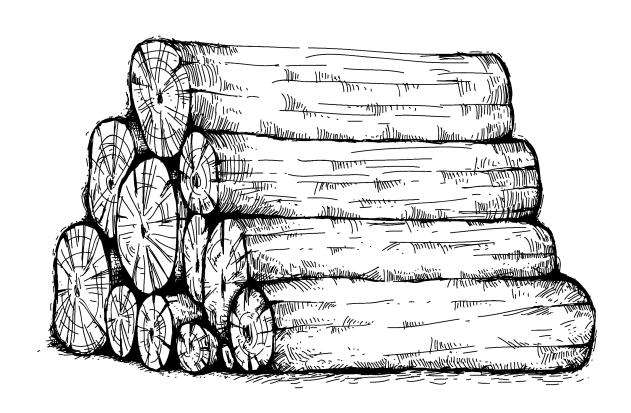
Labour cost and repair work to the account of the manufacturer are based on a predetermined rate schedule and must not exceed the wholesale price of the replacement part.

Shall your unit or a components be defective, contact immediately your **OSBURN** dealer. To accelerate processing of your warranty claim, make sure to have on hand the following information when calling:

- Your name, address and telephone number
- Bill of sale and dealer's name
- Installation configuration

- Serial number and model name as indicated on the nameplate fixed to the back of your unit
- Nature of the defect and any relevant information

Before shipping your unit or defective component to our plant, you must obtain an Authorization Number from your OSBURN dealer. Any merchandise shipped to our plant without authorization will be refused automatically and returned to sender.


This document is available for free download on the manufacturer's website. It is a copyrighted document. Resale is strictly prohibited. The manufacturer may update this document from time to time and cannot be responsible for problems, injuries, or damages arising out of the use of information contained in any document obtained from unauthorized sources.



Stove Builder International inc. 250, rue de Copenhague, St-Augustin-de-Desmaures (Québec) Canada G3A 2H3 418-908-8002

https://www.osburn-mfg.com/en/tech@sbi-international.com

# Wood Insert Guide



CONTACT LOCAL BUILDING OR FIRE OFFICIALS ABOUT RESTRICTIONS AND INSTALLATION INSPECTION REQUIREMENTS IN THE AREA.

READ THIS ENTIRE GUIDE BEFORE INSTALLATION AND USE OF THIS WOOD INSERT. FAILURE TO FOLLOW THESE INSTRUCTIONS COULD RESULT IN PROPERTY DAMAGE, BODILY INJURY OR EVEN DEATH.

## READ AND KEEP THIS GUIDE FOR REFERENCE

# THANK YOU FOR CHOOSING THIS WOOD INSERT.

If this insert is not installed properly, combustible materials near it may overheat and catch fire.

To reduce the risk of fire, follow the installation instructions in this guide.

As one of North America's largest and most respected wood stove and fireplace manufacturers, Stove Builder International takes pride in the quality and performance of all its products.

The following pages provide general advice on wood heating, detailed instructions for safe and effective installation, and guidance on how to get the best performance from this insert.

It is highly recommended that this wood burning hearth product be installed and serviced by professionals who are certified by NFI (National Fireplace Institute®) or CSIA (Chimney Safety Institude of America) in the United States or in Canada by WETT (Wood Energy Technology Transfer) or in Quebec by APC (Association des Professionnels du Chauffage).

Contact local building or fire officials about restrictions and installation inspection requirements in the area.

A building permit might be required for the installation of this insert and the chimney that it is connected to. It is also recommended to inform your home insurance company.

Please read this entire guide before installing and using this insert.

A primary alternative heat source should be available in the home. This heating unit may serve as a supplementary heat source. The manufacturer cannot be responsible for additional heating costs associated with the use of analternative heat source.

## **TABLE OF CONTENTS**

| 1. | Safe | ety Information and Environment          | 6  |
|----|------|------------------------------------------|----|
|    | 1.1  | Regulations Covering Insert Installation | 7  |
|    | 1.2  | Certification Label                      | 7  |
|    | 1.3  | Emissions and Efficiency                 | 8  |
|    | 1.4  | Materials                                | 8  |
| 2. | Fuel |                                          | 9  |
|    | 2.1  | Tree Species                             | 9  |
|    | 2.2  | Log Length                               | 9  |
|    | 2.3  | Piece Size                               | 10 |
|    | 2.4  | Compressed Wood Logs                     | 10 |
|    | 2.5  | Drying Time                              | 10 |
| 3. | Burr | ning Wood Efficiently                    | 11 |
|    | 3.1  | First Use                                |    |
|    | 3.2  | Lighting Fires                           | 11 |
|    | 3.3  | Zone Heating                             | 12 |
|    | 3.4  | Combustion Cycles                        | 13 |
|    | 3.5  | Rekindling a Fire                        | 14 |
|    | 3.6  | Removing Ashes                           | 14 |
|    | 3.7  | Air Intake Control                       | 15 |
|    | 3.8  | Fire Types                               | 15 |
| 4. | Mair | ntenance                                 | 17 |
|    | 4.1  | Wood Insert                              | 17 |
|    | 4.2  | Glass Door                               | 17 |
| 5. | Ope  | rating the Insert                        | 18 |
|    | 5.1  | Blower                                   |    |
|    | 5.2  | Fire Screen                              | 19 |
|    | 5.3  | Exhaust System                           | 19 |
| 6. | Mas  | onry Fireplace Requirements              | 20 |
|    | 6.1  | Fireplace and Chimney Condition          | 20 |
|    | 6.2  | Chimney Caps                             | 21 |
|    | 6.3  | Adjacent Combustibles                    | 21 |
|    | 6.4  | Masonry Fireplace Throat Damper          | 21 |
| 7. | The  | Venting System                           | 21 |
|    | 7.1  | General                                  |    |
|    | 7.2  | Block-off Plate                          | 21 |
|    | 7.3  | Suitable Chimneys                        | 22 |
|    | 7.4  | Chimney Liner Installation               | 22 |
|    | 7.5  | Liner Connection                         | 23 |
|    | 7.6  | Minimum Chimney Height                   | 24 |
|    | 7.7  | Chimney Location                         | 24 |
|    | 7.8  | Supply of Combustion Air                 | 25 |

## 1. Safety Information and Environment

- This insert has been tested for use with an open door in conjunction with a fire screen, sold separately. The door may be opened, or fire screen removed only during lighting procedures or reloading. Always close the door or put back on the fire screen after ignition. Do not leave the insert unattended when the door is opened with or without a fire screen.
- WARNING: OPERATE ONLY WITH THE DOOR FULLY CLOSED OR FULLY OPEN WITH THE FIRE SCREEN IN PLACE. IF THE DOOR IS LEFT PARTLY OPEN, GAS AND FLAME MAY BE DRAWN OUT OF THE OPENING, CREATING RISKS FROM BOTH FIRE AND SMOKE.
- HOT WHILE IN OPERATION, KEEP CHILDREN, CLOTHING AND FURNITURE AWAY.
   CONTACT MAY CAUSE SKIN BURNS. GLOVES MAY BE NEEDED FOR INSERT OPERATION.
- Using an insert with cracked or broken components, such as glass, firebricks or baffle may produce an unsafe condition and may damage the insert.
- Open the air control fully before opening the loading door.
- NEVER USE GASOLINE, LANTERN FUEL (NAPHTHA), FUEL OIL, MOTOR OIL, KEROSENE, CHARCOAL LIGHTER FLUID, OR SIMILAR LIQUIDS OR AEROSOLS TO START A FIRE IN THIS INSERT. KEEP ALL SUCH LIQUIDS OR AEROSOLS WELL AWAY FROM THE INSERT WHILE IT IS IN USE.
- Do not store fuel within heater minimum installation clearances.
- Burn only seasoned natural firewood.
- This wood heater needs periodic inspection and repair for proper operation. It is against federal
  regulations to operate this wood heater in a manner inconsistent with operating instructions in this
  guide.
- This appliance should always be maintained and operated in accordance with these instructions.
- Do not elevate the fire by means of grates, andirons or other means.
- Do not use makeshift materials or make any compromises when installing this insert.
- A smoke detector, a carbon monoxide detector and a fire extinguisher should be installed in the house. The location of the fire extinguisher should be known by all family members.



This product can expose you to chemicals including carbon monoxide, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information go to <a href="https://www.P65warnings.ca.gov/">www.P65warnings.ca.gov/</a>

Page 6 Wood Inserts – Owner's Manual

- The information given on the certification label affixed to the appliance always overrides the information published, in any other media (owner's manual, catalogues, flyers, magazines and web sites).
- Mixing of appliance components from different sources or modifying components may result in hazardous conditions. Where any such changes are planned, SBI should be contacted in advance.
- Any modification of the appliance that has not been approved in writing by the testing authority violates CSA B365 (Canada), and ANSI NFPA 211 (USA).
- Connect this insert only to a listed stainless steel chimney liner for use with solid fuel.
- If required, a supply of combustion air shall be provided to the room.
- DO NOT CONNECT TO OR USE IN CONJUNCTION WITH ANY AIR DISTRIBUTION DUCTWORK UNLESS SPECIFICALLY APPROVED FOR SUCH INSTALLATION.
- DO NOT CONNECT THIS UNIT TO A CHIMNEY FLUE SERVING ANOTHER APPLIANCE.
- The insert and its stainless steel chimney liner are to be installed only within a lined masonry chimney and masonry fireplace conforming to building codes for use with solid fuel. Do not remove bricks or mortar from the existing fireplace when installing the insert.

## 1.1 Regulations Covering Insert Installation

When installed and operated as described in these instructions, this wood insert is suitable for use in residential installations but is not intended for installation in a bedroom.

In Canada, the CSA B365 Installation Code for Solid Fuel Burning Appliances and Equipment and the CSA C22.1 Canadian National Electrical Code are to be followed in the absence of local code requirements. In the USA, the ANSI NFPA 211 Standard for Chimneys, Fireplaces, Vents and Solid Fuel-Burning Appliances and the ANSI NFPA 70 National Electrical Code are to be followed in the absence of local code requirements.

This insert must be installed with a continuous chimney liner of 6" diameter extending from the insert to the top of the chimney. The chimney liner must conform to the Class 3 requirements of CAN/ULC-S635, Standard for Lining Systems for Existing Masonry or Factory-built Chimneys and Vents, or CAN/ULC-S640, Standard for Lining Systems for New Masonry Chimneys or UL 1777, Standard for Safety for Chimney Liners.

The insert is not approved for use with a so-called "positive flue connection" to the clay tile of a masonry chimney.

#### 1.2 Certification Label

Since the information given on the certification label attached to the appliance always overrides the information published in any other media, it is important to refer to it to have a safe and compliant installation. The model and the serial number can also be found on the label.

The certification label is located underneath the insert, behind the blower. It is recommended to note the insert serial number on page 1 of the *Wood Insert Installation and Operation Manual*. It will be needed to identify the version of the appliance in the event replacement parts or technical assistance is required.

## 1.3 Emissions and Efficiency

The low smoke emissions produced by the special features inside this insert firebox means that the household will release up to 90% less smoke into the outside environment than if an older conventional insert was used. But there is more to the emission control technologies than protecting the environment.

The smoke released from wood when it is heated contains about half of the energy content of the fuel. By burning the wood completely, this insert releases all the heat energy from the wood instead of wasting it as smoke up the chimney. Also, the features inside the firebox allow control of the air supply meaning controlling the heat output, while maintaining clean and efficient flaming combustion, which boosts the efficient delivery of heat to the home.

The emission control and advanced combustion features of this insert can only work properly if the fuel used is in the correct moisture content range of 15% to 20%. Refer to the following section for suggestions on preparing fuelwood and judging its moisture.

#### 1.4 Materials

The SBI team is committed to protecting the environment, so they do everything they can to use only materials in their products that will have no lasting negative impact on the environment.

The **body** of this insert, which is most of its weight, is carbon steel. Should it ever become necessary many years in the future, almost the entire insert can be recycled into new products, thus eliminating the need to mine new materials.

The **paint** coating on the insert is very thin. Its VOC content (Volatile Organic Compounds) is very low. VOCs can be responsible for smog, so all the paint used during the manufacturing process meets the latest air quality requirements regarding VOC reduction or elimination.

The **air tubes** are stainless steel, which can also be recycled.

The C-Cast **baffle** is made of aluminosilicate fibre material that is compressed with a binder to form a rigid board. C-Cast can withstand temperatures above 2,000 °F. It is not considered vhazardous waste. Disposal at a landfill is recommended.

The **firebrick** is mainly composed of silicon dioxide, also known as silica, a product processed from a mined mineral. It is most commonly found in nature in the form of sand and clay. Disposal at a ecocenter is recommended.

The door and glass **gaskets** are fibreglass which is spun from melted sand. Black gaskets have been dipped into a solvent-free solution. Disposal at a landfill is recommended.

The door **glass** is a 5/32" (4 mm) thick ceramic material that contains no toxic chemicals. It is made of natural raw materials such as sand and quartz that are combined in such a way to form a high temperature glass. Ceramic glass cannot be recycled in the same way as normal glass, so it should not be disposed of with the regular household products. Disposal at a landfill is recommended.

## 2. Fuel

Good firewood has been cut to the correct length for the insert, split to a range of sizes and stacked in an open area until its moisture content is down to 15% to 20%.

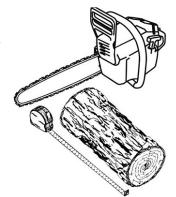
#### DO NOT BURN:

- GARBAGE:
- LAWN CLIPPINGS OR YARD WASTE;
- MATERIALS CONTAINING RUBBER, INCLUDING TIRES;
- MATERIALS CONTAINING PLASTIC;
- WASTE PETROLEUM PRODUCTS, PAINTS OR PAINT THINNERS, OR ASPHALT PRODUCTS;
- MATERIALS CONTAINING ASBESTOS;
- CONSTRUCTION OR DEMOLITION DEBRIS;
- RAILROAD TIES OR PRESSURE-TREATED WOOD;

- MANURE OR ANIMAL REMAINS;
- SALT WATER DRIFTWOOD OR OTHER PREVIOUSLY SALT WATER SATURATED MATERIALS;
- UNSEASONED WOOD; OR
- PAPER PRODUCTS, CARDBOARD, PLYWOOD, OR PARTICLEBOARD. THE PROHIBITION AGAINST BURNING THESE MATERIALS DOES NOT PROHIBIT THE USE OF FIRE STARTERS MADE FROM PAPER, CARDBOARD, SAW DUST, WAX AND SIMILAR SUBSTANCES FOR THE PURPOSE OF STARTING A FIRE IN AN AFFECTED WOOD HEATER.

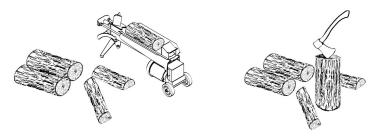
BURNING THESE MATERIALS MAY RESULT IN RELEASE OF TOXIC FUMES OR RENDER THE HEATER INEFFECTIVE AND CAUSE SMOKE.

## 2.1 Tree Species


The tree species the firewood is produced from is less important than its moisture content. The main difference in firewood from various tree species is the density of the wood. Hardwoods are denser than softwoods.

Homeowners with access to both hardwood and softwood use both types for different purposes. Softer woods make good fuel for mild weather in spring and fall because they light quickly and produce less heat. Softwoods are not as dense as hardwoods so a given volume of wood contains less energy. Using softwoods avoids overheating the house, which can be a common problem with wood heating in moderate weather. Harder woods are best for colder winter weather when more heat and longer burn cycles are desirable.

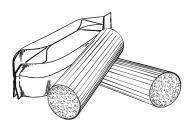
Note that hardwood trees like oak, maple, ash and beech are slower growing and longer lived than softer woods like poplar and birch. That makes hardwood trees more valuable. The advice that only hardwoods are good to burn is outdated. Old, leaky cast iron inserts wouldn't hold a fire overnight unless they were fed large pieces of hardwood. That is no longer true.


## 2.2 Log Length

Logs should be cut at least 1" (25 mm) shorter than the firebox so they fit in easily. Pieces that are even slightly too long makes loading the insert very difficult. The most common standard length of firewood is 16" (400 mm).



#### 2.3 Piece Size

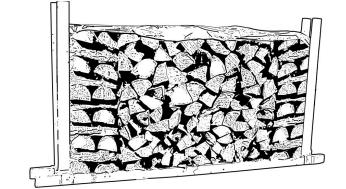

Firewood dries more quickly when it is split. Large unsplit rounds can take years to dry enough to burn. Even when dried, unsplit logs are difficult to ignite because they don't have the sharp edges where the flames first catch.



Wood should be split to a range of sizes, from about 3" to 6" (75 mm to 150 mm) in cross section. Having a range of sizes makes starting and rekindling fires much easier.

## 2.4 Compressed Wood Logs

Compressed wood logs made of 100% compressed sawdust can be burned with caution in the number of these logs burned at once. Do not burn compressed logs made of wax impregnated sawdust or logs with any chemical additives. Follow the manufacturer's instructions and warnings.




## 2.5 Drying Time

Firewood that is not dry enough to burn is the cause of most complaints about wood inserts. Continually burning green or unseasoned wood produces more creosote and involves lack of heat and dirty glass door. Firewood with a moisture content between 15% and 20% will allow the insert to produce its highest possible efficiency.

Here are some facts to consider in estimating drying time:

- Firewood bought from a dealer is rarely dry enough to burn, so it is advisable to buy the wood in spring and dry it yourself;
- Drying happens faster in dry weather than in a damp climate;
- Drying happens faster in warm summer weather than in winter weather;
- Small pieces dry more quickly than large pieces;
- Split pieces dry more quickly than unsplit rounds;



- Softwoods like pine, spruce, poplar, and aspen take less time to dry than hardwoods. they can be dry enough to burn after being stacked to air dry only for the summer months;
- Hardwoods like oak, maple and ash can take one, or even two years to dry fully, especially if the pieces are big;
- Firewood dries more quickly when stacked outside in a location exposed to sun and wind; it takes much longer to dry when stacked in a wood shed;

Use these guidelines to find out if the firewood is dry enough to burn:

- Cracks form at the ends of logs as they dry;
- The wood turns from white or cream colored to grey or yellow;
- Two pieces of wood struck together sounds hollow;
- The face of a fresh cut feels warm and dry;
- The moisture content read by a moisture meter is between 15% to 20%.



## 3. Burning Wood Efficiently

### 3.1 First Use

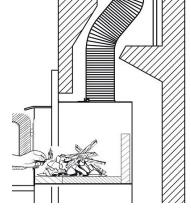
Two things happen when burning the first few fires; the paint cures and the internal components are conditioned. As the paint cures, some of the chemicals vaporize. The vapors are not poisonous, but they smell bad. Fresh paint fumes can also trigger false alarms in smoke detectors. When lighting the heater for the first few times, it may be wise to open doors and windows to ventilate the house.

Burn two or three small fires to begin the curing and conditioning process. Then build bigger and hotter fires until there is no longer paint smell from the insert. As hotter and hotter fires are burned, more of the painted surfaces reach the curing temperature of the paint. The smell of curing paint does not disappear until one or two very hot fires have been burned.

## 3.2 Lighting Fires

Each person heating with wood develops its own favorite way to light fires. Regardless of the method chosen, the goal should be to have a hot fire burning, quickly. A fire that ignites fast produces less smoke and deposits less creosote in the chimney.




Never use gasoline, gasoline-type lantern fuel (naphtha), fuel oil, motor oil, kerosene, charcoal lighter fluid, or similar liquids or aerosols to start or 'freshen up' a fire in this wood insert. Keep all such liquids well away from the insert while it is in use.

Here are three popular and effective ways to ignite wood fires.

#### 3.2.1 Conventional Method

The conventional method to build a wood fire is to crumple 5 to 10 sheets of newspaper and place them in the firebox and hold them in place with ten pieces of kindling wood. The kindling should be placed on and behind the newspaper.

Then add two or three small pieces of firewood. Open the air intake control completely and ignite the newspaper. Leave the door slightly ajar.



Once the fire has ignited, the door can be closed with the air control still fully open. When the kindling is almost completely burned, standard firewood pieces can be added.

Do not leave the insert unattended when the door is slightly open. Always close and latch the door after the fire ignites.

## 3.2.2 The Top Down Method

This method is the opposite of the conventional method and only works properly if well-seasoned wood is used.

Place three or four small, split, dry logs in the firebox. Arrange the kindling wood on the logs in two layers at right angles and place a dozen finely split kindling on the second row.

It is possible to use ragged paper but it may not hold in place since it tends to roll while it is burning. The best is to wrap a sheet on itself, grab the ends of the roll and make a knot. Use four or five sheets of paper tied together and put them on top and around the kindling.

Open the air intake control completely, ignite the paper and close the door.

The down fire method has two advantages over the traditional method: first, the fire does not collapse on itself, and it is not necessary to add wood gradually since the combustion chamber is full before the fire is lit.

## 3.2.3 Two Parallel Logs Method

Two spit logs are placed in the firebox with a few sheets of twisted newspapers in between the logs. Fine kindling is added across the two logs and some larger kindling across those, log cabin style. Newspaper is lit.

## 3.2.4 Using Fire Starters

Commercial fire starters can be used instead of a newspaper. Some of these starters are made of sawdust and wax and others are made of specialized flammable solid chemicals. Always follow the package directions when using.

Gel starters can also be used, but only to light a fire, in a cold combustion chamber without hot embers inside.

## 3.3 Zone Heating

This insert is a space heater, which means it is intended to heat the area it is installed in, as well as spaces that connect to that area, although to a lower temperature. This is called zone heating and it is an increasingly popular way to heat homes or spaces within homes.

Zone heating can be used to supplement another heating system by heating a particular space within a home, such as a basement, a family room or an addition that lacks another heat source.

Houses of moderate size and relatively new construction can be heated with a properly sized and located wood insert. Whole house zone heating works best when the insert is in the part of the house where the family spends most of its time. This is normally the main living area where the kitchen, dining and living rooms are located.

Locating the insert in this area will give the maximum benefit of the heat it produces and will achieve the highest possible heating efficiency and comfort. The space where the most time is spent will be warmest, while bedrooms and basement (if there is one) will stay cooler. In this way, less wood is burned than with other forms of heating.

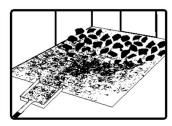
Although the insert may be able to heat the main living areas of the house to an adequate temperature, it is strongly recommended to also have a conventional oil, gas or electric heating system to provide backup heating. The success of zone heating will depend on several factors, including the correct sizing and location of the insert, the size, layout and age of the home and the climate zone. Three-season vacation homes can usually be heated with smaller inserts than houses that are heated all winter.

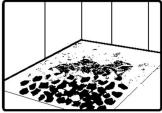
## 3.4 Combustion Cycles

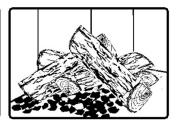
Zone heating is very different than other forms of heating. There will be temperature variations in different parts of the house and there will be temperature variations throughout day and night. This is normal, and for experienced wood burners these are advantages of zone heating wood burning.

Wood heaters don't have a steady heat output. It is normal for the temperature to rise after a new load of wood is ignited and for its temperature to gradually decrease throughout the burning cycle. This increasing and decreasing temperature can be matched with the household routines. For example, the temperature in the area can be cooler when the household is active, and it can be warmer when it is inactive.

Wood burns best in cycles. A cycle starts when a new load of wood is ignited by hot coals and ends when that load has been consumed down to a bed of charcoal about the same size as it was when the wood was loaded.


Trying to produce a steady heat output by placing a single log on the fire at regular intervals is not recommended. Always place at least three, and preferably more pieces on the fire at a time so that the heat radiated from one piece helps to ignite the pieces next to it. Each load of wood should provide several hours of heating. The size of each load may vary depending on the amount of heat required.


Burning in cycles means the loading door does not need to be opened while the wood is flaming. This is an advantage since it is preventing smoke leaking from the heater when the door is opened as a full fire is burning. This is especially true if the chimney is on the outside wall of the house.


If the door must be opened while the fire is flaming, fully open air control for a few minutes then open the door slowly.

## 3.5 Rekindling a Fire

When the temperature of the room is lower and all that remains is embers, it is time to reload. Remove excess ash from the front of the firebox and bring the ashes forward. Place a new load of wood on, and at the back of the embers. Open the air control completely and close the door.







Raking the coals is useful for two reasons. First, it brings them near where most of the combustion air enters the firebox. This will ignite the new load quickly. Secondly, the charcoal will not be smothered by the new load of wood. When the embers are simply spread inside the combustion chamber, the new load smoulder for a long time before igniting.

Close the air control only when the firebox is full of bright turbulent flames, the wood is charred, and its edges are glowing.

The heater should not be left unattended during ignition and the fire should not burn at full intensity for more than a few minutes.

When lighting a new load, the appliance produces a heat surge. This heat surge is pleasant when the room temperature is cool but can be unpleasant when the room is already warm. Therefore, it is best to let each load of wood burn completely so that the room cools down before putting a load of wood back on.

## 3.6 Removing Ashes

Ash should be removed from the firebox every two to three days of full time heating. Ash should not accumulate excessively in the firebox since it will affect the proper operation of the appliance.

The best time to remove ash is in the morning, after an overnight fire when the insert is relatively cold, but there is still a little chimney draft to draw the ash dust into the insert and prevent going out into the room.

Ashes almost always contain live embers that can stay hot for days and which release carbon monoxide gas.

Ashes should be placed in a tightly covered metal container. The container must be placed on a non-combustible floor or on the ground well away from all combustible materials.

If the ashes are disposed of by burial in soil or otherwise locally dispersed, they should be kept in a closed metal container until they are completely cooled. No other waste should be placed in this container.



NEVER STORE ASHES INDOORS OR IN A NON-METALLIC CONTAINER OR ON A WOODEN DECK.

#### 3.7 Air Intake Control

Once the firewood, firebox and chimney are hot, air intake can be reduced to achieve a steady burn.

As the air intake is reduced, the burn rate decreases. This has the effect of distributing the thermal energy of the fuel over a longer period of time. In addition, the flow rate of exhaust through the appliance and flue pipe slows down, which increases the duration of the energy transfer of the exhaust gases. As the air intake is reduced, the flame slows down.

If the flames diminish to the point of disappearing, the air intake has been reduced too early in the combustion cycle or the wood used is too wet. If the wood is dry and the air control is used properly, the flames should decrease, but remain bright and stable.

On the other hand, too much air can make the fire uncontrollable, creating very high temperatures in the unit as well as in the chimney and seriously damaging them. A reddish glow on the unit and on the chimney components indicates overheating. Excessive temperatures can cause a chimney fire.

The images shown are for guidance only and may differ from your product, but the operation remains the same. See the <u>EPA Loading Section</u> of the *Insert Installation and Operation Manual* for a specific overview of the air control of your appliance.

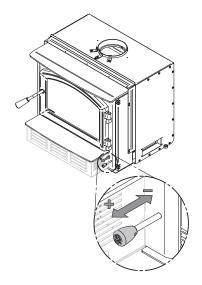



Figure 1: Air Intake Control

## 3.8 Fire Types

Using the air intake control is not the only way to match the insert heat output to the desired temperature in the house. A house will need far less heating in October than in January to maintain a comfortable temperature. Filling the firebox full in fall weather will overheat the space. Otherwise, the combustion rate will have to be reduced to a minimum and the fire will be smoky and inefficient. Here are some suggestions for building fires suitable for different heating needs. The method used to certify your appliance according to EPA Standards is presented in the EPA Charging Section of the Wood Insert Installation and Operation Manual of your appliance.

## 3.8.1 Flash Fire

To build a small fire that will produce a low heat output, use small pieces of firewood and load them crisscross in the firebox.

The pieces should only be 3" to 4" in diameter. After raking the coals, lay two pieces parallel to each other diagonally in the firebox and lay two more across them in the other direction. Open the air control fully and only reduce the air after the wood is fully flaming.

This kind of fire is good for mild weather and should provide enough heat for up to four hours. Small fires like this are a good time to use softer wood species and avoid overheating the house.

## 3.8.2 Low and Long Output Fires

For a fire that will last up to eight hours but will not produce intense heat, use soft wood and place the logs compactly in the firebox. Before reducing the air intake, the load will have to burn at full heat for long enough for charring the surface of the logs. The flame must be bright before letting the fire burn by itself.

## 3.8.3 High Output Fires

When heating needs are high during cold weather, the fire should burn steadily and brightly. This is the time to use larger pieces of hardwood. Place the biggest pieces at the back of the firebox and place the rest of the pieces compactly. A densely built fire like this will produce the longest combustion this insert is capable of. Special attention must be paid when building fires like this since if the air intake is reduced too quickly, the fire could smoulder. The wood must be flaming brightly before leaving the fire to burn.

## 3.8.4 Maximum Burn Cycle Times

The burn cycle time is the period between loading wood on a coal bed and the consumption of that wood back to a coal bed of the same size. The flaming phase of the fire lasts for roughly the first half of the burn cycle and the second half is the coal bed phase during which there is little or no flame. The burn time expected from an insert, including both phases, will vary depending on a number of things, such as:

- firebox size,
- the amount of wood loaded,
- the species of wood,
- the wood moisture content,

- the size of the space to be heated,
- the climate zone where the house is, and
- the time of the year.

The table below gives an approximate maximum burn cycle times, based on firebox volume.

Table 1 : Approximate Maximum Burn Cycle Time

| FIREBOX VOLUME       | MAXIMUM BURN CYCLE TIME |
|----------------------|-------------------------|
| <1.5 cubic feet      | 3 to 5 hours            |
| 1.5 c.f. to 2.0 c.f  | 5 to 6 hours            |
| 2.0 c.f. to 2.5 c.f. | 6 to 8 hours            |
| 2.5 c.f. to 3.0 c.f. | 8 to 9 hours            |
| >3.0 c.f.            | 9 to 10 hours           |

A longer burning time is not necessarily an indication of efficient insert operation. It is preferable to build a smaller fire that will provide three or four hours of heating than to fully load the firebox for a much longer burn. Shorter burn cycles make it easier to match the heat output of the insert to the heat demand of the space.

## 3.8.5 Logs Orientation

In a relatively square firebox, the wood can be loaded north-south (ends of the logs visible) or east-west (sides of the logs visible).

North-south loads allow more wood to be loaded at the same time. On the other hand, they break into smaller pieces faster. North-south loading is good for high output, long lasting fires for cold weather.

East-west loads allow a limited amount of wood since too many logs could cause them to fall on the glass. East-west loads, placed in a compact way, take a long time before breaking down. They are excellent for low-intensity, long-lasting fires in relatively mild weather.

#### 3.8.6 Carbon Monoxide

When there is no more flame in the firebox and there are still some unburned logs, check outside if there is smoke coming out of the chimney. If this is the case, it means that the fire is out of air to burn properly. In this situation, the level of CO increases and it is important to react. Open the door slightly and move the logs with a poker. Create a passage for the air below by making a trench with the ember bed. Add small pieces of wood to restart the combustion.

#### 4. Maintenance

This heater will give many years of reliable service if used and maintained properly. Internal components of the firebox such as firebricks or refractory panels, baffle and air tubes will wear over time. Defective parts should always be replaced with original parts see « Exploded diagram and parts list » in the *Wood Insert Installation and Operation Manual*.

To avoid premature deterioration, follow the lighting and reloading procedures in section «3. Burning Wood Efficiently» and also avoid letting the heater run with the air intake fully open for entire burn cycles. **Insert** 

## 4.1 Wood Insert

## 4.1.1 Cleaning and Painting

Painted and plated surfaces can be wiped down with a soft, damp cloth. If the paint is scratched or damaged, it is possible to repaint the insert with a heat-resistant paint. **Do not clean or paint the insert when it is hot.** Before painting, the surface should be sanded lightly with sandpaper and then wiped off to remove dust. Apply two thin layers of paint.

## 4.1.2 Refractory Material and Baffle

Inspect the firebricks or the refractory panels and the baffle for damage periodically and replace anything that is cracked or broken.

Operation of the heater with a cracked or missing baffle may cause unsafe temperatures and hazardous conditions and will void the warranty.

#### 4.2 Glass Door

## 4.2.1 Cleaning

Under normal conditions, the door glass should stay relatively clear. If the firewood is dry enough and the operating instructions in this guide are followed, a whitish, dusty deposit will form on the inner surface of the glass after a week or so of use. This is normal and can be easily removed when the heater is cold by wiping with a damp cloth or paper towel and then drying.

When the insert runs at a low combustion rate, light brown stains may form, especially in the lower corners of the glass. This indicates that the fire has been smoky and some of the smoke has condensed on the glass. It also indicates incomplete combustion of the wood, which also means more smoke emissions and faster formation of creosote in the chimney.

The deposits that form on the glass are the best indication of the fuel quality and success in properly using the insert. These stains can be cleaned with a special wood insert glass cleaner. **Do not use abrasive products to clean the glass.** 

The goal should be having a clear glass with no brown stains. If brown stains appear regularly on the glass, something about the fuel or the operating procedure needs to be changed. When brown streaks are coming from the edge of the glass, it is time to replace the gasket around the glass. Follow the instructions in section « 3.1.3 Gasket » in the Wood Insert Installation and Operation Manual. Always replace the gasket with a genuine one.



Do not clean the glass when the insert is hot.

Do not abuse the glass door by striking or slamming shut.

Do not use the insert if the glass is broken.

## 5. Operating the Insert

This wood heater has a manufacturer-set minimum low burn rate that must not be altered. It is against federal regulations to alter this setting or otherwise operate this wood heater in a manner inconsistent with operating instructions in this guide.

Before using the insert, the following steps should be completed, you will find the procedures installation in the *Wood Insert Installation and Operation Manual*:

- Handle installation.
- Installation of bricks in the product.
- Installation of ash shelf and blower.
- Facades installation.

The following step is optional:

• Air inlet installation.

#### 5.1 Blower

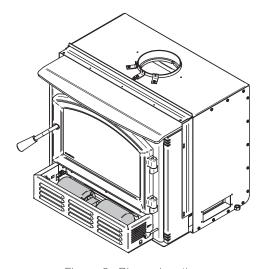



Figure 2: Blower location

A blower is already installed on this insert. It is located underneath the ash lip, in front of the insert. Its function is to increase airflow through the heat exchanger and improve hot air circulation in the room. When used regularly, the blower can provide a small increase in efficiency, up to 2%. However, the use of a blower should not be used as a way to gain more output from an insert that is undersized for the space it is intended to heat.



Ensure the blower cord is not in contact with any surface of the insert to prevent electrical shock or fire damage. Do not run cord beneath the insert.

The blower has a rheostat that can be adjusted in three different positions; either from high (HI) to low (LO) or closed (OFF).

Allow the insert to reach operating temperature (approximately one hour) before turning on the blower, since increased airflow from the blower will remove heat and affect the start up combustion efficiency.

The blower is also equipped with a heat sensor. When the blower **OFF** is ON, it will start automatically when the insert is hot enough and it will stop when the insert has cooled down. Therefore, the blower speed control can be left at the desired setting.

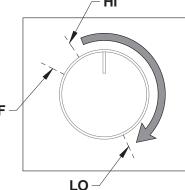



Figure 3: Blower rheostat

#### 5.2 Fire Screen

Some stoves have been tested for use with the door open with a rigid firescreen (In the United States or in provinces with a particulate emissions limit (e.g.: US EPA), the use of open-door wood stoves with a rigid firescreen is prohibited), this option is sold separately (to confirm that your product has been tested with, please refer to the Wood Insert Installation and Operation Manual). The fire screen must be properly secured on the insert to avoid any risk of sparks damaging the flooring. When the fire screen is in use, do not leave the insert unattended to respond promptly in the event of smoke spillage into the room. Potential causes of smoke spillage are described in Section «7. The Venting System» of this guide. See «Optional fire screen installation» in the user guide and the Wood Insert Installation and Operation Manual for installation instructions.

OPERATING THE INSERT WITH A FIRE SCREEN INCREASES POSSIBILITIES OF GENERATING CARBON MONOXIDE. CARBON MONOXIDE IS AN ODOURLESS GAS THAT IS HIGHLY TOXIC WHICH CAN CAUSE DEATH AT HIGH CONCENTRATION IN AIR.

## 5.3 Exhaust System

Wood smoke can condense inside the chimney, forming a inflammable deposit called creosote. If creosote builds up in the system, it can ignite when a hot fire is burned in the insert. A very hot fire can progress to the top of the chimney. Severe chimney fires can damage even the best chimneys. Smouldering, smoky fires can quickly cause a thick layer of creosote to form. When the insert is operated properly, the exhaust from the chimney is mostly clear and creosote builds up more slowly.

Creosote - Formation and Need to Removal

When wood is burned slowly, it produces tar and other organic vapors, which combine with expelled moisture to form creosote. The creosote vapors condense in the relatively cooler chimney flue of a slow-burning fire. As a result, creosote residue accumulates on the flue lining. When ignited this creosote makes an extremely hot fire.

The chimney connector and chimney should be inspected at least once every two months during the heating season to determine if a creosote buildup has occurred. If creosote has accumulated (½" [3mm] or more it should be removed to reduce the risk of a chimney fire»

#### 5.3.1 Cleaning frequency

It is not possible to predict how much or how quickly creosote will form in the chimney. It is important, therefore, to check the build-up in the chimney monthly until the rate of creosote formation is determined. Even if creosote forms slowly in the system, the chimney should be cleaned and inspected at least once each year.

Establish a routine for the fuel, wood burner and firing technique. Check daily for creosote build-up until experience shows how often you need to clean to be safe. Be aware that the hotter the fire, the less creosote is deposited and weekly cleaning may be necessary in mild weather even though monthly cleaning may be enough in the coldest months. Contact your local municipal or provincial fire authority for information on how to handle a chimney fire. Have a clearly understood plan to handle a chimney fire.

## 5.3.2 Sweeping the Chimney

Chimney sweeping can be a difficult and dangerous job. People with no chimney sweeping experience will often prefer to hire a professional chimney sweep to inspect and clean the system for the first time. After seeing the cleaning process, some will choose to do it themselves.

The chimney should be checked regularly for creosote build-up. Inspection and cleaning of the chimney can be facilitated by removing the baffle. See « Air tubes and baffle installation » in the *Wood Insert Installation and Operation Manual* for more details.



## 5.3.3 Chimney Fire

Regular chimney maintenance and inspection can prevent chimney fires. If you have a chimney fire, follow these steps:

- 1. Close the insert door and the air intake control:
- 2. Alert the occupants of the house of the possible danger;
- 3. If you require assistance, alert the fire department;
- 4. If possible, use a dry chemical fire extinguisher, baking soda or sand to control the fire. *Do not use water*, as it may cause a dangerous steam explosion;

Do not use the appliance again until the insert and its chimney have been inspected by a qualified chimney sweep or a fire department inspector.

## 6. Masonry Fireplace Requirements

The masonry fireplace must meet the minimum requirements found in the building code enforced locally, or the equivalent, for a safe installation. Contact the local building inspector for requirements in the area. An inspection of the fireplace should include the following:

## 6.1 Fireplace and Chimney Condition

The masonry fireplace and chimney should be inspected prior to installation, to confirm that they are free from cracks, loose mortar, creosote deposits, blockage, or other signs of deterioration. If evidence of deterioration is noted, the fireplace or chimney should be upgraded and cleaned prior to installation.

Masonry or steel, including the damper plate, may be removed from the smoke shelf and adjacent damper frame if necessary to accommodate the insert's chimney liner, provided that their removal will not weaken the structure of the fireplace and chimney, and will not reduce protection for combustible materials to less than what is required by the building code.

Removal of any parts, which render the fireplace unfit for use with solid fuel, requires the fireplace to be permanently labelled by the installer as being no longer suitable for solid fuel, until the removed parts are replaced and the fireplace is restored to its original certified condition. Also, any air vents, grilles, or louvers that allow air circulation around the fireplace must not be removed or blocked.

## 6.2 Chimney Caps

Mesh type chimney caps must have provision for regular cleaning, or the mesh should be removed to eliminate the potential of plugging.

## 6.3 Adjacent Combustibles

The fireplace should be inspected to make sure that there is adequate clearance to combustibles, both exposed combustibles to the top, side, and front as well as concealed combustibles, in the chimney and mantle area. The local inspector should have information on whether older fireplaces are of adequate construction.

## 6.4 Masonry Fireplace Throat Damper

If the fireplace draft control system is to remain in the masonry fireplace, it must be locked open for easy access to the chimney liner or removed entirely. If it is removed from the masonry hearth, the notice plate 27009 must be installed in a visible place, inside the masonry hearth. The plate can be found in the owner's manual kit.

THIS FIREPLACE MAY HAVE BEEN ALTERED TO ACCOMMODATE A FIREPLACE INSERT AND SHOULD BE INSPECTED BY A QUALIFIED PERSON PRIOR TO RE-USE AS A CONVENTIONAL FIREPLACE,

CE FOYER A PEUT-ÊTRE ÉTÉ MODIFIÉ AFIN DE RECEVOIR UN 
APPAREIL ENCASTRABLE, IL DOIT DONC ÊTRE VÉRIFIÉ PAR UNE
PERSONNE QUALIFIÉE AFIN DE DÉTERMINER SA CONFORMITÉ AU
CODE LOCAL AVANT DE LE RÉUTILISER.

## 7. The Venting System

## 7.1 General

The venting system, made of the chimney and the liner inside the chimney, acts as the engine that drives the wood heating system. Even the best insert will not function safely and efficiently as intended if it is not connected to a suitable chimney and liner system.

The heat in the flue gases that pass from the insert into the chimney is not waste heat. This heat is what the chimney uses to make the draft that draws in combustion air, keeps smoke inside the insert and safely vents exhaust to outside. The heat in the flue gas can be seen as the fuel the chimney uses to create draft.

#### 7.2 Block-off Plate

To reduce the possibility of a cold air back draft from the masonry chimney into the room, the installation of a sheet metal block-off plate (A) is recommended. When fabricating the block-off plate, cut the pipe hole slightly larger than the liner diameter and pass the liner through the hole. Install the block-off plate and secure it with masonry nails. Seal the joints between the plate and the chimney with high temperature silicone and use stove cement to seal between the pipe and the plate.

In Canada, the CSA B365 Standard permits "Roxul" type wool to be stuffed around the liner as it passes through the throat area as an alternative to a sheet metal block-off plate. However, this method is less efficient than using a plate.

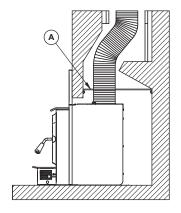



Figure 4: Block-off Plate



Figure 5: Block-off Plate

## 7.3 Suitable Chimneys

This wood insert will provide optimum efficiency and performance when connected to a 6" diameter chimney liner. The connection to a chimney having a diameter of at least 5" (Canada only) is permitted if it allows the proper venting of combustion gases and that such application is verified and authorized by a qualified installer. Otherwise, the diameter of the flue should be 6". The reduction of the liner diameter to less than 6" should only be done if the total height of the masonry chimney is greater than 20 feet.

## 7.4 Chimney Liner Installation

The use of a chimney liner (rigid or flexible) is recommended to ensure the best performance. To ensure an optimal draft, it is also strongly recommend adding a minimum of 12" rigid liner between the top of the masonry chimney and the rain cap. In all cases, liners should be installed in accordance with the liner manufacturer's instructions, including instructions for extension above the masonry.

Use chimney liners listed UL 1777, ULC S635 or CAN/ULC S640.

In order to connect the insert to the liner, refer to section « 7.5 Liner Connection ».

#### ATTENTION INSTALLER:

When positioning the unit in a fireplace opening, prior to the flue installation, install the insert into the opening until the top lip of air jacket is flush with fireplace facing.

If lag bolts or anchors are to be used to secure the insert, the holes location should be marked with the unit in place. Remove the insert and locate the anchors.

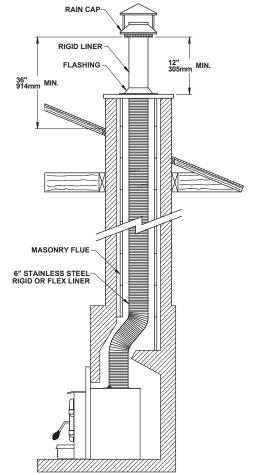



Figure 6: Liner Installation

## 7.5 Liner Connection

Two options are possible to connect the liner to the insert:

## 7.5.1 Liner Starter Adaptor

Install the chimney liner starter adapter, provided with the chimney liner. Follow the chimney liner starter adapter manufacturer's instructions.

In order to connect the chimney liner starter adapter to the flue outlet, install three brackets with the three screws, all provided in the user manuals kit, on top of the insert. The long end of the brackets must be attached to the insert. Insert the chimney liner into the flue collar of the unit and secure the liner to the brackets with three self-tapping screws (not included).

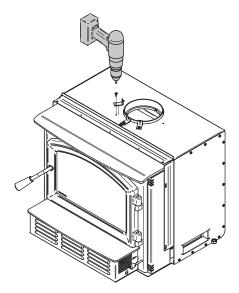



Figure 7: Securing the brackets

The dealer may offer a liner fastening system, sold separately. Follow the installation instructions provided with the liner fastening system.

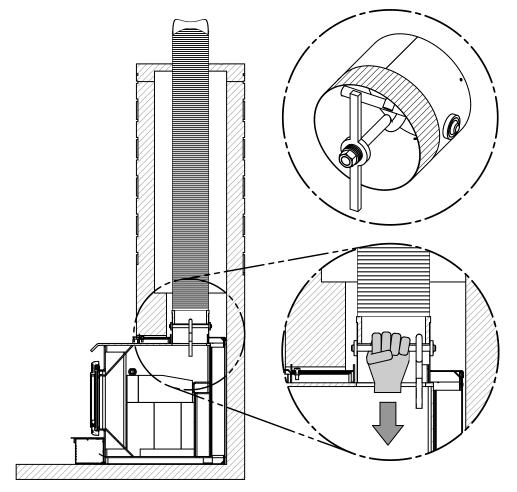
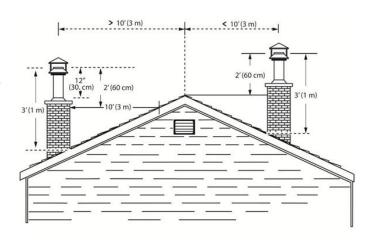




Figure 8: Liner fastening system

## 7.6 Minimum Chimney Height

The top of the chimney should be tall enough to be above the air turbulence caused when wind blows against the house and its roof. The chimney must extend at least 3 ft. (1 m) above the highest point of contact with the roof, and at least 2 ft. (60 cm) higher than any roof line or obstacle within a horizontal distance of 10 ft. (3 m).



## 7.7 Chimney Location

Because the venting system is the engine that drives the wood heating system, it must have the right characteristics. The signs of bad system design are cold back drafting when there is no fire in the insert, slow kindling of new fires, and smoke roll-out when the door is open for loading.

When it is cold outside, the warm air in the house is buoyant so it tends to rise. This creates a slight pressure difference in the house. Called 'stack effect', it produces a slightly negative pressure in the lower part of the house (compared to the outside) and a slightly positive pressure zone in the high part of the house. If there is no fire burning in a heater connected to a chimney that is shorter than the warm space inside the house, the slight negative pressure in the lower part of the house will compete against the desired upward flow in the chimney. This occurs for the two following reasons:

First, the chimney runs up the outside of the house, so the air in it is colder and denser than the warm air in the house. And second, the chimney is shorter than the heated space of the house, meaning the negative pressure in the lower part of the house will draw cold air down the chimney, through the insert and into the room. Even the finest insert will not work well when connected to this chimney.




Figure 9: Chimney location in the house

Page 24

## 7.8 Supply of Combustion Air

In Canada, wood inserts are not required to have a combustion air supply from outside. Research has shown that outside air supply do not compensate for the depressurization of the house and may not be sufficient to provide a supply of combustion air in windy weather. However, to reduce the risks against smoke spillage due to house depressurization, a carbon monoxide (CO) detector is required in the room where the insert is installed. The CO detector will provide warning if for any reason the wood insert fails to function correctly.

## 7.8.1 Air Supply in Conventional Houses

The safest and most reliable supply of combustion air for a wood insert is from the room in which it is installed. Room air is already preheated so it will not chill the fire, and its availability is not affected by wind pressures on the house. Contrary to commonly expressed concerns, almost all tightly sealed new houses have enough natural leakage to provide a small amount of air needed by the insert. The only case in which the wood insert may not have adequate access to combustion air is if the operation of a powerful exhaust device (such as a kitchen range exhaust) causes the pressure in the house to become negative relative to outdoors.

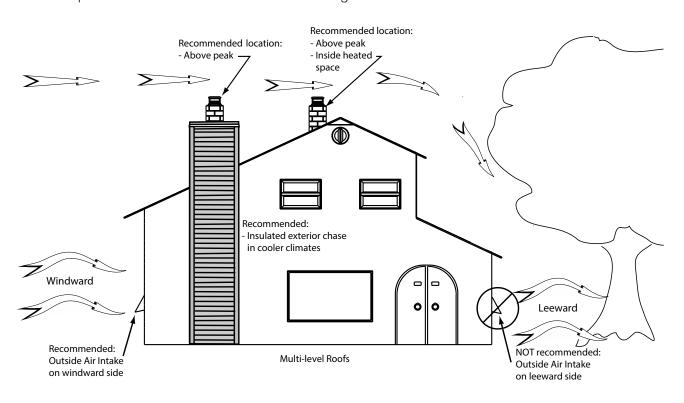



Figure 10: Air supply in conventional houses

If an air intake is installed through the wall of the house, its pressure can vary during windy weather. If there are changes in wood insert performance in windy weather, and in particular if smoke puffs from the insert, the air duct should be disconnected from the insert to determine if it is the cause of the problem. In some windy conditions, negative pressure at the duct weather hood outside the house wall may draw hot exhaust gases from the insert backwards through the duct to outdoors. Check the outdoor air duct for soot deposits when the full system is cleaned and inspected at least once each year.

This document is available for free download on the manufacturer's website. It is a copyrighted document. Resale is strictly prohibited. The manufacturer may update this document from time to time and cannot be responsible for problems, injuries, or damages arising out of the use of information contained in any document obtained from unauthorized sources.



Stove Builder International inc. 250, rue de Copenhague, St-Augustin-de-Desmaures (Québec) Canada G3A 2H3

418-908-8002

www.sbi-international.com tech@sbi-international.com



REFER TO INTERTEK'S DIRECTORY OF BUILDING PRODUCTS FOR DETAILED INSTRUCTIONS SE RÉFÉRER AU REPERTOUR DES PRODUITS HOMOLOGUÉS D'INTERTEK POUR PLUS D'INFORMATION

US CONTACT LOCAL BUILDING OFFICIALS ABOUT THE RESTRICTIONS AND MISTALLATION INSPECTION IN YOUR AREA.
COMMUNIQUER AVEC LES AUTORITÉS LOCALES DU BÂTIMENT ET DE LA
PRÉVENTION DES INCENDIES AU SUIET DES RESTRICTIONS D'INSTALLATION

DANS VOTRE SECTEUR.

STANDARDS / NORMES D'ESSAI: Certified to / Certifié selon ULC S628 Certified to / Certifié selon UL 1482 Certified to / Certifié selon UL 737

Control number: 4002461 (July/Juillet 2021)

Certified to/Certifié selon CSA 8415-1-10 Certified to/Certifié selon ASTM E3053-17 Certified to/Certifié selon ASTM E2515-11 (R2017)

#### MODEL / MODÈLE : ARCHWAY 1500

Serial Number No. de Série

1

INSTALL AND USE ONLY IN ACCORDANCE WITH SBI STOVE BUILDER INTERNATIONAL INSTALLATION AND OPERATION INSTRUCTIONS. L'INSTALLATION ET L'OPERATION DOIT SE FAIRE SELON LES INSTRUCTIONS D'INSTALLATION ET D'UTILISATION DE SBI FABRICANT DE POÊLES INTERNATIONAL.

#### PREVENT HOUSE FIRES

- Install and use in accordance with the manufacturer's installation and operating instructions.
- Contact local building or fire officials about restrictions and installation inspection in your area
- Use with solid wood fuel only. Do not use other fuels.
- For safety, keep screen doors or glass doors fully closed.
- Do not overfire unit.
- Replace with only ceramic glass 4mm thick.
- Connect to a code-approved masonry chimney or listed factory-built fireplace chimney with a direct flue connector into the first chimney liner section
- The non-combustible floor protection in front of the unit should extend 16 inches (406 mm) (USA), 18 inches (457 mm) (CANADA) without a R value even if the hearth elevation is equal with the combustible floor.
- Do not connect this unit to a chimney serving another appliance,
- Install only in masonry fireplaces. Do not remove bricks or mortar from masonry fireplace
- Inspect and clean chimney frequently. Under certain conditions of use, creosote buildup may occur rapidly.
- Do not use grate or elevate fire. Build wood fire directly on hearth.
- This wood heater needs periodic inspection and repair for proper operation. Consult the owner's manual for further information. It is against US federal regulations to operate this wood heater in a manner inconsistent with the operating instructions in the owner's manual.

#### PRÉVENEZ LES INCENDIES

- Installer et utiliser conformément au manuel d'utilisation du fabricant.
- Contacter les autorités de votre localité ayant juridiction concernant les restrictions et inspection d'installation.
- Utiliser avec le bois seulement. Ne pas utiliser d'autres combustibles.
- Utiliser l'appareil la porte fermée ou ouverte avec le pare-étincelle en place uniquement. Ouvrir la porte ou retirer le pare-étincelle seulement lors du chargement.
- Ne pas raccorder à un conduit de fumée servant déjà pour un autre appareil.
- Remplacer la vitre seulement avec un verre céramique de 4mm d'épaisseur.
- Raccorder à une cheminée de maçonnerie respectant les codes ou à une cheminée préfabriquée homologuée, directement à la première section de cheminée gainée.
- La protection de plancher incombustible au devant de l'encastrable doit se prolonger de 16 pouces (406 mm) (USA), 18 pouces (457 mm) (CANADA), sans facteur d'isolation R au devant de l'encastrable même si l'âtre est égale au plancher combustible
- Installer seulement dans un foyer de maçonnerie. Ne pas enlever les briques ou le mortier du foyer de maçonnerie.
- Inspecter et nettoyer la cheminée fréquemment, Dans certaines conditions, la formation de créosote peut être rapide
- Ne pas utiliser de chenets ou de grilles pour élever le feu. Préparer le feu directement sur l'âtre.
- Cet appareil de chauffage requiert des instructions et réparations périodiques. Consulter le manuel de l'utilisateur pour plus d'information. Opérer cet appareil de chauffage de façon inconsistente par rapport au manuel de l'utilisateur consiste une violation de la loi fédérale (USA),

WARNING: This product can expose you to carbon monoxide, which is known to the State of California to cause cancer, birth defects or other reproductive harm

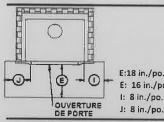
(For more information go to www.p65warnings.ca.gov)

#### LISTED SOLID FUEL BURNING INSERT APPLIANCE

#### APPAREIL ENCASTRABLE À COMBUSTIBLE SOLIDE HOMOLOGUÉ

FOR USE WITH WOOD ONLY

POUR UTILISATION AVEC BOIS SEULEMENT


MINIMUM CLEARANCES TO COMBUSTIBLE MATERIALS / DÉGAGEMENTS MINIMUM AUX MATÉRIAUX COMBUSTIBLES

Floor - Ceiling / Plancher - Plafond: 72 in./po. (183 cm)



Blower / Ventilateur: 115VOLTS, 0.8 AMPS, 60Hz

- A Sidewall / Mur latéral
- D Combustible shelf (from floor) /
- D Tablette combustible (du sol)
- B Combustible side surround / Parement latéral combustible :
- C Combustible top surround / Parement supérieur combustible :
- A: 16 in./po. in (406 mm)
- D: 34 in./po.in (864 mm)
- B: 1 in./po.in (25 mm)
- C: 1 in./po. in (25 mm)



E:18 in./po. E: 16 in./po. I: 8 in./po.

(457 mm) CANADA (406 mm) USA (203 mm) CANADA (203 mm) USA

U.S. ENVIRONMENTAL PROTECTION AGENCY Certified to comply with 2020 particulate emission standards using cordwood. AGENCE DE PROTECTION DE L'ENVIRONNEMENT DES É.-U. Conforme aux normes d'émission de particules de 2020 avec bûche de hois

Weighted average emission rate / Moyenne pondérée des émissions: 1.5 g/h

Tested and certified in compliance with CFR 40 part 60, subpart AAA, section 60.534(a)(1(ii))

## CAUTION

- HOT WHILE IN OPERATION.
- DO NOT TOUCH. KEEP CHILDREN, CLOTHING AND FURNITURE AWAY.
- CONTACT MAY CAUSE SKIN BURNS. SEE NAME-PLATE AND INSTRUCTIONS.

## ATTENTION

- CHAUD EN FONCTIONNEMENT.
- NE PAS TOUCHER. GARDER LES ENFANTS, LES VÊTEMENTS ET LES MEUBLES ÉLOIGNÉS.
- UN CONTACT AVEC LA PEAU PEUT OCCASIONNER DES BRÜLURES. VOIR LES INSTRUCTIONS.

Made in St-Augustin-de-Desmaures (Qc), Canada Fabriqué à St-Augustin-de-Desmaures (Qc), Canada



24/05/2022 (#test) 27881





REFER TO INTERTEK'S DIRECTORY OF BUILDING PRODUCTS FOR DETAILED INSTRUCTIONS
SE RÉFÉRER AU RÉFERIOIRE DES PRODUITS HOMOLOGUÉS D'INTERTEK POUR PLUS D'INFORMATION CONTACT LOCAL BUILDING DIFICULS ABOUT THE RESTRICTIONS AND INSTALLATION INSPECTION IN YOUR AREA.

COMMUNIQUER AVEC LES AUTORITÉS LOCALES DU BÂTIMENT ET DE LA PRÉVENTION DES INCENDIES AU SUJET DES RESTRICTIONS D'INSTALLATION DANS VOTRE SECTEUR.

STANDARDS / NORMES D'ESSAI: Certified to / Certifié selon ULC S628 Certified to / Certifié selon UL 1482

Control number: 4002461 (July/Juillet 2021)

Certified to / Certifié selon UL 737 Certified to/Certifié selon CSA B415.1-10 Certified to/Certifié selon ASTM E3053-17 Certified to/Certifié seion ASTM E2515-11 (R2017)

## MODEL / MODÈLE : BLUE RIDGE 150-I

Serial Number No. de Série

1

INSTALL AND USE ONLY IN ACCORDANCE WITH SBI STOVE BUILDER INTERNATIONAL INSTALLATION AND OPERATION INSTRUCTIONS. L'INSTALLATION ET L'OPERATION DOIT SE FAIRE SELON LES INSTRUCTIONS D'INSTALLATION ET D'UTILISATION DE SBI FABRICANT DE POÊLES INTERNATIONAL.

#### PREVENT HOUSE FIRES

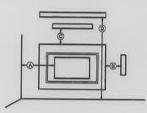
- Install and use in accordance with the manufacturer's installation and operating instructions,
- Contact local building or fire officials about restrictions and installation inspection in your area.
- Use with solid wood fuel only. Do not use other fuels.
- For safety, keep screen doors or glass doors fully closed.
- Do not overfire unit.
- Replace with only ceramic glass 4mm thick.
- Connect to a code-approved masonry chimney or listed factory-built fireplace chimney with a direct flue connector into the first chimney liner section.
- The non-combustible floor protection in front of the unit should extend 16 inches (406 mm) (USA), 18 inches (457 mm) (CANADA) without a R value even if the hearth elevation is equal with the combustible floor.
- Do not connect this unit to a chimney serving another appliance.
- Install only in masonry fireplaces. Do not remove bricks or mortar from masonry fireplace.
- inspect and clean chimney frequently. Under certain conditions of use, creosote buildup may occur rapidly,
- Do not use grate or elevate fire, Build wood fire directly on hearth.
- This wood heater needs periodic inspection and repair for proper operation. Consuit the owner's manual for further information. It is against US federal regulations to operate this wood heater in a manner inconsistent with the operating instructions in the owner's manual.

#### PRÉVENEZ LES INCENDIES

- Installer et utiliser conformément au manuel d'utilisation du fabricant
- Contacter les autorités de votre localité ayant juridiction concernant les restrictions et inspection d'installation.
- Utiliser avec le bois seulement. Ne pas utiliser d'autres combustibles
- Utiliser l'appareil la porte fermée ou ouverte avec le pare-étincelle en place uniquement. Ouvrir la porte ou retirer le pare-étincelle seulement lors du chargement.
- Ne pas raccorder à un conduit de fumée servant déjà pour un autre appareil,
- Remplacer la vitre seulement avec un verre céramique de 4mm d'épaisseur.
- Raccorder à une cheminée de maçonnerie respectant les codes ou à une cheminée préfabriquée homologuée, directement à la première section de cheminée gainée.
- La protection de plancher incombustible au devant de l'encastrable doit se prolonger de 16 pouces (406 mm) (USA), 18 pouces (457 mm) (CANADA), sans facteur d'isolation R au devant de l'encastrable même si l'âtre est égale au plancher combustible.
- Installer seulement dans un foyer de maçonnerie. Ne pas enlever les briques ou le mortier du foyer de maçonnerie
- Inspecter et nettoyer la cheminée fréquemment. Dans certaines conditions, la formation de créosote peut être rapide.
- Ne pas utiliser de chenets ou de grilles pour élever le feu. Préparer le feu directement sur l'âtre
- Cet appareil de chauffage requiert des instructions et réparations périodiques. Consulter le manuel de l'utilisateur pour plus d'information. Opérer cet appareil de chauffage de façon inconsistente par rapport au manuel de l'utilisateur consiste une violation de la loi fédérale (USA)



WARNING: This product can expose you to carbon monoxide, which is known to the State of California to cause cancer, birth defects or other reproductive harm (For more information go to www.p65warnings.ca.gov)


### LISTED SOLID FUEL BURNING INSERT APPLIANCE APPAREIL ENCASTRABLE À COMBUSTIBLE SOLIDE HOMOLOGUÉ

FOR USE WITH WOOD ONLY

POUR UTILISATION AVEC BOIS SEU! EMENT

MINIMUM CLEARANCES TO COMBUSTIBLE MATERIALS / DÉGAGEMENTS MINIMUM AUX MATÉRIAUX COMBUSTIBLES

Floor - Ceiling / Plancher - Plafond: 72 in./po. (183 cm)



Blower / Ventilateur: 115VOLTS, 0.8 AMPS, 60:1z

- A Sidewall / Mur latéral :
- D Combustible shelf (from floor) /
- D Tablette combustible (du sol)
- B Combustible side surround / Parement latéral combustible
- C Combustible top surround / Parement
- supérieur combustible :
- A: 16 in./po. in (406 mm)
- D: 34 in./po.in (864 mm)
- B: 1 in./po.in (25 mm)
- C: 1 ln./po. in. (25 mm)



E:18 in./po.

E: 16 in./po. l: 8 in./po.

J: 8 in./po. (203 mm) USA

(457 mm) CANADA (406 mm) USA (203 mm) CANADA

U.S. ENVIRONMENTAL PROTECTION AGENCY Certified to comply with 2020 particulate emission standards using cordwood. AGENCE DE PROTECTION DE L'ENVIRONNEMENT DES É.-U.

Conforme aux normes d'émission de particules de 2020 avec bûche de bois.

Weighted average emission rate / Moyenne pondérée des émissions: 1.5 g/h

Tested and certified in compliance with CFR 40 part 60, subpart AAA, section 60.534(a)(1(ii))

## CAUTION

- HOT WHILE IN OPERATION.
- DO NOT TOUCH. KEEP CHILDREN, CLOTHING AND FURNITURE AWAY.
- CONTACT MAY CAUSE SKIN BURNS. SEE NAME-PLATE AND INSTRUCTIONS.

## ATTENTION

- CHAUD EN FONCTIONNEMENT.
- NE PAS TOUCHER. GARDER LES ENFANTS, LES VÊTEMENTS ET LES MEUBLES ÉLOIGNÉS.
- UN CONTACT AVEC LA PEAU PEUT OCCASIONNER DES BRÛLURES. VOIR LES INSTRUCTIONS.

Made in St-Augustin-de-Desmaures (Qc), Canada Fabriqué à St-Augustin-de-Desmaures (Qc), Canada

> 24/05/2022 (#test)





REFER TO INTERTEK'S DIRECTORY OF BUILDING PRODUCTS FOR DETAILED INSTRUCTIONS SE RÉFÉRER AU RÉPÉRATOIR DES PRODUITS HOMOLOGUÉS D'INTERTEX POUR PLUS D'INFORMATION

CONTACT LOCAL BUILDING OFFICIALS ABOUT THE RESTRICTIONS AND NSTALLATION INSPECTION IN YOUR AREA. COMMUNIQUER AVEC LES AUTORITÉS LOCALES DU BÂTIMENT ET DE LA PRÉVENTION DES INCENDIES AU SUJET DES RESTRICTIONS D'INSTALLATION

DANS VOTRE SECTEUR. STANDARDS / NORMES D'ESSAL: Certified to / Certifié selon ULC \$628

Control number: 4002461 (July/Juillet 2021)

Certified to / Certiflé selon UL 1482 Certifled to / Certifié selon UL 737 Certified to/Certiflé selon CSA B415.1-10 Certified to/Certifié selon ASTM E3053-17 Certified to/Certiflé selon ASTM E2515-11 (R2017)

#### MODEL / MODÈLE : CW2100

Serial Number No. de Série

INSTALL AND USE ONLY IN ACCORDANCE WITH SBI STOVE BUILDER INTERNATIONAL INSTALLATION AND OPERATION INSTRUCTIONS. L'INSTALLATION ET L'OPERATION DOIT SE FAIRE SELON LES INSTRUCTIONS D'INSTALLATION ET D'UTILISATION DE SBI FABRICANT DE POÊLES INTERNATIONAL.

#### PREVENT HOUSE FIRES

- Install and use in accordance with the manufacturer's installation and operating instructions.
- Contact local building or fire officials about restrictions and installation inspection in your area.
- Use with solid wood fuel only. Do not use other fuels.
- For safety, keep screen doors or glass doors fully closed
- Do not overfire unit.
- Replace with only ceramic glass 4mm thick.
- Connect to a code-approved masonry chimney or listed factory-built fireplace chimney with a direct flue connector into the first chimney liner section.
- The non-combustible floor protection in front of the unit should extend 16 inches (406 mm) (USA), 18 Inches (457 mm) (CANADA) without a R value even if the hearth elevation is equal with the combustible floor.
- Do not connect this unit to a chimney serving another appliance.
- Install only in masonry fireplaces. Do not remove bricks or mortar from masonry fireplace.
- Inspect and clean chimney frequently. Under certain conditions of use, creosote buildup may occur rapidly
- Do not use grate or elevate fire. Build wood fire directly on hearth.
- This wood heater needs periodic inspection and repair for proper operation. Consult the owner's manual for further information. It is against US federal regulations to operate this wood heater in a manner inconsistent with the operating instructions in the owner's manual

#### PRÉVENEZ LES INCENDIES

- Installer et utiliser conformément au manuel d'utilisation du fabricant.
- Contacter les autorités de votre localité avant luridiction concernant les restrictions et inspection d'installation
- Utiliser avec le bois seulement. Ne pas utiliser d'autres combustibles.
- Utiliser l'appareil la porte fermée ou ouverte avec le pare-étincelle en place uniquement. Ouvrir la porte ou retirer le pare-étincelle seulement lors du chargement.
- Ne pas raccorder à un conduit de fumée servant déjà pour un autre appareil.
- Remplacer la vitre seulement avec un verre céramique de 4mm d'épaisseur.
- Raccorder à une cheminée de maçonnerie respectant les codes ou à une cheminée préfabriquée homologuée, directement à la première section de cheminée gainée.
- La protection de plancher incombustible au devant de l'encastrable doit se prolonger de 16 pouces (406 mm) (USA), 18 pouces (457 mm) (CANADA), sans facteur d'isolation R au devant de l'encastrable même si l'âtre est égale au plancher combustible.
- Installer seulement dans un foyer de maçonnerle. Ne pas enlever les briques ou le mortier du foyer de maçonnerle.
- Inspecter et nettoyer la cheminée fréquemment. Dans certaines conditions, la formation de créosote peut être rapide
- Ne pas utiliser de chenets ou de grilles pour élever le feu. Préparer le feu directement sur l'âtre.
- Cet apparell de chauffage requiert des instructions et réparations périodiques, Consulter le manuel de l'utilisateur pour plus d'information. Opérer cet appareil de chauffage de façon inconsistente par rapport au manuel de l'utilisateur consiste une violation de la loi fédérale (USA).



WARNING: This product can expose you to carbon monoxide, which is known to the State of California to cause cancer, birth defects or other reproductive harm. (For more information go to www.p65warnings.ca.gov)

#### LISTED SOLID FUEL BURNING INSERT APPLIANCE

#### APPAREIL ENCASTRABLE À COMBUSTIBLE SOLIDE HOMOLOGUÉ

FOR USE WITH WOOD ONLY

POUR UTILISATION AVEC BOIS SEULEMENT

MINIMUM CLEARANCES TO COMBUSTIBLE MATERIALS / DÉGAGEMENTS MINIMUM AUX MATÉRIAUX COMBUSTIBLES

Floor - Ceiling / Plancher - Plafond: 72 in./po. (183 cm)

Blower / Ventilateur: 115VOLTS, 0.8 AMPS, 60Hz

A - Sidewall (from door opening)/Mur latéral (de l'ouverture de porte)

D - Combustible shelf (from base of the fireplace D: 34 in./po.in (864 mm)

insert)/ D - Tablette combustible (de la base de l'encastrable) : B - Combustible side surround (from

B: 1 in./po.ln (25 mm)

faceplate)/Parement latéral combustible (de la facade): C - Combustible top surround (from

**(**)

OUVERTURE

C: 1 in./po. in. (25 mm)

A: 16 in./po. in (406 mm)

faceplate)/Parement supérleur combustible (de la facade):

Bernarad

E:18 In./po. E: 16 in./po. I: 8 in./po. J: 8 in./po.

(406 mm) USA (203 mm) CANADA (203 mm) USA

(457 mm) CANADA

U.S. ENVIRONMENTAL PROTECTION AGENCY Certifled to comply with 2020 particulate emission standards using cordwood. AGENCE DE PROTECTION DE L'ENVIRONNEMENT DES É.-U. Conforme aux normes d'émission de particules de 2020 avec bûche de bois.

Weighted average emission rate / Moyenne pondérée des émissions: 1.5 g/h

Tested and certified in compliance with CFR 40 part 60, subpart AAA, section 60.534(a)(1(ii))

## CAUTION

- HOT WHILE IN OPERATION.
- DO NOT TOUCH. KEEP CHILDREN, CLOTHING AND FURNITURE AWAY.
- CONTACT MAY CAUSE SKIN BURNS. SEE NAME-PLATE AND INSTRUCTIONS.

## ATTENTION

- CHAUD EN FONCTIONNEMENT.
- NE PAS TOUCHER. GARDER LES ENFANTS, LES VÊTEMENTS ET LES MEUBLES ÉLOIGNÉS.
- UN CONTACT AVEC LA PEAU PEUT OCCASIONNER DES BRÛLURES. VOIR LES INSTRUCTIONS.

Made in St-Augustin-de-Desmaures (Qc), Canada Fabriqué à St-Augustin-de-Desmaures (Qc), Canada





20/07/2021 (#test)



REFER TO INTERTEK'S DIRECTORY OF BUILDING PRODUCTS FOR DETAILED INSTRUCTIONS OF HOMOLOGUES SE REFERER AU REFER TOILE DES RODUITS HOMOLOGUES DINTERTEK POUR PLUS D'INFORMATION

CONTACT LOCAL BUILDING OFFICIALS ABOUT THE RESTRICTIONS AND INSTALLATION INSPECTION IN YOUR AREA. COMMUNIQUER AVEC LES AUTORITÉS LOCALES DU BATIMENT ET DE LA PRÉVENTION DES INCERDRES AU SUIET DES RESTRICTIONS D'INSTALLATION

Intertek PREVENTION DES INCE DANS VOTRE SECTEUR STANDARDS / NORMES D'ESSAI:

Certified to / Certifié selon ULC S628 Certified to / Certifié selon UL 1482 Certified to / Certifié selon UL 737

Certified to / Certifie selon UL 73/ Certified to/Certifié selon CSA 8415.1-10 Certified to/Certifié selon ASTM E3053-17 Certified to/Certifié selon ASTM E2515-11 (R2017)

Control number: 4002461 (July/Julllet 2021)

## MODEL / MODÈLE : DESTINATION 1.9

Serial Number No. de Série

1

INSTALL AND USE ONLY IN ACCORDANCE WITH SBI STOVE BUILDER INTERNATIONAL INSTALLATION AND OPERATION INSTRUCTIONS.
L'INSTALLATION ET L'OPERATION DOIT SE FAIRE SELON LES INSTRUCTIONS D'INSTALLATION ET D'UTILISATION DE SBI FABRICANT DE POÈLES INTERNATIONAL

#### PREVENT HOUSE FIRES

- Install and use in accordance with the manufacturer's installation and operating instructions.
- Contact local building or fire officials about restrictions and installation inspection in your area.
- Use with solid wood fuel only. Do not use other fuels
- · For safety, keep screen doors or glass doors fully closed.
- Do not overfire unit.
- · Replace with only ceramic glass 4mm thick.
- Connect to a code-approved masonry chimney or listed factory-built fireplace chimney with a direct flue connector into the first chimney liner section.
- The non-combustible floor protection in front of the unit should extend 16 inches (406 mm) (USA), 18 inches (457 mm) (CANADA) without a R value even if the hearth elevation is equal with the combustible floor.
- Do not connect this unit to a chimney serving another appliance.
- Install only in masonry fireplaces. Do not remove bricks or mortar from masonry fireplace.
- Inspect and clean chimney frequently. Under certain conditions of use, creosote buildup may occur rapidly.
- Do not use grate or elevate fire. Build wood fire directly on hearth.
- This wood heater needs periodic inspection and repair for proper operation.
   Consult the owner's manual for further information. It is against US federal regulations to operate this wood heater in a manner inconsistent with the operating instructions in the owner's manual.

#### PRÉVENEZ LES INCENDIES

- Installer et utiliser conformément au manuel d'utilisation du fabricant.
- Contacter les autorités de votre localité ayant juridiction concernant les restrictions et inspection d'installation.
- Utiliser avec le bois seulement. Ne pas utiliser d'autres combustibles.
- Utiliser l'appareil la porte fermée ou ouverte avec le pare-étincelle en place uniquement. Ouvrir la porte ou retirer le pare-étincelle seulement lors du chargement
- Ne pas raccorder à un conduit de fumée servant déjà pour un autre apparell.
- Remplacer la vitre seulement avec un verre céramique de 4mm d'épaisseur.
- Raccorder à une cheminée de maçonnerie respectant les codes ou à une cheminée préfabriquée homologuée, directement à la première section de cheminée gainée.
- La protection de plancher incombustible au devant de l'encastrable dolt se prolonger de 16 pouces (406 mm) (USA), 18 pouces (457 mm) (CANADA), sans facteur d'isolation R au devant de l'encastrable même si l'âtre est égale au plancher combustible,
- Installer seulement dans un foyer de maçonnerie. Ne pas enlever les briques ou le mortler du foyer de maçonnerie.
- Inspecter et nettoyer la cheminée fréquemment. Dans certaines conditions, la formation de créosote peut être rapide.
- Ne pas utiliser de chenets ou de grilles pour élever le feu. Préparer le feu directement sur l'âtre.
- Cet appareil de chauffage requiert des instructions et réparations périodiques.
   Consulter le manuel de l'utilisateur pour plus d'information. Opérer cet appareil de chauffage de façon inconsistente par rapport au manuel de l'utilisateur consiste une violation de la loi fédérale (USA).



WARNING: This product can expose you to carbon monoxide, which is known to the State of California to cause cancer, birth defects or other reproductive harm.

(For more information go to www.p65warnings.ca.gov)

#### LISTED SOLID FUEL BURNING INSERT APPLIANCE

#### APPAREIL ENCASTRABLE À COMBUSTIBLE SOLIDE HOMOLOGUÉ

FOR USE WITH WOOD ONLY

POUR UTILISATION AVEC BOIS SEULEMENT

MINIMUM CLEARANCES TO COMBUSTIBLE MATERIALS / DÉGAGEMENTS MINIMUM AUX MATÉRIAUX COMBUSTIBLES

Floor - Celling / Plancher - Plafond: 72 in./po. (183 cm)

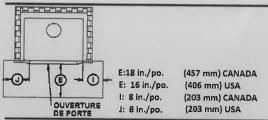
Blower / Ventilateur: 115VOLTS, 0.8 AMPS, 60Hz

A - Sidewall (from door opening)/Mur latéral (de l'ouverture de porte):

A: 16 in./po. in (406 mm)

D - Combustible shelf (from base of the fireplace insert)/

D: 34 in./po.in (864 mm)


D - Tablette combustible (de la base de l'encastrable) :
B - Combustible side surround (from

B: 1 in./po.in (25 mm)

faceplate)/Parement latéral combustible (de la façade): C - Combustible top surround (from

C: 1 in./po, in. (25 mm)

faceplate)/Parement supérieur combustible (de la façade):



U.S. ENVIRONMENTAL PROTECTION AGENCY Certified to comply with 2020 particulate emission standards using cordwood. AGENCE DE PROTECTION DE L'ENVIRONNEMENT DES É.-U. Conforme aux normes d'émission de particules de 2020 avec bûche de bois.

Weighted average emission rate / Moyenne pondérée des émissions: 1.5 g/h

Tested and certified in compliance with CFR 40 part 60, subpart AAA, section 60.534(a)(1(ii))

## CAUTION

- HOT WHILE IN OPERATION.
- DO NOT TOUCH. KEEP CHILDREN, CLOTHING AND FURNITURE AWAY.
- CONTACT MAY CAUSE SKIN BURNS. SEE NAME-PLATE AND INSTRUCTIONS.

## **ATTENTION**

- CHAUD EN FONCTIONNEMENT.
- NE PAS TOUCHER. GARDER LES ENFANTS, LES VÊTEMENTS ET LES MEUBLES ÉLOIGNÉS.
- UN CONTACT AVEC LA PEAU PEUT OCCASIONNER DES BRÛLURES. VOIR LES INSTRUCTIONS.

Made in St-Augustin-de-Desmaures (Qc), Canada Fabriqué à St-Augustin-de-Desmaures (Qc), Canada





20/07/2021 (# test) 27876



REFER TO INTERTEX'S DIRECTORY OF BUILDING PRODUCTS FOR DETAILED INSTRUCTIONS SE RÉFÉRER AU RÉPÉTATOIR DES PRODUITS HOMOLOGUÉS D'INTERTEX POUR PLUS D'INFORMATION

CONTACT LOCAL BUILDING OFFICIALS ABOUT THE RESTRICTIONS AND INSTALLATION INSPECTION IN YOUR AREA. COMMUNIQUER AVEC LES AUTONITÉS LOCALES DU BÂTIMENT ET DE LA PRÉVENTION DES INCENDIES AU SUIET DES RESTRICTIONS D'INSTALLATION DANS VOTRE SECTEUR.

STANDARDS / NORMES D'ESSAI: Certified to / Certifié selon ULC S628 Certified to / Certifié selon UL 1482 Certified to / Certifié selon UL 737

Control number: 4002461 (July/Juillet 2021)

Certified to/Certifié selon CSA B415.1-10 Certified to/Certifié selon ASTM E3053-17 Certified to/Certifié selon ASTM E2515-11 (R2017)

## MODEL / MODÈLE ! GREEN MOUNTAIN **INSERT 50**

Serial Number No. de Série

INSTALL AND USE ONLY IN ACCORDANCE WITH SBI STOVE BUILDER INTERNATIONAL INSTALLATION AND OPERATION INSTRUCTIONS. L'INSTALLATION ET L'OPERATION DOIT SE FAIRE SELON LES INSTRUCTIONS D'INSTALLATION ET D'UTILISATION DE SBI FABRICANT DE POÊLES INTERNATIONAL.

#### PREVENT HOUSE FIRES

- Install and use in accordance with the manufacturer's installation and operating instructions
- Contact local building or fire officials about restrictions and installation
- Use with solid wood fuel only. Do not use other fuels.
- For safety, keep screen doors or glass doors fully closed
- Do not overfire unit.
- Replace with only ceramic glass 4mm thick
- Connect to a code-approved masonry chimney or listed factory-built fireplace chimney with a direct flue connector into the first chimney liner section
- The non-combustible floor protection in front of the unit should extend 16 inches (406 mm) (USA), 18 inches (457 mm) (CANADA) without a R value even if the hearth elevation is equal with the combustible floor.
- Do not connect this unit to a chimney serving another appliance
- Install only in masonry fireplaces. Do not remove bricks or mortar from masonry fireplace.
- Inspect and clean chimney frequently. Under certain conditions of use, creosote buildup may occur rapidly.
- Do not use grate or elevate fire. Build wood fire directly on hearth.
- This wood heater needs periodic inspection and repair for proper operation. Consult the owner's manual for further information, it is against US federa! regulations to operate this wood heater in a manner inconsistent with the operating instructions in the owner's manual.

#### PRÉVENEZ LES INCENDIES

- Installer et utiliser conformément au manuel d'utilisation du fabricant.
- Contacter les autorités de votre localité ayant juridiction concernant les restrictions et inspection d'installation.
- Utiliser avec le bois seulement, Ne pas utiliser d'autres combustibles.
- Utiliser l'appareil la porte fermée ou ouverte avec le pare-étincelle en place uniquement. Ouvrir la porte ou retirer le pare-étincelle seulement lors du chargement.
- Ne pas raccorder à un conduit de fumée servant déjà pour un autre appareil.
- Remplacer la vitre seulement avec un verre céramique de 4mm d'épaisseur
- Raccorder à une cheminée de maçonnerie respectant les codes ou à une cheminée préfabriquée homologuée, directement à la première section de cheminée gainée.
- La protection de plancher incombustible au devant de l'encastrable doit se prolonger de 16 pouces (406 mm) (USA), 18 pouces (457 mm) (CANADA), sans facteur d'isolation R au devant de l'encastrable même si l'âtre est égale au plancher combustible.
- installer seulement dans un foyer de maçonnerie. Ne pas enlever les briques ou le mortier du foyer de maçonnerie
- Inspecter et nettoyer la cheminée fréquemment. Dans certaines conditions, la formation de créosote peut être rapide.
- Ne pas utiliser de chenets ou de grilles pour élever le feu. Préparer le feu directement sur l'âtre
- Cet appareil de chauffage requiert des instructions et réparations périodiques. Consulter le manuel de l'utilisateur pour plus d'information. Opérer cet appareil de chauffage de façon inconsistente par rapport au manuel de l'utilisateur consiste une violation de la loi fédérale (USA).

WARNING: This product can expose you to carbon monoxide, which is known to the State of California to cause cancer, birth defects or other reproductive harm-

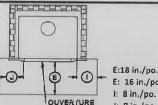
(For more information go to www.p65warnings.ca.gov)

#### LISTED SOLID FUEL BURNING INSERT APPLIANCE

#### APPAREIL ENCASTRABLE À COMBUSTIBLE SOLIDE HOMOLOGUÉ

FOR USE WITH WOOD ONLY

POUR UTILISATION AVEC BOIS SEULEMENT


MINIMUM CLEARANCES TO COMBUSTIBLE MATERIALS / DÉGAGEMENTS MINIMUM AUX MATÉRIAUX COMBUSTIBLES

Floor - Ceiling / Plancher - Plafond: 72 in /po. (183 cm)



Blower / Ventilateur: 115VOLTS, 0.8 AMPS, 60Hz

- A Sidewall / Mur latéral
- D Combustible shelf (from floor) /
- D Tablette combustible (du sol)
- B Combustible side surround / Parement iatéral combustible
- C Combustible top surround / Parement supérieur combustible
- A: 16 in./po. in (406 mm)
- D: 34 in./po.in (864 mm)
- B: 1 in./po.in {25 mm}
- C: 1 in./po. ln. (25 mm)



DE PORTE

E:18 in./po. E: 16 in./po.

J: 8 in./po.

(457 mm) CANADA (406 mm) USA (203 mm) CANADA (203 mm) USA

U.S. ENVIRONMENTAL PROTECTION AGENCY Certified to comply with 2020 particulate emission standards using cordwood. AGENCE DE PROTECTION DE L'ENVIRONNEMENT DES É.-U. Conforme aux normes d'émission de particules de 2020 avec bûche de bois.

Weighted average emission rate / Moyenne pondérée des émissions: 1.5 g/h

Tested and certified in compliance with CFR 40 part 60, subpart AAA, section 60.534(a)(1(ii))

## CAUTION

- HOT WHILE IN OPERATION.
- DO NOT TOUCH. KEEP CHILDREN, CLOTHING AND FURNITURE AWAY.
- CONTACT MAY CAUSE SKIN BURNS. SEE NAME-PLATE AND INSTRUCTIONS.

## ATTENTION

- CHAUD EN FONCTIONNEMENT.
- NE PAS TOUCHER. GARDER LES ENFANTS, LES VÊTEMENTS ET LES MEUBLES ÉLOIGNES.
- UN CONTACT AVEC LA PEAU PEUT OCCASIONNER DES BRÜLURES. VOIR LES INSTRUCTIONS.

Made in St-Augustin-de-Desmaures (Qc), Canada Fabriqué à St-Augustin-de-Desmaures (Qc), Canada







REFER TO INTERTEK'S DIRECTORY OF BUILDING PRODUCTS FOR DETAILED INSTRUCTIONS
SE RÉFÉRER AU REFERIORE DES PRODUITS HOMOLOGUÉS D'INTERTEK POUR PLUS D'INFORMATION
CONTACT, LOCAL BUILDING OFFICIALS ABOUT THE RESTRICTIONS AND

Intertek

COMMUNIQUER AVEC LES AUTORITÉS LOCALES DU BÂTIMENT ET DE LA PRÉVENTION DES INCENDIES AU SUIET DES RESTRICTIONS D'INSTALLATION DANS VOTRE SECTEUR. Control number: 4002461

(July/Juillet 2021)

STANDARDS / NORMES D'ESSAI: Certified to / Certifié selon ULC 5628 Certified to / Certifié selon UL 1482 Certified to / Certifié selon UL 737

Certified to/Certifié selon CSA B415.1-10 Certified to/Certifié selon ASTM E3053-17

Certified to/Certifié selon ASTM E2515-11 (R2017)

## MODEL / MODÈLE : HEI90

Serial Number No. de Série

1

INSTALL AND USE ONLY IN ACCORDANCE WITH SBI STOVE BUILDER INTERNATIONAL INSTALLATION AND OPERATION INSTRUCTIONS. L'INSTALLATION ET L'OPERATION DOIT SE FAIRE SELON LES INSTRUCTIONS D'INSTALLATION ET D'UTILISATION DE SBI FABRICANT DE POÊLES INTERNATIONAL.

#### PREVENT HOUSE FIRES

- Install and use in accordance with the manufacturer's installation and operating instructions
- Contact local building or fire officials about restrictions and installation inspection in your area.
- ose with solid wood fuel only. Do not use other fuels
- For safety, keep screen doors or glass doors fully closed.
- Do not overfire unit
- Replace with only ceramic glass 4mm thick.
- Connect to a code-approved masonry chimney or listed factory-built fireplace chimney with a direct flue connector into the first chimney liner section
- The non-combustible floor protection in front of the unit should extend 16 inches (406 mm) (USA), 18 inches (457 mm) (CANADA) without a R value even if the hearth elevation is equal with the combustible floor
- Do not connect this unit to a chimney serving another appliance.
- Install only in masonry fireplaces. Do not remove bricks or mortar from masonry fireplace.
- Inspect and clean chimney frequently. Under certain conditions of use, creosote buildup may occur rapidly.
- Do not use grate or elevate fire. Build wood fire directly on hearth.
- This wood heater needs periodic inspection and repair for proper operation. Consult the owner's manual for further information, It is against US federal regulations to operate this wood heater in a manner inconsistent with the operating instructions in the owner's manual.

#### PRÉVENEZ LES INCENDIES

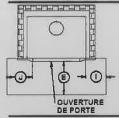
- Installer et utiliser conformément au manuel d'utilisation du fabricant.
- Contacter les autorités de votre localité ayant juridiction concernant les restrictions et inspection d'installation.
- Utiliser avec le bois seulement. Ne pas utiliser d'autres combustibles.
- Utiliser l'appareil la porte fermée ou ouverte avec le pare-étincelle en place uniquement. Ouvrir la porte ou retirer le pare-étincelle seulement lors du chargement
- Ne pas raccorder à un conduit de fumée servant déjà pour un autre appareil.
- Remplacer la vitre seulement avec un verre céramique de 4mm d'épaisseur
- Raccorder à une cheminée de maçonnerie respectant les codes ou à une cheminée préfabriquée homologuée, directement à la première section de cheminée gainée.
- La protection de plancher incombustible au devant de l'encastrable doit se prolonger de 16 pouces (406 mm) (USA), 18 pouces (457 mm) (CANADA), sans facteur d'isolation R au devant de l'encastrable même si l'âtre est égale au plancher combustible.
- Installer seulement dans un foyer de maçonnerie. Ne pas enlever les briques ou le mortier du foyer de maçonnerie
- inspecter et nettoyer la cheminée fréquemment. Dans certaines conditions, la formation de créosote peut être rapide
- Ne pas utiliser de chenets ou de grilles pour élever le feu. Préparer le feu directement sur l'âtre.
- Cet appareil de chauffage requiert des instructions et réparations périodiques. Consulter le manuel de l'utilisateur pour plus d'information. Opérer cet appareil de chauffage de façon inconsistente par rapport au manuel de l'utilisateur consiste une violation de la loi fédérale (USA).

WARNING: This product can expose you to carbon monoxide, which is known to the State of California to cause cancer, birth defects or other reproductive harm. (For more information go to www.p65warnings.ca.gov)

## LISTED SOLID FUEL BURNING INSERT APPLIANCE

#### APPAREIL ENCASTRABLE À COMBUSTIBLE SOLIDE HOMOLOGUÉ

FOR USE WITH WOOD ONLY


POUR UTILISATION AVEC BOIS SEULEMENT

MINIMUM CLEARANCES TO COMBUSTIBLE MATERIALS / DÉGAGEMENTS MINIMUM AUX MATÉRIAUX COMBUSTIBLES

Floor - Ceiling / Plancher - Plafond: 72 in./po. (183 cm)

Blower / Ventilateur: 115VOLTS, 0.8 AMPS, 60Hz

- A Sidewall / Mur latéral :
- D Combustible shelf (from floor) /
- D Tablette combustible (du sol)
- B Combustible side surround / Parement latéral combustible :
- C Combustible top surround / Parement
- supérieur combustible :
- A: 16 in./po. in (406 mm)
- D: 34 in./po.in (864 mm)
- B: 1 in./po.in (25 mm)
- C: 1 in./po. in. (25 mm)



E:18 in./po. E: 16 in./po. (457 min) CANADA (406 mm) USA

I: 8 in./po. (203 mm) CANADA (203 mm) USA J: 8 in./po.

U.S. ENVIRONMENTAL PROTECTION AGENCY Certified to comply with 2020 particulate emission standards using cordwood. AGENCE DE PROTECTION DE L'ENVIRONNEMENT DES É.-U.

Conforme aux normes d'émission de particules de 2020 avec bûche de bois. Weighted average emission rate / Moyenne pondérée des

émissions: 1.5 g/h Tested and certified in compliance with CFR 40 part 60, subpart AAA, section 60.534(a)(1(ii))

## CAUTION

- HOT WHILE IN OPERATION.
- DO NOT TOUCH. KEEP CHILDREN, CLOTHING AND FURNITURE AWAY.
- CONTACT MAY CAUSE SKIN BURNS. SEE NAME-PLATE AND INSTRUCTIONS.

## ATTENTION

- CHAUD EN FONCTIONNEMENT.
- NE PAS TOUCHER. GARDER LES ENFANTE, LES VÊTEMENTS ET LES MEUBLES ÉLOIGNÉS.
- UN CONTACT AVEC LA PEAU PEUT OCCASIONNER DES BRÛLURES. VOIR LES INSTRUCTIONS.

Made in St-Augustin-de-Desmaures (Qc), Canada Fabriqué à St-Augustin-de-Desmaures (Qc), Canada





24/05/2022 (#test) 27880



REFER TO INTERTEX'S DIRECTORY OF BUILDING PRODUCTS FOR DET ALLED INSTRUCTIONS SE RÉFÉRER ALL RÉPERTOIRE DES PRODUITS HOMOLOGUÉS D'INTERTEX POUR PLUS D'INFORMATION

CONTACT LOCAL BUILDING OFFICIALS ABOUT THE RESTRICTIONS AND INSTALLATION INSPECTION IN YOUR AREA. COMMUNIQUES AVEC LES AUTORITÉS LOCALES DU BÂTIMENT ET DE LA PRÉVENTION DES INCENDIES AU SUJET DES RESTRICTIONS D'INSTALLATION

DANS VOTRE SECTEUR.

Control number: 4002461

(July/Juillet 2021)

STANDARDS / NORMES D'ESSAI:

Certified to / Certifié selon ULC 5628 Certified to / Certifié selon UL 1482 Certified to / Certiflé selon UL 737

Certified to/Certifié selon CSA 8415.1-10 Certifled to/Certiflé selon ASTM E3053-17 Certified to/Certifié selon ASTM E2515-11 (R2017)

## MODEL / MODÈLE : **MATRIX 1900**

Serial Number No. de Série

1

INSTALL AND USE ONLY IN ACCORDANCE WITH SBI STOVE BUILDER INTERNATIONAL INSTALLATION AND OPERATION INSTRUCTIONS. L'INSTALLATION ET L'OPERATION DOIT SE FAIRE SELON LES INSTRUCTIONS D'INSTALLATION ET D'UTILISATION DE SBI FABRICANT

#### DE POÊLES INTERNATIONAL.

- PREVENT HOUSE FIRES Install and use in accordance with the manufacturer's installation and operating Instructions.
- Contact local building or fire officials about restrictions and installation inspection in your area.
- Use with solld wood fuel only. Do not use other fuels.
- For safety, keep screen doors or glass doors fully closed.
- Do not overfire unit.
- Replace with only ceramic glass 4mm thick.
- Connect to a code-approved masonry chimney or listed factory-built fireplace chimney with a direct flue connector into the first chimney liner sectio
- The non-combustible floor protection in front of the unit should extend 16 inches (406 mm) (USA), 18 inches (457 mm) (CANADA) without a R value even if the hearth elevation is equal with the combustible floor
- Do not connect this unit to a chimney serving another appliance.
- Install only in masonry fireplaces. Do not remove bricks or mortar from
- Inspect and clean chimney frequently. Under certain conditions of use, creosote buildup may occur rapidly.
- Do not use grate or elevate fire. Build wood fire directly on hearth.
- This wood heater needs periodic inspection and repair for proper operation. Consult the owner's manual for further information. It is against US federal regulations to operate this wood heater in a manner inconsistent with the operating instructions in the owner's manual.

#### PRÉVENEZ LES INCENDIES

- Installer et utiliser conformément au manuel d'utilisation du fabricant.
- Contacter les autorités de votre localité avant juridiction concernant les restrictions et Inspection d'installation.
- Utiliser avec le bois seulement. Ne pas utiliser d'autres combustibles.
- Utiliser l'appareil la porte fermée ou ouverte avec le pare-étincelle en place uniquement. Ouvrir la porte ou retirer le pare-étincelle seulement lors du chargement.
- Ne pas raccorder à un conduit de fumée servant déjà pour un autre appareil.
- Remplacer la vitre seulement avec un verre céramique de 4mm d'épaisseur.
- Raccorder à une cheminée de maçonnerie respectant les codes ou à une cheminée préfabriquée homologuée, directement à la première section de cheminée galnée.
- La protection de plancher incombustible au devant de l'encastrable doit se prolonger de 16 pouces (406 mm) (USA), 18 pouces (457 mm) (CANADA), sans facteur d'Isolation R au devant de l'encastrable même si l'âtre est égale au plancher combustible.
- Installer seulement dans un foyer de maçonnerie. Ne pas enlever les briques ou le mortler du foyer de maçonnerie
- Inspecter et nettoyer la cheminée fréquemment. Dans certaines conditions, la formation de créosote peut être rapide
- Ne pas utiliser de chenets ou de grilles pour élever le feu. Préparer le feu directement sur l'âtre.
- Cet appareil de chauffage requiert des instructions et réparations périodiques. Consulter le manuel de l'utilisateur pour plus d'information. Opérer cet appareil de chauffage de façon inconsistente par rapport au manuel de l'utilisateur consiste une violation de la loi fédérale (USA).

WARNING: This product can expose you to carbon monoxide, which is known to the State of California to cause cand defects or other reproductive harm. (For more information go to www.p65warnings.ca.gov)

#### LISTED SOLID FUEL BURNING INSERT APPLIANCE

#### APPAREIL ENCASTRABLE À COMBUSTIBLE SOLIDE HOMOLOGUÉ

FOR USE WITH WOOD ONLY

POUR UTILISATION AVEC BOIS SEULEMENT

MINIMUM CLEARANCES TO COMBUSTIBLE MATERIALS / DÉGAGEMENTS MINIMUM AUX MATÉRIAUX COMBUSTIBLES

Floor - Ceiling / Plancher - Plafond: 72 in./po. (183 cm)

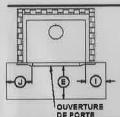
Blower / Ventilateur: 115VOLTS, 0.8 AMPS, 60Hz

A - Sidewall (from door opening)/Mur latéral (de l'ouverture de porte):

D - Combustible shelf (from base of the fireplace

insert)/ D - Tablette combustible (de la base de l'encastrable) : B - Combustible side surround (from

faceplate)/Parement latéral combustible (de la façade): C - Combustible top surround (from


faceplate)/Parement supérleur combustible (de la

A: 16 in./po. in (406 mm)

D: 34 in./po.in (864 mm)

B: 1 in./po.in (25 mm)

C: 1 in./po. in. (25 mm)



E:18 in./po. E: 16 in./po.

(457 mm) CANADA (406 mm) USA (203 mm) CANADA I: 8 In./po. (203 mm) USA J: 8 in./po.

U.S. ENVIRONMENTAL PROTECTION AGENCY Certified to comply with 2020 particulate emission standards using cordwood. AGENCE DE PROTECTION DE L'ENVIRONNEMENT DES É.-U. Conforme aux normes d'émission de particules de 2020 avec bûche de bois

Welghted average emission rate / Moyenne pondérée des émissions: 1.5 g/h

Tested and certified in compliance with CFR 40 part 60, subpart AAA, section 60.534(a)(1(ii))

## CAUTION

- HOT WHILE IN OPERATION.
- DO NOT TOUCH. KEEP CHILDREN, CLOTHING AND FURNITURE AWAY.
- CONTACT MAY CAUSE SKIN BURNS. SEE NAME-PLATE AND INSTRUCTIONS.

## ATTENTION

- CHAUD EN FONCTIONNEMENT.
- NE PAS TOUCHER. GARDER LES ENFANTS, LES VÊTEMENTS ET LES MEUBLES ÉLOIGNÉS.
- UN CONTACT AVEC LA PEAU PEUT OCCASIONNER DES BRÛLURES, VOIR LES INSTRUCTIONS.

Made in St-Augustin-de-Desmaures (Qc), Canada Fabriqué à St-Augustin-de-Desmaures (Qc), Canada





20/07/2021 (#test) 27877







## CERTIFICAT D'ÉTALONNAGE # 13027

Date d'étalonnage: 2020-10-13 Date d'émission du certificat : 2020-10-13

Stove Builder International 250, rue de Copenhague Saint-Augustin-de-Desmaures, Québec, Canada **G3A 2H3** 

Étalonnage d'un Débitmètre volumétrique American Meter Company DTM-200A S/N: 07J264834

## CONFORMITÉ AU PROGRAMME DE QUALITÉ

Tous les étalonnages sont effectués conformément au manuel d'assurance qualité de Polycontrols qui est conforme à la norme ISO/IEC 17025 - 2017, à la norme ISO 9001 - 2015 ainsi qu'à tout autre exigences de qualité définies dans la description d'achat des clients.

#### TRAÇABILITÉ

La traçabilité des étalons de débit au National Institute of Standards and Technology, NIST, est maintenue par les laboratoires de Fluke Corporation de Phoenix, Arizona et est conforme aux normes ISO/IEC 17025, ANSI/NCSL Z540-1-1994, ISO-10012-1, MIL-STD 45662A.

Le Service d'évaluation des laboratoires d'étalonnage (CLAS) du Conseil national de recherches du Canada (CNRC) a évalué et certifié la capacité d'étalonnage du laboratoire et la traçabilité au Système international d'unités (SI) ou à des étalons acceptables selon le CLAS. Le présent certificat d'étalonnage est délivré conformément aux conditions de certification du CLAS et aux conditions d'accréditation du Conseil canadien des normes (CCN). Le CLAS et le CCN ne garantissent pas l'exactitude des étalonnages individuels effectués par les laboratoires accrédités.

#### APTITUDE EN MATIÈRE DE MESURE ET D'ÉTALONNAGE - CMC

Les références utilisées pour l'étalonnage de débit ont une incertitude de ±0.2% de la lecture pour les mesures entre 5 SCCM à 10 SLPM, ±0.3% de la lecture pour les mesures entre 10 SLPM à 30 SLPM, ±0.2% de la lecture pour les mesures entre 30 SLPM à 3000 SLPM, ±0.3% de la lecture pour les mesures supérieures à 3000 SLPM jusqu'à 6000 SLPM et ±0.5% pour les mesures inférieures à 5 SCCM jusqu'à concurrence de 1 SCCM, équivalent air ou azote. Les incertitudes exprimées sont élargies avec un facteur d'élargissement k = 2, et ce, pour un niveau de confiance d'environ 95 %, dans l'hypothèse d'une distribution normale incluant la résolution de l'instrument. Le rapport d'incertitude des essais (RIE) de cet étalonnage respecte un ratio de 4:1 à moins d'indication contraire.

#### SOMMAIRE DES CONDITIONS DE L'INSTRUMENT EN TEST

Conditions initiales

En bon état

Travail Effectué

Étalonnage de l'instrument

Lectures Initiales = Lectures finales, aucun ajustement

Résultats

Lectures finales dans les tolérances

Remarques

Fréquence d'étalonnage aux 12 mois

Bernard Poirier Métrologiste

Responsable du laboratoire

©2012 Polycontrols • Le présent document ne peut être reproduit, sinon en entier, que par l'approbation écrite des laboratoires d'étalonnage de la compagnie Polycontrols inc. 3650 boul. Matte (Local A-I), Brossard (Québec), Canada, J4Y 2Z2 Tel: (450) 444-3600 Fax: (450) 444-1088 www.polycontrols.com







## Certificat d'étalonnage # 13027

Numéro de série:

07J264834

Station de mesure:

3

Date d'étalonnage:

2020-10-13

Procédure:

POS-CAL-005

Identification de l'instrument: SBI-103

Règle de décision: Méthode #2

| Instrument de mesure de référence utilisé pour l'étalonnage final |             |         |             |            |  |
|-------------------------------------------------------------------|-------------|---------|-------------|------------|--|
| Description                                                       | Modèle      | # Série | Traçabilité | Date dû    |  |
| DHI molbloc (30 slpm)                                             | 3E4-VCR-V-Q | 2359    | 1500279712  | 2021-03-04 |  |
| DHI molbox1                                                       | Molbox1     | 755     | 1500285062  | 2021-06-09 |  |
| RTD Mist                                                          | Mist        | L00295  | 2019008203  | 2020-12-13 |  |
| Module 44.5 PSI avec Baro 163671                                  | Module 30   | 160659  | 2020003156  | 2021-04-28 |  |

| Spécifications :         | finales de l'appareil | Condition d'étalonnage |              |  |
|--------------------------|-----------------------|------------------------|--------------|--|
| Gaz                      | Air                   | Gaz                    | Air          |  |
| Température d'opération  |                       | Température ambiante   | 22 °C        |  |
| Pression à l'entrée      |                       | Pression ambiante      | 1017.71 mbar |  |
| Pression à la sortie     |                       | Orientation            | Horizontale  |  |
| Température de référence |                       | Élastomère             | Viton        |  |
| Pression de référence    |                       | Valve                  | Viton        |  |
| Étendue d'échelle        | 0-200 ACFH            |                        | ľ            |  |
| Signaux Entrée/Sortie    | 12                    |                        |              |  |
| Alimentation             |                       |                        | ľ            |  |
| Tolérance ±2 %F.S.       |                       |                        | Į            |  |

| Lectures finales         |                              |                  |                                      |                                    |                              |                           |                                |                                         |     |
|--------------------------|------------------------------|------------------|--------------------------------------|------------------------------------|------------------------------|---------------------------|--------------------------------|-----------------------------------------|-----|
| Débit<br>du test<br>ACFH | Instrument<br>en test<br>ft³ | Pression<br>PSIA | Valeurs mesurée<br>Température<br>°C | es<br>Référence<br>ft <sup>3</sup> | Référence<br>calculée<br>ft³ | Erreur<br>calculée<br>ft³ | Tolérance<br>acceptable<br>ft³ | Incertitude<br>k = 2<br>ft <sup>3</sup> | TUR |
| 5.0012                   | 0.8350                       | 14.7006          | 22.19                                | 0.8297                             | 0.8325                       | 0.0025                    | 0.6658                         | 0.0034                                  | >4  |
| 10.0479                  | 1.6910                       | 14.6978          | 22.14                                | 1.6681                             | 1.6737                       | 0.0173                    | 0.6663                         | 0.0056                                  | >4  |
| 15.0460                  | 2.5350                       | 14.6960          | 22.09                                | 2.4977                             | 2.5060                       | 0.0290                    | 0.6662                         | 0.0083                                  | >4  |
| 25.0808                  | 4.2250                       | 14.6987          | 22.01                                | 4.1601                             | 4.1720                       | 0.0530                    | 0.6654                         | 0.0139                                  | >4  |
| 40.1053                  | 6.7640                       | 14.7066          | 21.93                                | 6.6675                             | 6.6813                       | 0.0827                    | 0.6664                         | 0.0222                                  | >4  |





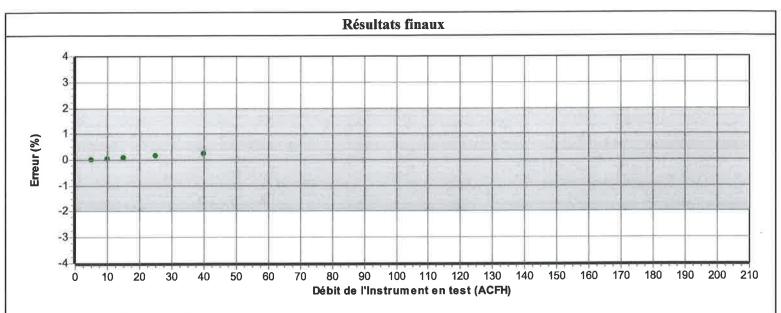


## Certificat d'étalonnage # 13027

Numéro de série: Date d'étalonnage: 07J264834

2020-10-13

Station de mesure: Procédure:


POS-CAL-005

Identification de l'instrument: SBI-103

Règle de décision:

Méthode #2

3



Voir l'annexe pour la règle de décision

Intertek Page 1 of 1

# Thermal Metering System Calibration Y factor for Method 5G sampling

Manufacturer: American Meter Company

Model: DTM-200A

Serial Number: SBI-046 (90R054300)

Average Gas Meter y Factor 1.011

Calibration Date: 2020-10-01

Calibrated by: Gabrielle Santerre
Calibration Frequency: 6-month

Next Calibration Due: 2021-04-01
Instrument Range: 1.000 cfm

Standard Temp.: 66 oF
Standard Press.: 29.92 "Hg
Barometric Press.: 29.7 "Hg

Signature/Date: 2020-10-01

**Previous Calibration Comparision** 

| Date       | 2020.04-16 | Acceptable     |           |
|------------|------------|----------------|-----------|
|            |            | Deviation (5%) | Deviation |
| y Factor   | 1.008      | 0.0504         | 0.003     |
| Acceptance | Acce       | ptable         |           |

## **Current Calibration**

| Acceptable y I | 0.050  |
|----------------|--------|
| Maximum y D    | 0.003  |
|                |        |
|                |        |
| Acceptance     | ptable |

| Reference Standard * |                                    |           |                |  |  |  |
|----------------------|------------------------------------|-----------|----------------|--|--|--|
| Standard             | Standard Model Standard Test Meter |           |                |  |  |  |
| Calibrator           | Calibrator S/N                     |           |                |  |  |  |
|                      |                                    |           |                |  |  |  |
|                      | Calib. Date                        | 25-oct-19 |                |  |  |  |
|                      | Calib. Value                       | 0.996     | y factor (ref) |  |  |  |

| Calibration Parameters                   | Run 1   | Run 2   | Run 3   |
|------------------------------------------|---------|---------|---------|
| Vacuum ("Hg)                             | 0.00    | 0.00    | 0.00    |
| dH ("H2O)                                | 0.00    | 0.00    | 0.00    |
| Initial Reference Meter                  | 399.9   | 408.4   | 416.804 |
| Final Reference Meter                    | 407.918 | 416.616 | 424.931 |
| Initial DGM                              | 704.269 | 712.693 | 720.985 |
| Final DGM                                | 712.196 | 720.784 | 728.971 |
| Temp. Ref. Meter (°F), Tr                | 76.2    | 77.8    | 77.6    |
| Temperature DGM (°F), Td                 | 76.3    | 77.4    | 77.5    |
| Time (Minutes)                           | 92.0    | 65.0    | 49.0    |
| Net Volume Ref. Meter, Vr                | 8.018   | 8.216   | 8.127   |
| Net Volume DGM, Vd                       | 7.927   | 8.091   | 7.986   |
| Gas Meter y Factor =                     | 1.008   | 1.011   | 1.013   |
| Gas Meter y Factor Deviation (from avg.) | 0.003   | 0.000   | 0.003   |
| Orifice dH@                              | 0.00    | 0.00    | 0.00    |
| Orifice dH@ Deviation (from avg.)        | 0.000   | 0.000   | 0.000   |

where:

0.086163043

- 1. Deviation = |Average value for all runs current run value|
- 2.  $y = [Vr \times (y \text{ factor (ref)}) \times (Pb) \times (Td + 460) / [Vd \times (Pb + (dH / 13.6)) \times (Tr + 460]]$
- 3.  $dH@ = 0.0317 \times dH / (Pb (Td + 460)) \times [(Tr + 460) \times time) / Vr]^2$

<sup>\*</sup> Reference calibration is traceable to NIST through NIST Test # 40674, Kimble ASTM E1272

Intertek Page 1 of 1

# Thermal Metering System Calibration Y factor for Method 5G sampling

Manufacturer: American Meter Company

Model: DTM-200A

Serial Number: SBI-047 (98Z332226)

Average Gas Meter y Factor 1.010

Calibration Date: 2020-10-06

Calibrated by: Gabrielle Santerre

Calibration Frequency: 6-month

Next Calibration Due: 2021-04-06

Instrument Range: 1.000 cfm

Standard Temp.: 65.7 oF
Standard Press.: 29.92 "Hg

Barometric Press.: 30 "Hg

Signature/Date: 2020-10-06

**Previous Calibration Comparision** 

| Date       | 2020-04-16 | Acceptable     |           |
|------------|------------|----------------|-----------|
|            |            | Deviation (5%) | Deviation |
| y Factor   | 1.008      | 0.0504         | 0.002     |
| Acceptance | Acce       | ptable         |           |

#### **Current Calibration**

| Acceptable y I | 0.050      |  |  |
|----------------|------------|--|--|
| Maximum y D    | 0.005      |  |  |
|                |            |  |  |
|                |            |  |  |
| Acceptance     | Acceptable |  |  |

| Reference Standard * |                                    |           |                |  |  |  |
|----------------------|------------------------------------|-----------|----------------|--|--|--|
| Standard             | Standard Model Standard Test Meter |           |                |  |  |  |
| Calibrator           | Calibrator S/N                     |           |                |  |  |  |
|                      |                                    |           |                |  |  |  |
|                      | Calib. Date                        | 25-oct-19 |                |  |  |  |
|                      | Calib. Value                       | 0.996     | y factor (ref) |  |  |  |

| Calibration Parameters                   | Run 1   | Run 2   | Run 3   |
|------------------------------------------|---------|---------|---------|
| Vacuum ("Hg)                             | 0.00    | 0.00    | 0.00    |
| dH ("H2O)                                | 0.00    | 0.00    | 0.00    |
| Initial Reference Meter                  | 454.9   | 467     | 475.7   |
| Final Reference Meter                    | 466.768 | 474.965 | 480.93  |
| Initial DGM                              | 125.025 | 137     | 145.6   |
| Final DGM                                | 136.765 | 144.864 | 150.737 |
| Temp. Ref. Meter (°F), Tr                | 75.4    | 76.0    | 76.6    |
| Temperature DGM (°F), Td                 | 74.6    | 76.2    | 76.7    |
| Time (Minutes)                           | 127.0   | 67.0    | 32.0    |
| Net Volume Ref. Meter, Vr                | 11.868  | 7.965   | 5.230   |
| Net Volume DGM, Vd                       | 11.74   | 7.864   | 5.137   |
| Gas Meter y Factor =                     | 1.005   | 1.009   | 1.014   |
| Gas Meter y Factor Deviation (from avg.) | 0.004   | 0.000   | 0.005   |
| Orifice dH@                              | 0.00    | 0.00    | 0.00    |
| Orifice dH@ Deviation (from avg.)        | 0.000   | 0.000   | 0.000   |

where:

0.092440945

- 1. Deviation = |Average value for all runs current run value|
- 2.  $y = [Vr \times (y \text{ factor (ref)}) \times (Pb) \times (Td + 460) / [Vd \times (Pb + (dH / 13.6)) \times (Tr + 460]]$
- 3.  $dH@ = 0.0317 \times dH / (Pb (Td + 460)) \times [(Tr + 460) \times time) / Vr]^2$

<sup>\*</sup> Reference calibration is traceable to NIST through NIST Test # 40674, Kimble ASTM E1272

# Thermal Metering System Calibration Y factor for Method 5G sampling

Manufacturer: American Meter Company

Model: DTM-200A

Serial Number: SBI-290 (88N515612)

Average Gas Meter y Factor 0.993

Calibration Date: 2020-10-05

Calibrated by: Gabrielle Santerre

Calibration Frequency: 6-month

Next Calibration Due: 2021-04-05

Instrument Range: 1.000 cfm

Standard Temp.: 66 oF Standard Press.: 29.92 "Hg

Barometric Press.: 30.2 "Hg

Signature/Date: 2020-10-05

**Previous Calibration Comparision** 

| Date       | 2017-04-24 | Acceptable     |           |
|------------|------------|----------------|-----------|
|            |            | Deviation (5%) | Deviation |
| y Factor   | 1.000 0.05 |                | 0.007     |
| Acceptance | Acceptable |                |           |

#### **Current Calibration**

| Acceptable y I      | Deviation  | 0.050 |  |
|---------------------|------------|-------|--|
| Maximum y Deviation |            | 0.001 |  |
|                     |            |       |  |
|                     |            |       |  |
| Acceptance          | Acceptable |       |  |

| Reference Standard *               |               |           |                |
|------------------------------------|---------------|-----------|----------------|
| Standard Model Standard Test Meter |               |           |                |
| Calibrator                         | S/N 07J264834 |           |                |
|                                    |               |           |                |
|                                    | Calib. Date   | 25-oct-19 |                |
|                                    | Calib. Value  | 0.996     | y factor (ref) |

| Calibration Parameters                   | Run 1  | Run 2  | Run 3   |
|------------------------------------------|--------|--------|---------|
| Vacuum ("Hg)                             | 0.00   | 0.00   | 0.00    |
| dH ("H2O)                                | 0.00   | 0.00   | 0.00    |
| Initial Reference Meter                  | 428.6  | 438.1  | 445.3   |
| Final Reference Meter                    | 437.45 | 445.09 | 454.405 |
| Initial DGM                              | 3.63   | 13.16  | 20.364  |
| Final DGM                                | 12.501 | 20.171 | 29.506  |
| Temp. Ref. Meter (°F), Tr                | 73.2   | 73.6   | 76.0    |
| Temperature DGM (°F), Td                 | 73.0   | 73.6   | 75.8    |
| Time (Minutes)                           | 52.0   | 45.0   | 79.0    |
| Net Volume Ref. Meter, Vr                | 8.850  | 6.990  | 9.105   |
| Net Volume DGM, Vd                       | 8.871  | 7.011  | 9.142   |
| Gas Meter y Factor =                     | 0.993  | 0.993  | 0.992   |
| Gas Meter y Factor Deviation (from avg.) | 0.001  | 0.000  | 0.001   |
| Orifice dH@                              | 0.00   | 0.00   | 0.00    |
| Orifice dH@ Deviation (from avg.)        | 0.000  | 0.000  | 0.000   |

where:

- 1. Deviation = |Average value for all runs current run value|
- 2.  $y = [Vr \times (y \text{ factor (ref)}) \times (Pb) \times (Td + 460) / [Vd \times (Pb + (dH / 13.6)) \times (Tr + 460]]$
- 3.  $dH@ = 0.0317 \times dH / (Pb (Td + 460)) \times [(Tr + 460) \times time) / Vr]^2$

<sup>\*</sup> Reference calibration is traceable to NIST through NIST Test # 40674, Kimble ASTM E1272

# Thermal Metering System Calibration Y factor for Method 5G sampling

Manufacturer: American Meter Company

Model: DTM-200A

Serial Number: SBI-046 (90R054300)

Average Gas Meter y Factor 0.999

2021-03-02

Calibration Date: 2021-03-02

Calibrated by: Gabrielle Santerre

Calibration Frequency: Post test calibration

Next Calibration Due:

Signature/Date:

Instrument Range: 1.000 cfm

Standard Temp.: 66 oF

Standard Press.: 29.92 "Hg
Barometric Press.: 29.5 "Hg

Cl. ill Cantures

**Previous Calibration Comparision** 

| Date       | 2020-10-01    | Acceptable     |           |
|------------|---------------|----------------|-----------|
|            |               | Deviation (5%) | Deviation |
| y Factor   | 1.011 0.05055 |                | 0.012     |
| Acceptance | Acceptable    |                |           |

### **Current Calibration**

| Acceptable y Deviation |            | 0.050 |  |
|------------------------|------------|-------|--|
| Maximum y Deviation    |            | 0.004 |  |
|                        |            |       |  |
|                        |            |       |  |
| Acceptance             | Acceptable |       |  |

| Reference Standard *               |               |           |                |  |
|------------------------------------|---------------|-----------|----------------|--|
| Standard Model Standard Test Meter |               |           |                |  |
| Calibrator                         | S/N 07J264834 |           |                |  |
|                                    |               |           |                |  |
|                                    | Calib. Date   | 13-oct-20 |                |  |
|                                    | Calib. Value  | 0.990     | y factor (ref) |  |

| Calibration Parameters                   | Run 1   | Run 2   | Run 3   |
|------------------------------------------|---------|---------|---------|
| Vacuum ("Hg)                             | 0.00    | 0.00    | 0.00    |
| dH ("H2O)                                | 0.00    | 0.00    | 0.00    |
| Initial Reference Meter                  | 611.3   | 619.7   | 628.9   |
| Final Reference Meter                    | 619.369 | 628.791 | 645.985 |
| Initial DGM                              | 278.984 | 287.235 | 296.354 |
| Final DGM                                | 286.942 | 296.248 | 313.299 |
| Temp. Ref. Meter (°F), Tr                | 65.0    | 66.0    | 67.1    |
| Temperature DGM (°F), Td                 | 64.4    | 65.3    | 66.1    |
| Time (Minutes)                           | 62.0    | 73.0    | 138.0   |
| Net Volume Ref. Meter, Vr                | 8.069   | 9.091   | 17.085  |
| Net Volume DGM, Vd                       | 7.958   | 9.013   | 16.945  |
| Gas Meter y Factor =                     | 1.003   | 0.997   | 0.996   |
| Gas Meter y Factor Deviation (from avg.) | 0.004   | 0.001   | 0.002   |
| Orifice dH@                              | 0.00    | 0.00    | 0.00    |
| Orifice dH@ Deviation (from avg.)        | 0.000   | 0.000   | 0.000   |

where:

- 1. Deviation = |Average value for all runs current run value|
- 2.  $y = [Vr \ x \ (y \ factor \ (ref)) \ x \ (Pb) \ x \ (Td + 460) / [Vd \ x \ (Pb + (dH / 13.6)) \ x \ (Tr + 460]]$
- 3.  $dH@ = 0.0317 \times dH / (Pb (Td + 460)) \times [(Tr + 460) \times time) / Vr]^2$

<sup>\*</sup> Reference calibration is traceable to NIST through NIST Test # 40674, Kimble ASTM E1272

## Thermal Metering System Calibration Y factor for Method 5G sampling

Manufacturer: American Meter Company

Model: DTM-200A

Serial Number: SBI-047 (98Z332226)

Average Gas Meter y Factor 0.998

Calibration Date: 2021-03-03

Calibrated by: Gabrielle Santerre

Calibration Frequency: Post test calibration

Next Calibration Due:

Instrument Range: 1.000 cfm

Standard Temp.: 68.1 oF

Standard Press.: 29.92 "Hg
Barometric Press.: 29.45 "Hg

Signature/Date: Gabuilly mure 2021-03-03

**Previous Calibration Comparision** 

| Date       | 2020-10-06 | Acceptable     |           |
|------------|------------|----------------|-----------|
|            |            | Deviation (5%) | Deviation |
| y Factor   | 1.01       | 0.0505         | 0.012     |
| Acceptance | Acceptable |                |           |

#### **Current Calibration**

| Acceptable y Deviation |            | 0.050 |
|------------------------|------------|-------|
| Maximum y Deviation    |            | 0.000 |
|                        |            |       |
|                        |            |       |
| Acceptance             | Acceptable |       |

| Reference Standard *               |               |           |                |  |
|------------------------------------|---------------|-----------|----------------|--|
| Standard Model Standard Test Meter |               |           |                |  |
| Calibrator                         | S/N 07J264834 |           |                |  |
|                                    |               |           |                |  |
|                                    | Calib. Date   | 13-oct-20 |                |  |
|                                    | Calib. Value  | 0.990     | y factor (ref) |  |

| Calibration Parameters                   | Run 1   | Run 2   | Run 3   |
|------------------------------------------|---------|---------|---------|
| Vacuum ("Hg)                             | 0.00    | 0.00    | 0.00    |
| dH ("H2O)                                | 0.00    | 0.00    | 0.00    |
| Initial Reference Meter                  | 647.1   | 656.6   | 668.6   |
| Final Reference Meter                    | 656.343 | 668.245 | 677.079 |
| Initial DGM                              | 565.99  | 575.408 | 587.307 |
| Final DGM                                | 575.145 | 586.955 | 595.723 |
| Temp. Ref. Meter (°F), Tr                | 67.3    | 66.3    | 65.9    |
| Temperature DGM (°F), Td                 | 66.5    | 65.9    | 65.8    |
| Time (Minutes)                           | 74.0    | 94.0    | 69.0    |
| Net Volume Ref. Meter, Vr                | 9.243   | 11.645  | 8.479   |
| Net Volume DGM, Vd                       | 9.155   | 11.547  | 8.416   |
| Gas Meter y Factor =                     | 0.998   | 0.998   | 0.997   |
| Gas Meter y Factor Deviation (from avg.) | 0.000   | 0.000   | 0.000   |
| Orifice dH@                              | 0.00    | 0.00    | 0.00    |
| Orifice dH@ Deviation (from avg.)        | 0.000   | 0.000   | 0.000   |

where:

- 1. Deviation = |Average value for all runs current run value|
- 2.  $y = [Vr \ x \ (y \ factor \ (ref)) \ x \ (Pb) \ x \ (Td + 460) / [Vd \ x \ (Pb + (dH / 13.6)) \ x \ (Tr + 460]]$
- 3.  $dH@ = 0.0317 \times dH / (Pb (Td + 460)) \times [(Tr + 460) \times time) / Vr]^2$

<sup>\*</sup> Reference calibration is traceable to NIST through NIST Test # 40674, Kimble ASTM E1272

## Thermal Metering System Calibration Y factor for Method 5G sampling

Manufacturer: American Meter Company

Model: DTM-200A

Serial Number: SBI-290 (88N515612)

Average Gas Meter y Factor 0.982

Calibration Date: 2021-03-02

Calibrated by: Gabrielle Santerre

Calibration Frequency: Post test calibration

Next Calibration Due:

Instrument Range: 1.000 cfm

Standard Temp.: 67.5 oF

Standard Press.: 29.92 "Hg
Barometric Press.: 29.5 "Hg

- 40 +

Signature/Date: (Jabully Mille 2021-03-02

**Previous Calibration Comparision** 

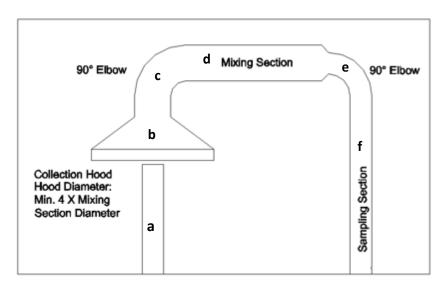
| Date       | 2020-10-05 | Acceptable     |           |
|------------|------------|----------------|-----------|
|            |            | Deviation (5%) | Deviation |
| y Factor   | 0.993      | 0.04965        | 0.011     |
| Acceptance | Acce       |                |           |

### **Current Calibration**

| Acceptable y Deviation 0.050 |            |  |  |
|------------------------------|------------|--|--|
| Maximum y D                  | 0.000      |  |  |
|                              |            |  |  |
|                              |            |  |  |
| Acceptance                   | Acceptable |  |  |

| Reference Standard * |              |               |                |  |  |
|----------------------|--------------|---------------|----------------|--|--|
| Standard             | Model        | Standard Test | Meter          |  |  |
| Calibrator           | S/N          | 07J264834     |                |  |  |
|                      |              |               |                |  |  |
|                      | Calib. Date  | 13-oct-20     |                |  |  |
|                      | Calib. Value | 0.990         | y factor (ref) |  |  |

| Calibration Parameters                   | Run 1   | Run 2   | Run 3   |
|------------------------------------------|---------|---------|---------|
| Vacuum ("Hg)                             | 0.00    | 0.00    | 0.00    |
| dH ("H2O)                                | 0.00    | 0.00    | 0.00    |
| Initial Reference Meter                  | 591.7   | 598.8   | 604.6   |
| Final Reference Meter                    | 598.422 | 604.264 | 610.588 |
| Initial DGM                              | 118.234 | 125.391 | 131.242 |
| Final DGM                                | 125     | 130.9   | 137.278 |
| Temp. Ref. Meter (°F), Tr                | 65.7    | 65.2    | 65.4    |
| Temperature DGM (°F), Td                 | 64.6    | 65.1    | 65.4    |
| Time (Minutes)                           | 65.0    | 43.0    | 47.0    |
| Net Volume Ref. Meter, Vr                | 6.722   | 5.464   | 5.988   |
| Net Volume DGM, Vd                       | 6.766   | 5.509   | 6.036   |
| Gas Meter y Factor =                     | 0.982   | 0.982   | 0.982   |
| Gas Meter y Factor Deviation (from avg.) | 0.000   | 0.000   | 0.000   |
| Orifice dH@                              | 0.00    | 0.00    | 0.00    |
| Orifice dH@ Deviation (from avg.)        | 0.000   | 0.000   | 0.000   |


where:

- 1. Deviation = |Average value for all runs current run value|
- 2.  $y = [Vr \ x \ (y \ factor \ (ref)) \ x \ (Pb) \ x \ (Td + 460) / [Vd \ x \ (Pb + (dH / 13.6)) \ x \ (Tr + 460]]$
- 3.  $dH@ = 0.0317 \times dH / (Pb (Td + 460)) \times [(Tr + 460) \times time) / Vr]^2$

<sup>\*</sup> Reference calibration is traceable to NIST through NIST Test # 40674, Kimble ASTM E1272



## 1. Tunnel cleaning pictures



## a. Picture of the chimney





## b. Picture of the collecting hood



c. Picture of the first elbow





d. Picture of the mixing section



e. Picture of the second elbow





f. Picture of the sampling section



## 2. Identification pictures

a. Front view





b. Rear view



c. Iso view





## 3. Test run pictures

- a. Run #1
  - i. Picture of the load



ii. Picture of the load inside of the combustion chamber





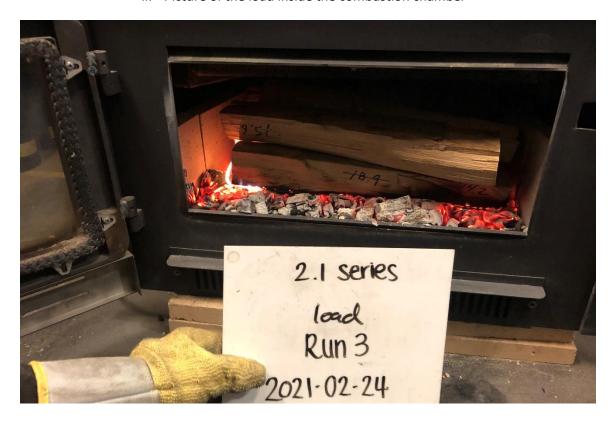
#### b. Run #2

i. Picture of the load



ii. Picture of the load inside the combustion chamber





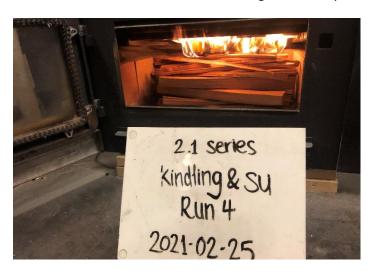

c. Run #3

i. Picture of the load



ii. Picture of the load inside the combustion chamber



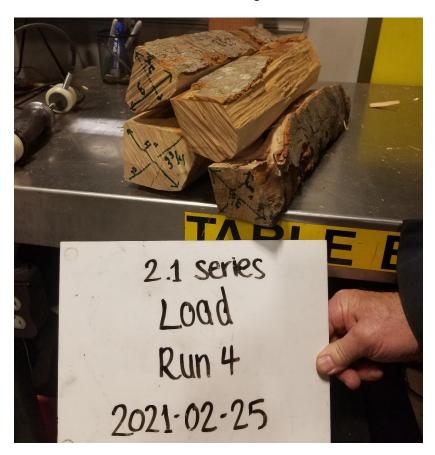



### d. Run #4

i. Picture of the kindling and start-up fuel.



ii. Picture of kindling and start-up fuel after loading.




iii. Picture of re-ajusted kindling (10:13 AM)



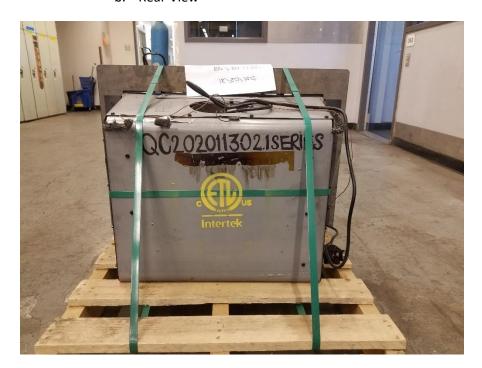


iv. Picture of the high fire test fuel load.



v. Picture of the load inside of the combustion chamber.






### 4. Picture of the sealed unit

a. Front view



b. Rear View





c. Iso view





## Unit break-in period

Total conditionning time (h) 57.17

Model tested: 2.1 Series

Identification number: QC202011302.1SERIES

| Date       | Purp ovolo | Duration | Load type      | Fuel added | Moisture |
|------------|------------|----------|----------------|------------|----------|
| Date       | Burn cycle | (min)    | (-)            | (lbs)      | (% db)   |
|            | Preload    | 32       | Kindling & SUF | 6.00       | 15.1     |
| 2021-01-14 | Condition  | 130      | High fire      | 12.04      | 20.3     |
|            | Load       | 330      | Medium fire    | 13.98      | 19.6     |
|            | Preload    | 34       | Kindling & SUF | 6.01       | 15.5     |
| 2021-01-19 | Condition  | 137      | High fire      | 12.04      | 20.1     |
|            | Load       | 340      | Medium fire    | 14.41      | 19.5     |
|            | Preload    | 169      | Kindling & SUF | 5.59       | 16.4     |
| 2021-01-21 | Condition  | 1        | High fire      | 12.04      | 20.7     |
|            | Load       | 350      | Medium fire    | 14.44      | 19.3     |
|            | Preload    | 34       | Kindling & SUF | 5.99       | 16       |
| 2021-01-28 | Condition  | 155      | High fire      | 12.06      | 23.8     |
|            | Load       | 280      | Medium fire    | 14.49      | 21.0     |
|            | Preload    | 35       | Kindling & SUF | 5.90       | 15.8     |
| 2021-02-04 | Condition  | 135      | High fire      | 11.89      | 19.2     |
|            | Load       | 310      | Medium fire    | 13.78      | 22.1     |
|            | Preload    | 42       | Kindling & SUF | 5.85       | 16       |
| 2021-02-10 | Condition  | 128      | High fire      | 11.75      | 20.1     |
|            | Load       | 355      | Medium fire    | 14.3       | 20.4     |
|            | Preload    | 148      | Kindling & SUF | 5.34       | 14.9     |
| 2021-02-17 | Condition  | 7        | High fire      | 10.79      | 22.4     |
|            | Load       | 278      | Medium fire    | 12.96      | 19.3     |

#### 2.1 Series Pre-burn Data

2021-02-04

Total time (h)

| Load time        | Load type      | Fuel added | Moisture | ]                  | Time  |
|------------------|----------------|------------|----------|--------------------|-------|
| (-)              | (-)            | (lbs)      | (%)      |                    | (min) |
| 2021-02-04 11:04 | Kindling & SUF | 5.90       | 15.8     | Pre-Charge (min)   | 35    |
| 2021-02-04 11:39 | High fire      | 11.89      | 19.2     | Conditioning (min) | 135   |
| 2021-02-04 13:54 | Medium fire    | 13.78      | 22.1     | Load (min)         | 310   |

|         | Pre-Charge (min) | 35          | Conditioning (min) | 135        | Load (min)       | 310        |
|---------|------------------|-------------|--------------------|------------|------------------|------------|
| Minutes | Date & Time      | Flue (F)    | Date & Time        | Flue (F)   | Date & Time      | Flue (F)   |
| 1       | 2021-02-04 11:04 | 108.9162869 | 2021-02-04 11:39   | 373.643371 | 2021-02-04 13:54 | 328.794677 |
| 2       | 2021-02-04 11:05 | 154.7692413 | 2021-02-04 11:40   | 377.559911 | 2021-02-04 13:55 | 318.219665 |
| 3       | 2021-02-04 11:06 | 243.5799901 | 2021-02-04 11:41   | 383.272164 | 2021-02-04 13:56 | 298.889041 |
| 4       | 2021-02-04 11:07 | 315.0037551 | 2021-02-04 11:42   | 401.078767 | 2021-02-04 13:57 | 294.833271 |
| 5       | 2021-02-04 11:08 | 358.0934936 | 2021-02-04 11:43   | 433.161948 | 2021-02-04 13:58 | 303.389568 |
| 6       | 2021-02-04 11:09 | 394.7844802 | 2021-02-04 11:44   | 459.59712  | 2021-02-04 13:59 | 313.596646 |
| 7       | 2021-02-04 11:10 | 420.7973455 | 2021-02-04 11:45   | 486.258789 | 2021-02-04 14:00 | 328.586142 |
| 8       | 2021-02-04 11:11 | 444.2624079 | 2021-02-04 11:46   | 509.861452 | 2021-02-04 14:01 | 346.212545 |
| 9       | 2021-02-04 11:12 | 459.6220839 | 2021-02-04 11:47   | 526.134489 | 2021-02-04 14:02 | 357.133959 |
| 10      | 2021-02-04 11:13 | 476.4686361 | 2021-02-04 11:48   | 536.702901 | 2021-02-04 14:03 | 370.237892 |
| 11      | 2021-02-04 11:14 | 486.6460831 | 2021-02-04 11:49   | 545.528435 | 2021-02-04 14:04 | 387.112578 |
| 12      | 2021-02-04 11:15 | 497.3524078 | 2021-02-04 11:50   | 552.762826 | 2021-02-04 14:05 | 408.481767 |
| 13      | 2021-02-04 11:16 | 513.2553016 | 2021-02-04 11:51   | 558.570985 | 2021-02-04 14:06 | 411.834155 |
| 14      | 2021-02-04 11:17 | 518.9131663 | 2021-02-04 11:52   | 561.797442 | 2021-02-04 14:07 | 407.576713 |
| 15      | 2021-02-04 11:18 | 520.794975  | 2021-02-04 11:53   | 563.732396 | 2021-02-04 14:08 | 418.129493 |
| 16      | 2021-02-04 11:19 | 525.1322691 | 2021-02-04 11:54   | 565.183979 | 2021-02-04 14:09 | 436.213185 |
| 17      | 2021-02-04 11:20 | 534.1989576 | 2021-02-04 11:55   | 565.974482 | 2021-02-04 14:10 | 442.358769 |
| 18      | 2021-02-04 11:21 | 541.6591948 | 2021-02-04 11:56   | 566.991352 | 2021-02-04 14:11 | 444.137552 |
| 19      | 2021-02-04 11:22 | 541.7947621 | 2021-02-04 11:57   | 567.438566 | 2021-02-04 14:12 | 449.876283 |
| 20      | 2021-02-04 11:23 | 539.9967308 | 2021-02-04 11:58   | 568.663812 | 2021-02-04 14:13 | 453.342872 |
| 21      | 2021-02-04 11:24 | 536.7852972 | 2021-02-04 11:59   | 569.970658 | 2021-02-04 14:14 | 454.981274 |
| 22      | 2021-02-04 11:25 | 535.5581326 | 2021-02-04 12:00   | 572.208615 | 2021-02-04 14:15 | 455.225871 |
| 23      | 2021-02-04 11:26 | 527.4294152 | 2021-02-04 12:01   | 575.21957  | 2021-02-04 14:16 | 455.73722  |
| 24      | 2021-02-04 11:27 | 517.3181149 | 2021-02-04 12:02   | 578.053268 | 2021-02-04 14:17 | 456.833662 |
| 25      | 2021-02-04 11:28 | 511.2007378 | 2021-02-04 12:03   | 580.108352 | 2021-02-04 14:18 | 458.574679 |
| 26      | 2021-02-04 11:29 | 506.635998  | 2021-02-04 12:04   | 581.990545 | 2021-02-04 14:19 | 460.611759 |
| 27      | 2021-02-04 11:30 | 504.4215213 | 2021-02-04 12:05   | 584.668891 | 2021-02-04 14:20 | 463.132794 |
| 28      | 2021-02-04 11:31 | 499.4018015 | 2021-02-04 12:06   | 585.04228  | 2021-02-04 14:21 | 464.54328  |
| 29      | 2021-02-04 11:32 | 491.7094343 | 2021-02-04 12:07   | 585.785286 | 2021-02-04 14:22 | 465.836495 |
| 30      | 2021-02-04 11:33 | 483.1048362 | 2021-02-04 12:08   | 586.688499 | 2021-02-04 14:23 | 467.523989 |
| 31      | 2021-02-04 11:34 | 475.9867559 | 2021-02-04 12:09   | 587.128652 | 2021-02-04 14:24 | 467.88759  |
| 32      | 2021-02-04 11:35 | 466.1791194 | 2021-02-04 12:10   | 587.294189 | 2021-02-04 14:25 | 468.52079  |
| 33      | 2021-02-04 11:36 | 456.70721   | 2021-02-04 12:11   | 586.755931 | 2021-02-04 14:26 | 469.795602 |
| 34      | 2021-02-04 11:37 | 436.433165  | 2021-02-04 12:12   | 585.749562 | 2021-02-04 14:27 | 471.254202 |
| 35      | 2021-02-04 11:38 | 383.0622005 | 2021-02-04 12:13   | 585.672693 | 2021-02-04 14:28 | 473.291406 |
| 36      |                  |             | 2021-02-04 12:14   | 584.816142 | 2021-02-04 14:29 | 474.360749 |
| 37      |                  |             | 2021-02-04 12:15   | 582.683176 | 2021-02-04 14:30 | 476.685006 |
| 38      |                  |             | 2021-02-04 12:16   | 579.844182 | 2021-02-04 14:31 | 481.025852 |
| 39      |                  |             | 2021-02-04 12:17   | 579.739803 | 2021-02-04 14:32 | 484.404185 |
| 40      |                  |             | 2021-02-04 12:18   | 582.121461 | 2021-02-04 14:33 | 486.407448 |
| 41      |                  |             | 2021-02-04 12:19   | 590.150068 | 2021-02-04 14:34 | 487.128052 |
| 42      |                  |             | 2021-02-04 12:20   | 593.441393 | 2021-02-04 14:35 | 487.769608 |
| 43      |                  |             | 2021-02-04 12:21   | 592.331823 | 2021-02-04 14:36 | 488.867144 |
| 44      |                  |             | 2021-02-04 12:22   | 588.448553 | 2021-02-04 14:37 | 490.000395 |
| 45      |                  |             | 2021-02-04 12:23   | 579.141    | 2021-02-04 14:38 | 490.222864 |
| 46      |                  |             | 2021-02-04 12:24   | 568.650131 | 2021-02-04 14:39 | 490.710845 |
| 47      |                  |             | 2021-02-04 12:25   | 558.442082 | 2021-02-04 14:40 | 490.718473 |

|          | 1 | 1                |            |                  |            |
|----------|---|------------------|------------|------------------|------------|
| 48       |   | 2021-02-04 12:26 | 546.977632 | 2021-02-04 14:41 | 490.018256 |
| 49       |   | 2021-02-04 12:27 | 535.724766 | 2021-02-04 14:42 | 489.795279 |
| 50       |   | 2021-02-04 12:28 | 526.760501 | 2021-02-04 14:43 | 488.96381  |
| 51       |   | 2021-02-04 12:29 | 519.148984 | 2021-02-04 14:44 | 489.082111 |
| 52       |   | 2021-02-04 12:30 | 512.561596 | 2021-02-04 14:45 | 488.149264 |
| 53       |   | 2021-02-04 12:31 | 506.683332 | 2021-02-04 14:46 | 485.900883 |
| 54       |   | 2021-02-04 12:32 | 500.352882 | 2021-02-04 14:47 | 484.453469 |
| 55       |   | 2021-02-04 12:33 | 492.676258 | 2021-02-04 14:48 | 483.034534 |
| 56       |   | 2021-02-04 12:34 | 485.153381 | 2021-02-04 14:49 | 481.707101 |
| 57       |   | 2021-02-04 12:35 | 478.14037  | 2021-02-04 14:50 | 481.15045  |
| 58       |   | 2021-02-04 12:36 | 472.312564 | 2021-02-04 14:51 | 480.829339 |
| 59       |   | 2021-02-04 12:37 | 466.226087 | 2021-02-04 14:52 | 479.333778 |
| 60       |   | 2021-02-04 12:38 | 460.788691 | 2021-02-04 14:53 | 477.769464 |
| 61       |   | 2021-02-04 12:39 | 456.101008 | 2021-02-04 14:54 | 476.40177  |
| 62       |   | 2021-02-04 12:40 | 451.533477 | 2021-02-04 14:55 | 474.163899 |
| 63       |   | 2021-02-04 12:41 | 447.118493 | 2021-02-04 14:56 | 471.790178 |
| 64       |   | 2021-02-04 12:42 | 442.999177 | 2021-02-04 14:57 | 469.880983 |
| 65       |   | 2021-02-04 12:43 | 439.128417 | 2021-02-04 14:58 | 467.802988 |
| 66       |   | 2021-02-04 12:44 | 436.025611 | 2021-02-04 14:59 | 465.705249 |
| 67       |   | 2021-02-04 12:45 | 432.396946 | 2021-02-04 15:00 | 464.712856 |
| 68       |   | 2021-02-04 12:46 | 429.20267  | 2021-02-04 15:01 | 458.945519 |
| 69       |   | 2021-02-04 12:47 | 426.081413 | 2021-02-04 15:02 | 452.015008 |
| 70       |   | 2021-02-04 12:48 | 423.145138 | 2021-02-04 15:03 | 445.222119 |
| 71       |   | 2021-02-04 12:49 | 420.278918 | 2021-02-04 15:04 | 439.293094 |
| 72       |   | 2021-02-04 12:50 | 417.309927 | 2021-02-04 15:05 | 433.159397 |
| 73       |   | 2021-02-04 12:51 | 414.583816 | 2021-02-04 15:06 | 426.932112 |
| 74       |   | 2021-02-04 12:52 | 412.505635 | 2021-02-04 15:07 | 420.294563 |
| 75       |   | 2021-02-04 12:53 | 410.052776 | 2021-02-04 15:08 | 414.309397 |
| 76       |   | 2021-02-04 12:54 | 408.066301 | 2021-02-04 15:09 | 408.79979  |
| 77       |   | 2021-02-04 12:55 | 406.06694  | 2021-02-04 15:10 | 404.264862 |
| 78       |   | 2021-02-04 12:56 | 403.895079 | 2021-02-04 15:11 | 400.044541 |
| 79       |   | 2021-02-04 12:57 | 401.423299 | 2021-02-04 15:12 | 396.347078 |
| 80       |   | 2021-02-04 12:58 | 398.850409 | 2021-02-04 15:13 | 393.556361 |
| 81       |   | 2021-02-04 12:59 | 397.464061 | 2021-02-04 15:14 | 391.306239 |
| 82       |   | 2021-02-04 13:00 | 395.462623 | 2021-02-04 15:15 | 389.179373 |
| 83       |   | 2021-02-04 13:01 | 393.660823 | 2021-02-04 15:16 | 387.222405 |
| 84       |   | 2021-02-04 13:02 | 391.998139 | 2021-02-04 15:17 | 385.242014 |
| 85       |   | 2021-02-04 13:03 |            |                  |            |
| 86       |   | 2021-02-04 13:04 | 388.82978  | 2021-02-04 15:19 | 382.223755 |
| 87       |   | 2021-02-04 13:05 | 387.105175 | 2021-02-04 15:20 | 379.124813 |
| 88       |   | 2021-02-04 13:06 | 385.295197 | 2021-02-04 15:21 | 375.684398 |
| 89       |   | 2021-02-04 13:07 | 383.385974 | 2021-02-04 15:22 | 373.084338 |
| 90       |   | 2021-02-04 13:08 | 380.981041 | 2021-02-04 15:23 | 372.713303 |
| 91       |   | 2021-02-04 13:09 | 379.614804 | 2021-02-04 15:24 | 367.632839 |
| 92       |   | 2021-02-04 13:09 | 377.645142 | 2021-02-04 15:25 | 365.411077 |
| 93       |   | 2021-02-04 13:10 | 377.645142 | 2021-02-04 15:26 | 364.076337 |
| 93       |   | 2021-02-04 13:11 | 373.476464 | 2021-02-04 15:27 | 362.133069 |
| 95       |   |                  | 373.476464 |                  |            |
|          |   | 2021-02-04 13:13 |            | 2021-02-04 15:28 | 361.091866 |
| 96<br>97 |   | 2021-02-04 13:14 | 368.153335 | 2021-02-04 15:29 | 359.881453 |
| 97       |   | 2021-02-04 13:15 | 365.996002 | 2021-02-04 15:30 | 358.517053 |
|          |   | 2021-02-04 13:16 | 363.98444  | 2021-02-04 15:31 | 357.06148  |
| 99       |   | 2021-02-04 13:17 | 362.05382  | 2021-02-04 15:32 | 355.899986 |
| 100      |   | 2021-02-04 13:18 | 360.112839 | 2021-02-04 15:33 | 353.942774 |
| 101      |   | 2021-02-04 13:19 | 358.889124 | 2021-02-04 15:34 | 352.377385 |
| 102      |   | 2021-02-04 13:20 | 357.353873 | 2021-02-04 15:35 | 350.629766 |
| 103      |   | 2021-02-04 13:21 | 355.401226 | 2021-02-04 15:36 | 348.90548  |
| 104      |   | 2021-02-04 13:22 | 354.28065  | 2021-02-04 15:37 | 347.158537 |
| 105      |   | 2021-02-04 13:23 | 352.731248 | 2021-02-04 15:38 | 345.149448 |

| 106 |  | 2021-02-04 13:24 | 352.101961 | 2021-02-04 15:39 | 343.684431               |
|-----|--|------------------|------------|------------------|--------------------------|
| 107 |  | 2021-02-04 13:25 | 351.585967 | 2021-02-04 15:40 | 341.91173                |
| 108 |  | 2021-02-04 13:26 | 351.698684 | 2021-02-04 15:41 | 339.841743               |
| 109 |  | 2021-02-04 13:27 | 351.394306 | 2021-02-04 15:42 | 337.686337               |
| 110 |  | 2021-02-04 13:28 | 350.903462 | 2021-02-04 15:43 | 335.607575               |
| 111 |  | 2021-02-04 13:29 | 351.293071 | 2021-02-04 15:44 | 333.317329               |
| 112 |  | 2021-02-04 13:30 | 351.810737 | 2021-02-04 15:45 | 331.025547               |
| 113 |  | 2021-02-04 13:31 | 352.17761  | 2021-02-04 15:46 | 328.368335               |
| 114 |  | 2021-02-04 13:32 | 352.573123 | 2021-02-04 15:47 | 325.943587               |
| 115 |  | 2021-02-04 13:33 | 363.504757 | 2021-02-04 15:48 | 323.627601               |
| 116 |  | 2021-02-04 13:34 | 369.575963 | 2021-02-04 15:49 | 321.482433               |
| 117 |  | 2021-02-04 13:35 | 373.783067 | 2021-02-04 15:50 | 320.130872               |
| 118 |  | 2021-02-04 13:36 | 376.250205 | 2021-02-04 15:51 | 318.828395               |
| 119 |  | 2021-02-04 13:37 | 377.227    | 2021-02-04 15:52 | 317.410379               |
| 120 |  | 2021-02-04 13:38 | 377.626477 | 2021-02-04 15:53 | 316.323803               |
| 121 |  | 2021-02-04 13:39 | 377.124872 | 2021-02-04 15:54 | 315.340222               |
| 122 |  | 2021-02-04 13:40 | 376.166264 | 2021-02-04 15:55 | 315.173756               |
| 123 |  | 2021-02-04 13:41 | 374.653461 | 2021-02-04 15:56 | 314.506441               |
| 124 |  | 2021-02-04 13:42 | 372.858422 | 2021-02-04 15:57 | 314.315727               |
| 125 |  | 2021-02-04 13:43 | 370.864259 | 2021-02-04 15:58 | 314.064845               |
| 126 |  | 2021-02-04 13:44 | 368.479433 | 2021-02-04 15:59 | 313.522067               |
| 127 |  | 2021-02-04 13:45 | 366.383194 | 2021-02-04 16:00 | 312.93727                |
| 128 |  | 2021-02-04 13:46 | 363.846081 | 2021-02-04 16:01 | 312.505393               |
| 129 |  | 2021-02-04 13:47 | 359.650146 | 2021-02-04 16:02 | 311.863645               |
| 130 |  | 2021-02-04 13:48 | 352.82459  | 2021-02-04 16:03 | 311.548953               |
| 131 |  | 2021-02-04 13:49 | 346.116527 | 2021-02-04 16:04 | 311.096733               |
| 132 |  | 2021-02-04 13:50 | 341.053804 | 2021-02-04 16:05 | 310.302635               |
| 133 |  | 2021-02-04 13:51 | 336.460391 | 2021-02-04 16:06 | 309.319651               |
| 134 |  | 2021-02-04 13:52 | 333.27983  | 2021-02-04 16:07 | 308.434288               |
| 135 |  | 2021-02-04 13:53 | 330.162079 | 2021-02-04 16:08 | 307.398579               |
| 136 |  | 2021 02 04 13:33 | 330.102073 | 2021-02-04 16:09 | 306.696352               |
| 137 |  |                  |            | 2021-02-04 16:10 | 305.550587               |
| 138 |  |                  |            | 2021-02-04 16:11 | 303.69698                |
| 139 |  |                  |            | 2021-02-04 16:12 | 301.058993               |
| 140 |  |                  |            | 2021-02-04 16:13 | 298.224662               |
| 141 |  |                  |            | 2021-02-04 16:14 | 294.062995               |
| 142 |  |                  |            | 2021-02-04 16:15 | 289.347349               |
| 143 |  |                  |            | 2021-02-04 16:16 | 284.370885               |
| 143 |  |                  |            | 2021-02-04 16:17 | 279.64413                |
| 145 |  |                  |            | 2021-02-04 16:17 | 275.204691               |
| 145 |  |                  |            | 2021-02-04 16:18 | 273.204691               |
| 146 |  |                  |            | 2021-02-04 16:19 |                          |
| 147 |  |                  |            | 2021-02-04 16:20 | 268.637099               |
| 148 |  |                  |            |                  | 265.871693<br>263.181947 |
|     |  |                  |            | 2021-02-04 16:22 |                          |
| 150 |  |                  |            | 2021-02-04 16:23 | 261.053461               |
| 151 |  |                  |            | 2021-02-04 16:24 | 258.92289                |
| 152 |  |                  |            | 2021-02-04 16:25 | 256.954234               |
| 153 |  |                  |            | 2021-02-04 16:26 | 255.026079               |
| 154 |  |                  |            | 2021-02-04 16:27 | 253.330574               |
| 155 |  |                  |            | 2021-02-04 16:28 | 251.339311               |
| 156 |  |                  |            | 2021-02-04 16:29 | 249.689944               |
| 157 |  |                  |            | 2021-02-04 16:30 | 248.06642                |
| 158 |  |                  |            | 2021-02-04 16:31 | 246.580345               |
| 159 |  |                  |            | 2021-02-04 16:32 | 245.523193               |
| 160 |  |                  |            | 2021-02-04 16:33 | 244.690912               |
| 161 |  |                  |            | 2021-02-04 16:34 | 243.81247                |
| 162 |  |                  |            | 2021-02-04 16:35 | 242.763702               |
| 163 |  |                  |            | 2021-02-04 16:36 | 241.940188               |

|     | ı |   | T | 1                |            |
|-----|---|---|---|------------------|------------|
| 164 |   |   |   | 2021-02-04 16:37 | 1          |
| 165 |   |   |   | 2021-02-04 16:38 | 1          |
| 166 |   |   |   | 2021-02-04 16:39 | 238.837913 |
| 167 |   |   |   | 2021-02-04 16:40 | 237.374119 |
| 168 |   |   |   | 2021-02-04 16:41 | 235.628837 |
| 169 |   |   |   | 2021-02-04 16:42 | 234.233723 |
| 170 |   |   |   | 2021-02-04 16:43 | 232.886797 |
| 171 |   |   |   | 2021-02-04 16:44 | 231.859842 |
| 172 |   |   |   | 2021-02-04 16:45 | 230.721247 |
| 173 |   |   |   | 2021-02-04 16:46 | 229.35877  |
| 174 |   |   |   | 2021-02-04 16:47 | 227.625576 |
| 175 |   |   |   | 2021-02-04 16:48 | 226.216341 |
| 176 |   |   |   | 2021-02-04 16:49 | 224.854641 |
| 177 |   |   |   | 2021-02-04 16:50 | 224.039408 |
| 178 |   |   |   | 2021-02-04 16:51 | 223.310883 |
| 179 |   |   |   | 2021-02-04 16:52 | 222.681444 |
| 180 |   |   |   | 2021-02-04 16:53 | 222.143831 |
| 181 |   |   |   | 2021-02-04 16:54 |            |
| 182 |   |   |   | 2021-02-04 16:55 |            |
| 183 |   |   |   | 2021-02-04 16:56 |            |
| 184 |   |   |   | 2021-02-04 16:57 | 220.443198 |
| 185 |   |   |   | 2021-02-04 16:58 |            |
| 186 |   |   |   | 2021-02-04 16:59 |            |
| 187 |   |   |   | 2021-02-04 17:00 |            |
| 188 |   |   |   | 2021-02-04 17:01 |            |
| 189 |   |   |   | 2021-02-04 17:01 | 218.82519  |
| 190 |   |   |   | 2021-02-04 17:03 | 1          |
| 191 |   |   |   | 2021-02-04 17:03 | ł          |
| 192 |   |   |   | 2021-02-04 17:04 |            |
| 193 |   |   |   | 2021-02-04 17:05 |            |
| 193 |   |   |   | 2021-02-04 17:07 | 217.830724 |
| 194 |   |   |   | 2021-02-04 17:07 | 217.830943 |
| 196 |   |   |   | 2021-02-04 17:08 | 217.662524 |
| 190 |   |   |   | 2021-02-04 17:09 | 217.002324 |
| 197 |   |   |   | 2021-02-04 17:10 | ł          |
|     |   |   |   | <b>+</b>         |            |
| 199 |   |   |   | 2021-02-04 17:12 |            |
| 200 |   |   |   | 2021-02-04 17:13 |            |
| 201 |   |   |   | 2021-02-04 17:14 |            |
| 202 |   |   |   | 2021-02-04 17:15 |            |
| 203 |   |   |   | 2021-02-04 17:16 |            |
| 204 |   |   |   | 2021-02-04 17:17 |            |
| 205 |   |   |   | 2021-02-04 17:18 |            |
| 206 |   |   |   | 2021-02-04 17:19 |            |
| 207 |   |   |   | 2021-02-04 17:20 |            |
| 208 |   |   |   | 2021-02-04 17:21 |            |
| 209 |   |   |   | 2021-02-04 17:22 |            |
| 210 |   |   |   | 2021-02-04 17:23 |            |
| 211 |   |   |   | 2021-02-04 17:24 |            |
| 212 |   |   |   | 2021-02-04 17:25 | 212.663259 |
| 213 |   |   |   | 2021-02-04 17:26 | 212.506397 |
| 214 |   |   |   | 2021-02-04 17:27 | 212.126829 |
| 215 |   |   |   | 2021-02-04 17:28 | 211.651557 |
| 216 |   |   |   | 2021-02-04 17:29 | 211.190573 |
| 217 |   |   |   | 2021-02-04 17:30 | 210.808316 |
| 218 |   |   |   | 2021-02-04 17:31 |            |
| 219 |   |   |   | 2021-02-04 17:32 | ł          |
| 220 |   |   |   | 2021-02-04 17:33 |            |
| 221 |   |   |   | 2021-02-04 17:34 | ł          |
|     | 1 | 1 | 1 |                  |            |

| 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | T |                      | 1          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|----------------------|------------|
| 224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 222 |   | 2021-02-04 17:35     | 207.635593 |
| 2225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |   |                      |            |
| 226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |   |                      |            |
| 227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 225 |   |                      |            |
| 2226   2021-02-04 17-81   203.814741   203.20518   2021-02-04 17-82   203.20518   2021-02-04 17-84   202.20518   2021-02-04 17-84   202.409325   2021-02-04 17-84   202.409325   2021-02-04 17-84   202.409325   2021-02-04 17-86   201.81286   2021-02-04 17-86   201.81286   2021-02-04 17-86   201.81286   2021-02-04 17-86   201.81286   2021-02-04 17-86   201.81286   2021-02-04 17-86   2021-02-04 17-86   2021-02-04 17-86   2021-02-04 17-86   2021-02-04 17-86   2021-02-04 17-86   2021-02-04 17-86   2021-02-04 17-86   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-87   2021-02-04 17-88   2021-02-04 17-88   2021-02-04 17-88   2021-02-04 17-88   2021-02-04 17-88   2021-02-04 17-88   2021-02-04 17-88   2021-02-04 17-88   2021-02-04 17-88   2021-02-04 17-88   2021-02-04 17-88   2021-02-04 17-88   2021-02-04 17-88   2021-02-04 17-88   2021-02-04 17-88   2021-02-04 18-80   2021-02-04 18-80   2021-02-04 18-80   2021-02-04 18-80   2021-02-04 18-80   2021-02-04 18-80   2021-02-04 18-80   2021-02-04 18-80   2021-02-04 18-80   2021-02-04 18-80   2021-02-04 18-80   2021-02-04 18-80   2021-02-04 18-80   2021-02-04 18-80   2021-02-04 18-80   2021-02-04 18-80   2021-02-04 18-80   2021-02-04 18-80   2021-02-04 18-80   2021-02-04 18-80   2021-02-04 18-80   2021-02-04 18-80   2021-02-04 18-80   2021-02-04 18-80   2021-02-04 18-80   2021-02- |     |   |                      |            |
| 229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |   |                      |            |
| 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 228 |   | 2021-02-04 17:41     | 203.814741 |
| 2331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 229 |   | 2021-02-04 17:42     | 203.206518 |
| 2322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 230 |   | 2021-02-04 17:43     | 202.847571 |
| 233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 231 |   | 2021-02-04 17:44     | 202.400325 |
| 224    2021-02-04 17:47  200.719424   235    2021-02-04 17:48  200.29667   236    2021-02-04 17:49  199.925356   237    2021-02-04 17:51  198.919373   238    2021-02-04 17:51  198.919373   238    2021-02-04 17:51  198.919373   239    2021-02-04 17:51  198.919373   239    2021-02-04 17:53  198.19437   240    2021-02-04 17:53  198.164165   241    2021-02-04 17:54  197.723693   242    2021-02-04 17:55  197.50143   242    2021-02-04 17:55  197.50143   244    2021-02-04 17:55  197.50143   244    2021-02-04 17:55  197.50143   245    2021-02-04 17:59  196.875841   245    2021-02-04 17:59  196.875841   245    2021-02-04 18:00  195.821655   248    2021-02-04 18:00  195.821655   248    2021-02-04 18:00  195.821655   248    2021-02-04 18:00  195.821655   248    2021-02-04 18:00  195.821655   249    2021-02-04 18:00  195.821655   2201-02-04 18:00  195.821655   255    2021-02-04 18:00  195.821655   255    2021-02-04 18:00  195.821655   255    2021-02-04 18:00  193.856094   255    255    2021-02-04 18:00  193.856094   255    255    2021-02-04 18:00  193.856094   255    255    2021-02-04 18:00  193.856094   255    255    2021-02-04 18:00  193.856094   255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255    255     | 232 |   | 2021-02-04 17:45     | 201.843286 |
| 2255   2021-02-04 17:48   200.299677   2201-02-04 17:49   199.925356   2021-02-04 17:50   199.905356   2021-02-04 17:50   199.905356   2021-02-04 17:51   199.915337   2021-02-04 17:51   198.919337   2021-02-04 17:51   198.919337   2021-02-04 17:51   198.919337   2021-02-04 17:53   198.56921   2021-02-04 17:54   198.79337   2021-02-04 17:54   197.725693   2021-02-04 17:55   197.725693   2021-02-04 17:55   197.725693   2021-02-04 17:55   197.00142   2021-02-04 17:55   197.00142   2021-02-04 17:55   197.00142   2021-02-04 17:56   197.14334   2021-02-04 17:56   197.14334   2021-02-04 17:56   197.14334   2021-02-04 17:56   197.14334   2021-02-04 17:56   197.14334   2021-02-04 17:56   197.14334   2021-02-04 17:59   196.02189   2021-02-04 18:00   195.821655   2021-02-04 18:00   195.821655   2021-02-04 18:00   195.821655   2021-02-04 18:00   195.821655   2021-02-04 18:00   195.821655   2021-02-04 18:00   195.821655   2021-02-04 18:00   195.821655   2021-02-04 18:00   195.821655   2021-02-04 18:00   195.821655   2021-02-04 18:00   195.821655   2021-02-04 18:00   195.821655   2021-02-04 18:00   195.821655   2021-02-04 18:00   195.821655   2021-02-04 18:00   195.821655   2021-02-04 18:00   195.821655   2021-02-04 18:00   195.821655   2021-02-04 18:00   195.821655   2021-02-04 18:00   195.821655   2021-02-04 18:00   195.821655   2021-02-04 18:00   195.821655   2021-02-04 18:00   195.821655   2021-02-04 18:00   195.821655   2021-02-04 18:00   195.821655   2021-02-04 18:00   195.821655   2021-02-04 18:00   195.821655   2021-02-04 18:00   195.821655   2021-02-04 18:00   195.821655   2021-02-04 18:00   195.821655   2021-02-04 18:00   195.821655   2021-02-04 18:10   195.821655   2021-02-04 18:10   195.821655   2021-02-04 18:10   195.821655   2021-02-04 18:10   195.821655   2021-02-04 18:10   195.821655   2021-02-04 18:10   195.821655   2021-02-04 18:10   195.821655   2021-02-04 18:10   195.821655   2021-02-04 18:10   195.821655   2021-02-04 18:10   195.821655   2021-02-04 18:10   195.821655   2021-02-04 18:10   195.821655   2 | 233 |   | 2021-02-04 17:46     | 201.176196 |
| 236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 234 |   | 2021-02-04 17:47     | 200.719424 |
| 237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 235 |   | 2021-02-04 17:48     | 200.299677 |
| 238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 236 |   | 2021-02-04 17:49     | 199.925356 |
| 239   2021-02-04 17-52   198.526921   2021-02-04 17-55   198.164165   241   2021-02-04 17-55   198.164165   241   2021-02-04 17-55   197.723693   242   2021-02-04 17-55   197.723693   243   2021-02-04 17-55   197.83693   2021-02-04 17-55   197.83693   2021-02-04 17-55   197.83693   2021-02-04 17-55   196.875841   2021-02-04 17-58   196.875841   244   2021-02-04 17-58   196.875841   245   2021-02-04 17-58   196.875841   246   2021-02-04 18-00   195.821655   248   2021-02-04 18-00   195.821655   248   2021-02-04 18-00   195.821655   249   2021-02-04 18-00   195.13172   250   2021-02-04 18-00   195.13172   250   2021-02-04 18-00   195.13172   250   2021-02-04 18-00   195.1355   251   2021-02-04 18-00   195.3556   252   2021-02-04 18-06   193.866094   252   2021-02-04 18-06   193.866094   252   2021-02-04 18-06   193.866094   252   2021-02-04 18-00   193.865094   252   2021-02-04 18-00   193.81125   255   2021-02-04 18-00   193.81125   255   2021-02-04 18-00   193.81125   255   2021-02-04 18-00   193.81125   255   2021-02-04 18-00   193.81125   255   2021-02-04 18-00   193.81125   255   2021-02-04 18-00   193.81125   255   2021-02-04 18-00   193.81125   255   2021-02-04 18-00   193.81125   255   2021-02-04 18-00   193.81125   255   2021-02-04 18-00   193.81125   255   2021-02-04 18-00   193.81125   255   2021-02-04 18-00   193.81125   255   2021-02-04 18-00   193.81125   255   2021-02-04 18-00   193.81125   255   2021-02-04 18-00   193.81125   255   2021-02-04 18-00   193.81125   255   2021-02-04 18-00   193.81125   255   2021-02-04 18-00   193.81125   255   2021-02-04 18-00   193.81125   255   2021-02-04 18-00   193.81125   255   2021-02-04 18-00   193.81125   255   2021-02-04 18-10   193.856588   2021-02-04 18-10   193.856588   2021-02-04 18-10   193.856588   2021-02-04 18-10   193.856588   2021-02-04 18-10   193.8576   2021-02-04 18-10   193.8576   2021-02-04 18-10   193.8576   2021-02-04 18-10   193.8576   2021-02-04 18-10   193.8576   2021-02-04 18-10   193.8576   2021-02-04 18-10   193.8576   2021-02-04 18- | 237 |   | 2021-02-04 17:50     | 199.401417 |
| 240     2021-02-04 17:53   198.164165   241   2021-02-04 17:54   197.723693   242   2021-02-04 17:55   197.723693   242   2021-02-04 17:55   197.723693   243   2021-02-04 17:55   197.4334   2021-02-04 17:57   196.875841   244   2021-02-04 17:58   196.875841   245   2021-02-04 17:59   196.875841   246   2021-02-04 17:59   196.02189   247   2021-02-04 18:00   195.821655   248   2021-02-04 18:00   195.821655   248   2021-02-04 18:00   195.457059   249   2021-02-04 18:00   195.457059   249   2021-02-04 18:00   194.52594   255   2021-02-04 18:00   194.52594   255   2021-02-04 18:00   194.52594   252   2021-02-04 18:00   194.52594   252   2021-02-04 18:00   194.823947   253   2021-02-04 18:00   193.86094   254   2021-02-04 18:00   193.86094   255   2021-02-04 18:00   193.86591   255   2021-02-04 18:00   193.86521   255   2021-02-04 18:00   193.86521   256   2021-02-04 18:00   193.86521   256   2021-02-04 18:10   192.65932   258   2021-02-04 18:10   192.65932   256   2021-02-04 18:10   192.65932   256   2021-02-04 18:10   192.65932   256   2021-02-04 18:11   192.65932   256   2021-02-04 18:11   192.65932   256   2021-02-04 18:11   192.65932   256   2021-02-04 18:11   192.65932   256   2021-02-04 18:11   192.65932   256   2021-02-04 18:11   192.65932   256   2021-02-04 18:11   192.65932   256   2021-02-04 18:11   192.65932   256   2021-02-04 18:11   192.65932   256   2021-02-04 18:11   192.65932   256   2021-02-04 18:11   192.65932   256   2021-02-04 18:11   192.65932   256   2021-02-04 18:11   192.65932   256   2021-02-04 18:11   192.65932   256   2021-02-04 18:11   192.65932   256   2021-02-04 18:11   192.65932   256   2021-02-04 18:11   192.65932   256   2021-02-04 18:11   192.65932   256   2021-02-04 18:11   192.65932   256   2021-02-04 18:11   192.65932   256   2021-02-04 18:11   192.65932   256   2021-02-04 18:11   192.65932   256   2021-02-04 18:21   189.255346   256   2021-02-04 18:21   189.255346   256   2021-02-04 18:21   189.255346   256   2021-02-04 18:21   189.255346   256   2021-02-04 18:21   189.255346 | 238 |   | 2021-02-04 17:51     | 198.919337 |
| 241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 239 |   | 2021-02-04 17:52     | 198.526921 |
| 242   2021-02-04 17:55   197.500142   244   2021-02-04 17:56   197.14334   2021-02-04 17:56   197.14334   2021-02-04 17:56   197.14334   2021-02-04 17:56   198.875841   245   2021-02-04 17:58   196.875841   246   2021-02-04 18:58   196.027283   246   2021-02-04 18:00   195.821655   248   2021-02-04 18:00   195.821655   248   2021-02-04 18:00   195.821655   249   2021-02-04 18:00   195.821655   249   2021-02-04 18:00   195.821655   249   2021-02-04 18:00   195.821655   249   2021-02-04 18:00   195.821655   255   2021-02-04 18:00   195.821655   255   2021-02-04 18:00   194.82934   255   2021-02-04 18:00   194.82934   255   2021-02-04 18:00   194.82934   255   2021-02-04 18:00   193.86694   254   2021-02-04 18:00   193.86694   255   2021-02-04 18:00   193.811355   255   2021-02-04 18:00   193.811355   257   2021-02-04 18:00   193.81135   257   2021-02-04 18:00   193.81135   258   2021-02-04 18:10   192.659125   258   2021-02-04 18:10   192.659125   258   2021-02-04 18:11   192.659125   258   2021-02-04 18:11   192.659125   256   2021-02-04 18:11   192.659125   256   2021-02-04 18:11   192.659125   258   2021-02-04 18:11   192.659125   256   2021-02-04 18:11   192.659125   256   2021-02-04 18:11   192.659125   256   2021-02-04 18:11   192.659125   256   2021-02-04 18:11   192.659125   256   2021-02-04 18:11   192.659125   256   2021-02-04 18:11   192.659125   256   2021-02-04 18:11   192.659125   256   2021-02-04 18:11   192.659125   256   2021-02-04 18:11   192.659125   256   2021-02-04 18:11   192.659125   256   2021-02-04 18:11   192.659125   256   2021-02-04 18:11   192.659125   256   2021-02-04 18:11   192.659125   256   2021-02-04 18:11   192.659125   256   2021-02-04 18:11   192.1508   256   2021-02-04 18:11   192.1508   256   2021-02-04 18:11   192.1508   256   2021-02-04 18:11   192.1508   256   2021-02-04 18:11   192.1508   256   2021-02-04 18:11   192.1508   256   2021-02-04 18:11   192.1508   256   2021-02-04 18:11   192.1508   256   2021-02-04 18:11   192.1508   256   2021-02-04 18:11   192.1508   25 | 240 |   | 2021-02-04 17:53     | 198.164165 |
| 243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 241 |   | 2021-02-04 17:54     | 197.723693 |
| 243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 242 |   | 2021-02-04 17:55     | 197.500142 |
| 244       2021-02-04 17:57       196.875841         245       2021-02-04 17:58       196.427283         246       2021-02-04 18:09       195.821655         247       2021-02-04 18:00       195.821655         248       2021-02-04 18:01       195.457059         249       2021-02-04 18:02       195.13172         250       2021-02-04 18:03       194.842506         251       2021-02-04 18:03       194.842506         252       2021-02-04 18:03       194.842506         253       2021-02-04 18:06       193.86694         254       2021-02-04 18:06       193.86694         255       2021-02-04 18:06       193.386521         255       2021-02-04 18:06       193.386594         254       2021-02-04 18:07       193.512278         255       2021-02-04 18:06       193.386594         254       2021-02-04 18:07       193.512278         255       2021-02-04 18:07       193.512278         255       2021-02-04 18:07       193.386591         257       2021-02-04 18:01       193.86588         258       2021-02-04 18:01       192.865912         259       2021-02-04 18:11       192.659122         259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 243 |   | 2021-02-04 17:56     |            |
| 245         2021-02-04 17:58         196.427283           246         2021-02-04 17:59         196.02189           247         2021-02-04 18:00         195.82165           248         2021-02-04 18:01         195.457059           249         2021-02-04 18:02         195.13172           250         2021-02-04 18:03         194.842506           251         2021-02-04 18:05         194.85294           252         2021-02-04 18:05         194.282947           253         2021-02-04 18:05         194.282947           253         2021-02-04 18:06         193.861094           254         2021-02-04 18:09         193.181135           255         2021-02-04 18:09         193.181135           256         2021-02-04 18:09         193.181135           257         2021-02-04 18:10         192.86368           258         2021-02-04 18:11         192.21508           259         2021-02-04 18:11         192.21508           260         2021-02-04 18:11         192.21508           261         2021-02-04 18:11         191.636779           262         2021-02-04 18:11         191.078626           263         2021-02-04 18:15         191.078626                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 244 |   | 2021-02-04 17:57     |            |
| 246       2021-02-04 17:59       196.02189         247       2021-02-04 18:00       195.821655         248       2021-02-04 18:01       195.876059         249       2021-02-04 18:02       195.13172         250       2021-02-04 18:03       194.842506         251       2021-02-04 18:03       194.282947         252       2021-02-04 18:06       193.866094         254       2021-02-04 18:06       193.866094         255       2021-02-04 18:08       193.865094         254       2021-02-04 18:08       193.386521         255       2021-02-04 18:09       193.181135         257       2021-02-04 18:09       193.181135         257       2021-02-04 18:10       192.863688         258       2021-02-04 18:11       192.21508         260       2021-02-04 18:11       192.21508         260       2021-02-04 18:12       192.21508         261       2021-02-04 18:12       192.21508         260       2021-02-04 18:13       191.87873         261       2021-02-04 18:13       191.87873         262       2021-02-04 18:15       191.378576         263       2021-02-04 18:15       191.378576         264 <td></td> <td></td> <td>2021-02-04 17:58</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |   | 2021-02-04 17:58     |            |
| 247       2021-02-04 18:00       195.821655         248       2021-02-04 18:01       195.457059         249       2021-02-04 18:02       195.13172         250       2021-02-04 18:03       194.842506         251       2021-02-04 18:04       194.55294         252       2021-02-04 18:06       194.282947         253       2021-02-04 18:07       193.512278         255       2021-02-04 18:07       193.512278         255       2021-02-04 18:09       193.181135         257       2021-02-04 18:09       193.181135         257       2021-02-04 18:10       192.659122         258       2021-02-04 18:11       192.659122         259       2021-02-04 18:11       192.659122         259       2021-02-04 18:13       191.87873         260       2021-02-04 18:13       191.87873         261       2021-02-04 18:13       191.87873         262       2021-02-04 18:14       191.636779         262       2021-02-04 18:14       191.078626         263       2021-02-04 18:15       190.748557         265       2021-02-04 18:17       190.748557         266       2021-02-04 18:19       190.726058         267<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |   |                      |            |
| 248       2021-02-04 18:01       195.457059         249       2021-02-04 18:02       195.13172         250       2021-02-04 18:03       195.13172         251       2021-02-04 18:04       194.55294         252       2021-02-04 18:05       194.282947         253       2021-02-04 18:06       193.86694         254       2021-02-04 18:06       193.512278         255       2021-02-04 18:08       193.386521         256       2021-02-04 18:09       193.18135         257       2021-02-04 18:10       192.863688         258       2021-02-04 18:11       192.659122         259       2021-02-04 18:11       192.659122         259       2021-02-04 18:11       192.87688         260       2021-02-04 18:12       192.21508         260       2021-02-04 18:13       191.87873         261       2021-02-04 18:14       191.636779         262       2021-02-04 18:15       191.35576         263       2021-02-04 18:16       191.078626         264       2021-02-04 18:16       191.078626         265       2021-02-04 18:18       190.379152         266       2021-02-04 18:19       190.74587         267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |   |                      |            |
| 249       2021-02-04 18:02       195.13172         250       2021-02-04 18:03       194.842506         251       2021-02-04 18:04       194.52594         252       2021-02-04 18:05       194.282947         253       2021-02-04 18:06       193.866094         254       2021-02-04 18:07       193.512278         255       2021-02-04 18:09       193.181135         257       2021-02-04 18:09       193.181135         258       2021-02-04 18:10       192.65682         258       2021-02-04 18:11       192.659122         259       2021-02-04 18:11       192.659122         259       2021-02-04 18:13       191.87873         261       2021-02-04 18:13       191.87873         261       2021-02-04 18:13       191.37873         262       2021-02-04 18:14       191.3576         263       2021-02-04 18:15       191.37857         264       2021-02-04 18:15       191.078626         265       2021-02-04 18:17       190.745857         266       2021-02-04 18:17       190.745857         266       2021-02-04 18:21       189.255346         267       2021-02-04 18:21       189.255346         268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |                      |            |
| 2021-02-04 18:03   194.842506   2021-02-04 18:04   194.55294   252   2021-02-04 18:05   194.282947   253   2021-02-04 18:06   193.866094   254   2021-02-04 18:06   193.866094   255   2021-02-04 18:07   193.512278   2021-02-04 18:07   193.512278   2021-02-04 18:08   193.386521   256   2021-02-04 18:09   193.181135   257   2021-02-04 18:10   192.863688   258   2021-02-04 18:11   192.659122   259   2021-02-04 18:11   192.659122   259   2021-02-04 18:13   191.87873   261   2021-02-04 18:14   191.636779   262   2021-02-04 18:14   191.636779   262   2021-02-04 18:15   191.35576   263   2021-02-04 18:15   191.078626   264   2021-02-04 18:16   191.078626   264   2021-02-04 18:18   190.745857   265   2021-02-04 18:18   190.379152   266   2021-02-04 18:18   190.379152   266   2021-02-04 18:19   190.126058   267   2021-02-04 18:18   190.379152   266   2021-02-04 18:20   189.2793467   268   2021-02-04 18:21   189.255346   2021-02-04 18:22   188.687314   270   2021-02-04 18:22   188.687314   270   2021-02-04 18:22   188.687314   270   2021-02-04 18:22   188.687314   270   2021-02-04 18:22   188.687314   270   2021-02-04 18:22   188.687314   270   2021-02-04 18:22   188.687314   270   2021-02-04 18:22   188.687314   270   2021-02-04 18:22   188.687314   270   2021-02-04 18:22   188.687314   270   2021-02-04 18:22   188.687314   270   2021-02-04 18:22   188.687314   270   2021-02-04 18:23   188.26233   271   2021-02-04 18:23   188.26233   271   2021-02-04 18:24   187.789714   272   2021-02-04 18:26   186.698409   274   2021-02-04 18:26   186.698409   274   2021-02-04 18:26   186.698409   277   2021-02-04 18:28   186.6082424   275   2021-02-04 18:28   185.6082424   275   2021-02-04 18:28   185.878426   277   2021-02-04 18:28   185.878426   277   2021-02-04 18:30   185.57167   2021-02-04 18:30   185.57167   2021-02-04 18:30   185.57167   2021-02-04 18:30   185.57167   2021-02-04 18:30   185.57167   2021-02-04 18:30   185.57167   278   2021-02-04 18:30   185.57167   2021-02-04 18:30   185.57167   2021-02-04 18:30   185.57167   |     |   |                      |            |
| 251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |   |                      |            |
| 252   2021-02-04 18:05   194.282947   253   2021-02-04 18:06   193.866094   254   2021-02-04 18:06   193.866094   255   2021-02-04 18:06   193.866094   255   2021-02-04 18:08   193.386521   256   2021-02-04 18:09   193.18135   257   2021-02-04 18:01   192.863688   258   2021-02-04 18:11   192.659122   259   2021-02-04 18:12   192.21508   2021-02-04 18:13   191.87873   261   2021-02-04 18:14   191.636779   262   2021-02-04 18:15   191.35576   263   2021-02-04 18:16   191.078626   264   2021-02-04 18:16   191.078626   264   2021-02-04 18:18   190.379152   265   2021-02-04 18:18   190.379152   266   2021-02-04 18:18   190.379152   266   2021-02-04 18:19   190.126058   267   2021-02-04 18:20   189.720467   268   2021-02-04 18:21   189.255346   269   2021-02-04 18:21   189.255346   269   2021-02-04 18:21   189.255346   269   2021-02-04 18:22   188.687314   270   2021-02-04 18:24   187.789714   2021-02-04 18:25   187.443429   273   2021-02-04 18:26   186.978409   274   2021-02-04 18:26   186.978409   274   2021-02-04 18:27   186.624324   275   2021-02-04 18:29   185.578626   2021-02-04 18:29   185.57846   277   2021-02-04 18:29   185.57846   2621-02-04 18:29   185.57846   2621-02-04 18:29   185.57846   2621-02-04 18:29   185.57846   2621-02-04 18:29   185.57846   2621-02-04 18:29   185.57846   2621-02-04 18:29   185.57846   2621-02-04 18:29   185.57846   2621-02-04 18:30   185.57167   278   2021-02-04 18:30   185.57167   2621-02-04 18:30   185.57167   2621-02-04 18:30   185.57167   2621-02-04 18:30   185.57167   2621-02-04 18:30   185.57167   2621-02-04 18:30   185.57167   2621-02-04 18:30   185.57167   2621-02-04 18:30   185.57167   2621-02-04 18:30   185.57167   2621-02-04 18:30   185.57167   2621-02-04 18:30   185.57167   2621-02-04 18:30   185.57167   2621-02-04 18:30   185.57167   2621-02-04 18:30   185.57167   2621-02-04 18:30   185.57167   2621-02-04 18:30   185.57167   2621-02-04 18:30   185.57167   2621-02-04 18:30   185.57167   2621-02-04 18:30   185.57167   2621-02-04 18:30   185.57167   2621-02-04 18:30 |     |   |                      |            |
| 253       2021-02-04 18:06       193.866094         254       2021-02-04 18:07       193.512278         255       2021-02-04 18:08       193.386521         256       2021-02-04 18:09       193.181135         257       2021-02-04 18:10       192.863688         258       2021-02-04 18:11       192.659122         259       2021-02-04 18:12       192.21508         260       2021-02-04 18:13       191.87873         261       2021-02-04 18:14       191.636779         262       2021-02-04 18:15       191.35576         263       2021-02-04 18:16       191.078626         264       2021-02-04 18:16       191.078626         265       2021-02-04 18:19       190.745857         266       2021-02-04 18:19       190.126058         267       2021-02-04 18:20       189.720467         268       2021-02-04 18:21       189.255346         269       2021-02-04 18:21       189.255346         269       2021-02-04 18:22       188.667314         270       2021-02-04 18:22       188.67849         271       2021-02-04 18:25       187.443429         273       2021-02-04 18:26       186.64324         275<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |   |                      |            |
| 254   2021-02-04 18:07   193.512278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |   |                      |            |
| 201-02-04 18:08 193.386521   2021-02-04 18:09 193.181135   2021-02-04 18:09 193.181135   2021-02-04 18:09 193.181135   2021-02-04 18:10 192.863688   2021-02-04 18:11 192.659122   2021-02-04 18:12 192.21508   2021-02-04 18:12 192.21508   2021-02-04 18:13 191.87873   261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |   |                      |            |
| 256       2021-02-04 18:09       193.181135         257       2021-02-04 18:10       192.863688         258       2021-02-04 18:11       192.659122         259       2021-02-04 18:11       192.55912         260       2021-02-04 18:13       191.87873         261       2021-02-04 18:14       191.636779         262       2021-02-04 18:15       191.35576         263       2021-02-04 18:16       191.078626         264       2021-02-04 18:18       190.379152         265       2021-02-04 18:18       190.379152         266       2021-02-04 18:19       190.126058         267       2021-02-04 18:20       189.720467         268       2021-02-04 18:21       189.255346         269       2021-02-04 18:22       188.26233         270       2021-02-04 18:23       188.26233         271       2021-02-04 18:24       187.789714         272       2021-02-04 18:25       186.978409         274       2021-02-04 18:26       186.978409         275       2021-02-04 18:29       185.878426         275       2021-02-04 18:29       185.878426         276       2021-02-04 18:29       185.878426         277<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |   |                      |            |
| 257   2021-02-04 18:10   192.863688   258   2021-02-04 18:11   192.659122   259   2021-02-04 18:12   192.21508   2021-02-04 18:13   191.87873   261   2021-02-04 18:13   191.38777   262   2021-02-04 18:15   191.378576   263   2021-02-04 18:16   191.078626   2021-02-04 18:16   191.078626   264   2021-02-04 18:16   191.078626   265   2021-02-04 18:18   190.379152   266   2021-02-04 18:19   190.126058   267   2021-02-04 18:21   189.25536   2021-02-04 18:21   189.25536   268   2021-02-04 18:21   189.25536   269   2021-02-04 18:22   188.687314   270   2021-02-04 18:22   188.687314   270   2021-02-04 18:23   182.2633   271   2021-02-04 18:24   187.789714   272   2021-02-04 18:25   187.443429   273   2021-02-04 18:26   186.978409   274   2021-02-04 18:26   186.978409   274   2021-02-04 18:26   186.978409   274   2021-02-04 18:26   186.140782   275   2021-02-04 18:28   186.140782   276   2021-02-04 18:29   185.878426   277   2021-02-04 18:30   185.517167   278   2021-02-04 18:30   185.517167   278   2021-02-04 18:31   185.23894   2021-02-04 18:31   185.23894   2021-02-04 18:31   185.23894   2021-02-04 18:31   185.23894   2021-02-04 18:31   185.23894   2021-02-04 18:31   185.23894   2021-02-04 18:31   185.23894   2021-02-04 18:31   185.23894   2021-02-04 18:31   185.23894   2021-02-04 18:31   185.23894   2021-02-04 18:31   185.23894   2021-02-04 18:31   185.23894   2021-02-04 18:31   185.23894   2021-02-04 18:31   185.23894   2021-02-04 18:31   185.23894   2021-02-04 18:31   185.23894   2021-02-04 18:31   185.23894   2021-02-04 18:31   185.23894   2021-02-04 18:31   185.23894   2021-02-04 18:31   185.23894   2021-02-04 18:31   185.23894   2021-02-04 18:31   185.23894   2021-02-04 18:31   185.23894   2021-02-04 18:31   185.23894   2021-02-04 18:31   185.23894   2021-02-04 18:31   185.23894   2021-02-04 18:31   2021-02-04 18:31   2021-02-04 18:31   2021-02-04 18:31   2021-02-04 18:31   2021-02-04 18:31   2021-02-04 18:31   2021-02-04 18:31   2021-02-04 18:31   2021-02-04 18:31   2021-02-04 18:31   2021-02-04 18:31   2021 |     |   |                      |            |
| 258       2021-02-04 18:11       192.659122         259       2021-02-04 18:12       192.21508         260       2021-02-04 18:13       191.87873         261       2021-02-04 18:14       191.636779         262       2021-02-04 18:15       191.35576         263       2021-02-04 18:16       191.078626         264       2021-02-04 18:17       190.745857         265       2021-02-04 18:18       190.379152         266       2021-02-04 18:19       190.126058         267       2021-02-04 18:20       189.720467         268       2021-02-04 18:21       189.255346         269       2021-02-04 18:21       189.255346         269       2021-02-04 18:22       188.687314         270       2021-02-04 18:23       188.226233         271       2021-02-04 18:24       187.789714         272       2021-02-04 18:25       187.443429         273       2021-02-04 18:26       186.978409         274       2021-02-04 18:28       186.140782         275       2021-02-04 18:29       185.878426         277       2021-02-04 18:30       185.517167         278       2021-02-04 18:31       185.23894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |   |                      |            |
| 259       2021-02-04 18:12       192.21508         260       2021-02-04 18:13       191.87873         261       2021-02-04 18:14       191.636779         262       2021-02-04 18:15       191.35576         263       2021-02-04 18:16       191.078626         264       2021-02-04 18:17       190.745857         265       2021-02-04 18:18       190.379152         266       2021-02-04 18:19       190.126058         267       2021-02-04 18:20       189.720467         268       2021-02-04 18:21       189.255346         269       2021-02-04 18:21       189.255346         269       2021-02-04 18:22       188.687314         270       2021-02-04 18:23       188.226233         271       2021-02-04 18:23       188.296233         271       2021-02-04 18:24       187.789714         272       2021-02-04 18:26       186.978409         273       2021-02-04 18:26       186.64324         275       2021-02-04 18:29       185.878426         276       2021-02-04 18:29       185.878426         277       2021-02-04 18:31       185.23894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |   |                      |            |
| 260       2021-02-04 18:13       191.87873         261       2021-02-04 18:14       191.636779         262       2021-02-04 18:15       191.35576         263       2021-02-04 18:16       191.078626         264       2021-02-04 18:17       190.745857         265       2021-02-04 18:18       190.379152         266       2021-02-04 18:19       190.126058         267       2021-02-04 18:20       189.720467         268       2021-02-04 18:21       189.255346         269       2021-02-04 18:22       188.687314         270       2021-02-04 18:23       188.226233         271       2021-02-04 18:24       187.789714         272       2021-02-04 18:25       187.443429         273       2021-02-04 18:25       186.978409         274       2021-02-04 18:28       186.140782         275       2021-02-04 18:28       186.140782         276       2021-02-04 18:29       185.878426         277       2021-02-04 18:31       185.517167         278       2021-02-04 18:31       185.53894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |   |                      |            |
| 261       2021-02-04 18:14       191.636779         262       2021-02-04 18:15       191.35576         263       2021-02-04 18:16       191.078626         264       2021-02-04 18:17       190.745857         265       2021-02-04 18:18       190.379152         266       2021-02-04 18:19       190.126058         267       2021-02-04 18:20       189.720467         268       2021-02-04 18:21       189.255346         269       2021-02-04 18:21       188.687314         270       2021-02-04 18:23       188.226233         271       2021-02-04 18:24       187.443429         273       2021-02-04 18:25       187.443429         273       2021-02-04 18:26       186.978409         274       2021-02-04 18:28       186.140782         275       2021-02-04 18:29       185.878426         276       2021-02-04 18:29       185.878426         277       2021-02-04 18:31       185.23894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |   |                      |            |
| 262       2021-02-04 18:15       191.35576         263       2021-02-04 18:16       191.078626         264       2021-02-04 18:17       190.745857         265       2021-02-04 18:18       190.379152         266       2021-02-04 18:19       190.126058         267       2021-02-04 18:20       189.720467         268       2021-02-04 18:21       189.255346         269       2021-02-04 18:22       188.687314         270       2021-02-04 18:23       188.226233         271       2021-02-04 18:24       187.789714         272       2021-02-04 18:25       187.443429         273       2021-02-04 18:26       186.978409         274       2021-02-04 18:27       186.624324         275       2021-02-04 18:28       186.140782         276       2021-02-04 18:29       185.878426         277       2021-02-04 18:30       185.517167         278       2021-02-04 18:31       185.23894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |   |                      |            |
| 263       2021-02-04 18:16       191.078626         264       2021-02-04 18:17       190.745857         265       2021-02-04 18:18       190.379152         266       2021-02-04 18:19       190.126058         267       2021-02-04 18:20       189.720467         268       2021-02-04 18:21       189.255346         269       2021-02-04 18:22       188.687314         270       2021-02-04 18:23       188.226233         271       2021-02-04 18:24       187.789714         272       2021-02-04 18:25       187.443429         273       2021-02-04 18:25       186.624324         274       2021-02-04 18:27       186.624324         275       2021-02-04 18:28       186.140782         276       2021-02-04 18:29       185.878426         277       2021-02-04 18:30       185.517167         278       2021-02-04 18:31       185.23894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |   |                      |            |
| 264       2021-02-04 18:17       190.745857         265       2021-02-04 18:18       190.379152         266       2021-02-04 18:19       190.126058         267       2021-02-04 18:20       189.720467         268       2021-02-04 18:21       189.255346         269       2021-02-04 18:22       188.687314         270       2021-02-04 18:23       188.226233         271       2021-02-04 18:24       187.789714         272       2021-02-04 18:25       187.443429         273       2021-02-04 18:26       186.978409         274       2021-02-04 18:27       186.624324         275       2021-02-04 18:28       186.140782         276       2021-02-04 18:29       185.878426         277       2021-02-04 18:31       185.517167         278       2021-02-04 18:31       185.23894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |   |                      |            |
| 265       2021-02-04 18:18       190.379152         266       2021-02-04 18:19       190.126058         267       2021-02-04 18:20       189.720467         268       2021-02-04 18:21       189.255346         269       2021-02-04 18:22       188.687314         270       2021-02-04 18:23       188.226233         271       2021-02-04 18:24       187.789714         272       2021-02-04 18:25       187.443429         273       2021-02-04 18:25       186.978409         274       2021-02-04 18:27       186.624324         275       2021-02-04 18:28       186.140782         276       2021-02-04 18:30       185.517167         278       2021-02-04 18:31       185.23894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |   |                      |            |
| 266       2021-02-04 18:19       190.126058         267       2021-02-04 18:20       189.720467         268       2021-02-04 18:21       189.255346         269       2021-02-04 18:22       188.687314         270       2021-02-04 18:23       188.226233         271       2021-02-04 18:24       187.789714         272       2021-02-04 18:25       187.443429         273       2021-02-04 18:26       186.978409         274       2021-02-04 18:27       186.624324         275       2021-02-04 18:28       186.140782         276       2021-02-04 18:29       185.878426         277       2021-02-04 18:30       185.517167         278       2021-02-04 18:31       185.23894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |   |                      |            |
| 267       2021-02-04 18:20       189.720467         268       2021-02-04 18:21       189.255346         269       2021-02-04 18:22       188.687314         270       2021-02-04 18:23       188.226233         271       2021-02-04 18:24       187.789714         272       2021-02-04 18:25       187.443429         273       2021-02-04 18:26       186.978409         274       2021-02-04 18:27       186.624324         275       2021-02-04 18:28       186.140782         276       2021-02-04 18:29       185.878426         277       2021-02-04 18:30       185.517167         278       2021-02-04 18:31       185.23894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |   |                      |            |
| 268       2021-02-04 18:21       189.255346         269       2021-02-04 18:22       188.687314         270       2021-02-04 18:23       188.226233         271       2021-02-04 18:24       187.789714         272       2021-02-04 18:25       187.443429         273       2021-02-04 18:26       186.978409         274       2021-02-04 18:27       186.624324         275       2021-02-04 18:28       185.140782         276       2021-02-04 18:29       185.878426         277       2021-02-04 18:30       185.517167         278       2021-02-04 18:31       185.23894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |   |                      |            |
| 269       2021-02-04 18:22       188.687314         270       2021-02-04 18:23       188.226233         271       2021-02-04 18:24       187.789714         272       2021-02-04 18:25       187.443429         273       2021-02-04 18:26       186.978409         274       2021-02-04 18:27       186.624324         275       2021-02-04 18:28       186.140782         276       2021-02-04 18:29       185.878426         277       2021-02-04 18:30       185.517167         278       2021-02-04 18:31       185.23894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |                      |            |
| 270       2021-02-04 18:23       188.226233         271       2021-02-04 18:24       187.789714         272       2021-02-04 18:25       187.443429         273       2021-02-04 18:26       186.978409         274       2021-02-04 18:27       186.624324         275       2021-02-04 18:28       186.140782         276       2021-02-04 18:29       185.878426         277       2021-02-04 18:30       185.517167         278       2021-02-04 18:31       185.23894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |   |                      |            |
| 271       2021-02-04 18:24       187.789714         272       2021-02-04 18:25       187.443429         273       2021-02-04 18:26       186.978409         274       2021-02-04 18:27       186.624324         275       2021-02-04 18:28       186.140782         276       2021-02-04 18:29       185.878426         277       2021-02-04 18:30       185.517167         278       2021-02-04 18:31       185.23894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |   |                      |            |
| 272       2021-02-04 18:25       187.443429         273       2021-02-04 18:26       186.978409         274       2021-02-04 18:27       186.624324         275       2021-02-04 18:28       186.140782         276       2021-02-04 18:29       185.878426         277       2021-02-04 18:30       185.517167         278       2021-02-04 18:31       185.23894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |   |                      |            |
| 273       2021-02-04 18:26       186.978409         274       2021-02-04 18:27       186.624324         275       2021-02-04 18:28       186.140782         276       2021-02-04 18:29       185.878426         277       2021-02-04 18:30       185.517167         278       2021-02-04 18:31       185.23894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |                      |            |
| 274     2021-02-04 18:27     186.624324       275     2021-02-04 18:28     186.140782       276     2021-02-04 18:29     185.878426       277     2021-02-04 18:30     185.517167       278     2021-02-04 18:31     185.23894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 272 |   | 2021-02-04 18:25     | 187.443429 |
| 275     2021-02-04 18:28     186.140782       276     2021-02-04 18:29     185.878426       277     2021-02-04 18:30     185.517167       278     2021-02-04 18:31     185.23894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |   | 2021-02-04 18:26     | 186.978409 |
| 276     2021-02-04 18:29     185.878426       277     2021-02-04 18:30     185.517167       278     2021-02-04 18:31     185.23894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |   |                      |            |
| 277     2021-02-04 18:30     185.517167       278     2021-02-04 18:31     185.23894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 275 |   | 2021-02-04 18:28     | 186.140782 |
| 278 2021-02-04 18:31 185.23894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 276 |   |                      | 185.878426 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 277 |   | 2021-02-04 18:30     | 185.517167 |
| 279 2021-02-04 18:32 184.81053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 278 |   | 2021-02-04 18:31     | 185.23894  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 279 |   | <br>2021-02-04 18:32 | 184.81053  |

| 280 | 2021-02-04 18:33 | 184.450074 |
|-----|------------------|------------|
| 281 | 2021-02-04 18:34 | 184.253795 |
| 282 | 2021-02-04 18:35 | 183.904381 |
| 283 | 2021-02-04 18:36 | 183.606381 |
| 284 | 2021-02-04 18:37 | 183.153746 |
| 285 | 2021-02-04 18:38 | 182.664999 |
| 286 | 2021-02-04 18:39 | 182.297936 |
| 287 | 2021-02-04 18:40 | 182.172785 |
| 288 | 2021-02-04 18:41 | 181.970091 |
| 289 | 2021-02-04 18:42 | 181.601977 |
| 290 | 2021-02-04 18:43 | 181.354098 |
| 291 | 2021-02-04 18:44 | 180.967947 |
| 292 | 2021-02-04 18:45 | 180.70655  |
| 293 | 2021-02-04 18:46 | 180.468364 |
| 294 | 2021-02-04 18:47 | 180.198119 |
| 295 | 2021-02-04 18:48 | 179.825235 |
| 296 | 2021-02-04 18:49 | 179.58803  |
| 297 | 2021-02-04 18:50 | 179.325265 |
| 298 | 2021-02-04 18:51 | 179.274461 |
| 299 | 2021-02-04 18:52 | 178.958348 |
| 300 | 2021-02-04 18:53 | 178.676172 |
| 301 | 2021-02-04 18:54 | 178.484336 |
| 302 | 2021-02-04 18:55 | 178.21818  |
| 303 | 2021-02-04 18:56 | 177.923502 |
| 304 | 2021-02-04 18:57 | 177.718576 |
| 305 | 2021-02-04 18:58 | 177.454864 |
| 306 | 2021-02-04 18:59 | 177.14018  |
| 307 | 2021-02-04 19:00 | 176.818766 |
| 308 | 2021-02-04 19:01 | 176.626072 |
| 309 | 2021-02-04 19:02 | 176.332159 |
| 310 | 2021-02-04 19:03 | 176.021251 |

#### 2.1 Series Pre-burn Data

2021-01-14

Total time (h)

| Load time        | Load type      | Fuel added | Moisture |                    | Time  |
|------------------|----------------|------------|----------|--------------------|-------|
| (-)              | (-)            | (lbs)      | (%)      |                    | (min) |
| 2021-01-14 11:20 | Kindling & SUF | 6.00       | 15.1     | Pre-Charge (min)   | 32    |
| 2021-01-14 11:52 | High fire      | 12.04      | 20.3     | Conditioning (min) | 130   |
| 2021-01-14 14:01 | Medium fire    | 13.98      | 19.6     | Load (min)         | 330   |

|         | Pre-Charge (min) | 32          | Conditioning (min) | 130        | Load (min)       | 330        |
|---------|------------------|-------------|--------------------|------------|------------------|------------|
| Minutes | Date & Time      | Flue (F)    | Date & Time        | Flue (F)   | Date & Time      | Flue (F)   |
| 1       | 2021-01-14 11:20 | 89.09456413 | 2021-01-14 11:52   | 465.327737 | 2021-01-14 14:01 | 314.565455 |
| 2       | 2021-01-14 11:21 | 144.633288  | 2021-01-14 11:53   | 467.562927 | 2021-01-14 14:02 | 293.39166  |
| 3       | 2021-01-14 11:22 | 226.1985628 | 2021-01-14 11:54   | 489.459031 | 2021-01-14 14:03 | 278.850544 |
| 4       | 2021-01-14 11:23 | 288.5828811 | 2021-01-14 11:55   | 511.52763  | 2021-01-14 14:04 | 278.757096 |
| 5       | 2021-01-14 11:24 | 335.436206  | 2021-01-14 11:56   | 524.715517 | 2021-01-14 14:05 | 293.08214  |
| 6       | 2021-01-14 11:25 | 371.9990867 | 2021-01-14 11:57   | 536.299403 | 2021-01-14 14:06 | 323.621523 |
| 7       | 2021-01-14 11:26 | 382.3552294 | 2021-01-14 11:58   | 545.468432 | 2021-01-14 14:07 | 339.230037 |
| 8       | 2021-01-14 11:27 | 389.9594159 | 2021-01-14 11:59   | 549.573609 | 2021-01-14 14:08 | 355.184401 |
| 9       | 2021-01-14 11:28 | 398.6737214 | 2021-01-14 12:00   | 549.675241 | 2021-01-14 14:09 | 376.292204 |
| 10      | 2021-01-14 11:29 | 413.5056301 | 2021-01-14 12:01   | 551.804181 | 2021-01-14 14:10 | 392.001013 |
| 11      | 2021-01-14 11:30 | 438.6616451 | 2021-01-14 12:02   | 552.466798 | 2021-01-14 14:11 | 401.440002 |
| 12      | 2021-01-14 11:31 | 452.2197264 | 2021-01-14 12:03   | 552.622769 | 2021-01-14 14:12 | 408.485987 |
| 13      | 2021-01-14 11:32 | 462.1537499 | 2021-01-14 12:04   | 552.474796 | 2021-01-14 14:13 | 415.807784 |
| 14      | 2021-01-14 11:33 | 473.1382115 | 2021-01-14 12:05   | 555.436798 | 2021-01-14 14:14 | 422.336225 |
| 15      | 2021-01-14 11:34 | 483.2370544 | 2021-01-14 12:06   | 556.499196 | 2021-01-14 14:15 | 428.760555 |
| 16      | 2021-01-14 11:35 | 489.5888408 | 2021-01-14 12:07   | 556.294178 | 2021-01-14 14:16 | 434.966482 |
| 17      | 2021-01-14 11:36 | 496.1121565 | 2021-01-14 12:08   | 554.227743 | 2021-01-14 14:17 | 441.785051 |
| 18      | 2021-01-14 11:37 | 502.7437491 | 2021-01-14 12:09   | 552.184802 | 2021-01-14 14:18 | 445.559576 |
| 19      | 2021-01-14 11:38 | 508.7358148 | 2021-01-14 12:10   | 550.253008 | 2021-01-14 14:19 | 449.420265 |
| 20      | 2021-01-14 11:39 | 517.1542928 | 2021-01-14 12:11   | 548.75778  | 2021-01-14 14:20 | 453.091333 |
| 21      | 2021-01-14 11:40 | 523.206243  | 2021-01-14 12:12   | 546.67307  | 2021-01-14 14:21 | 456.679174 |
| 22      | 2021-01-14 11:41 | 524.7468546 | 2021-01-14 12:13   | 545.068876 | 2021-01-14 14:22 | 459.611291 |
| 23      | 2021-01-14 11:42 | 522.9798692 | 2021-01-14 12:14   | 543.681081 | 2021-01-14 14:23 | 462.54535  |
| 24      | 2021-01-14 11:43 | 522.0586954 | 2021-01-14 12:15   | 543.017871 | 2021-01-14 14:24 | 465.706774 |
| 25      | 2021-01-14 11:44 | 518.3255111 | 2021-01-14 12:16   | 542.417455 | 2021-01-14 14:25 | 468.678989 |
| 26      | 2021-01-14 11:45 | 515.4945211 | 2021-01-14 12:17   | 542.506108 | 2021-01-14 14:26 | 471.397462 |
| 27      | 2021-01-14 11:46 | 514.5683041 | 2021-01-14 12:18   | 542.413911 | 2021-01-14 14:27 | 473.965608 |
| 28      | 2021-01-14 11:47 | 511.7824436 | 2021-01-14 12:19   | 542.768411 | 2021-01-14 14:28 | 476.724276 |
| 29      | 2021-01-14 11:48 | 505.6151682 | 2021-01-14 12:20   | 544.59622  | 2021-01-14 14:29 | 478.312131 |
| 30      | 2021-01-14 11:49 | 498.2650619 | 2021-01-14 12:21   | 544.013694 | 2021-01-14 14:30 | 478.959568 |
| 31      | 2021-01-14 11:50 | 493.6657109 | 2021-01-14 12:22   | 543.098113 | 2021-01-14 14:31 | 479.880571 |
| 32      | 2021-01-14 11:51 | 492.0500315 | 2021-01-14 12:23   | 542.557152 | 2021-01-14 14:32 | 480.414571 |
| 33      |                  |             | 2021-01-14 12:24   | 540.86798  | 2021-01-14 14:33 | 480.169342 |
| 34      |                  |             | 2021-01-14 12:25   | 540.351615 | 2021-01-14 14:34 | 480.086938 |
| 35      |                  |             | 2021-01-14 12:26   | 538.457522 | 2021-01-14 14:35 | 480.06692  |
| 36      |                  |             | 2021-01-14 12:27   | 537.244335 | 2021-01-14 14:36 | 480.932414 |
| 37      |                  |             | 2021-01-14 12:28   | 536.057378 | 2021-01-14 14:37 | 480.453197 |
| 38      |                  |             | 2021-01-14 12:29   | 534.529901 | 2021-01-14 14:38 | 481.30384  |
| 39      |                  |             | 2021-01-14 12:30   | 532.039277 | 2021-01-14 14:39 | 481.106967 |
| 40      |                  |             | 2021-01-14 12:31   | 528.480389 | 2021-01-14 14:40 | 480.754105 |
| 41      |                  |             | 2021-01-14 12:32   | 526.239532 | 2021-01-14 14:41 | 481.04834  |
| 42      |                  |             | 2021-01-14 12:33   | 522.702379 | 2021-01-14 14:42 | 481.393725 |
| 43      |                  |             | 2021-01-14 12:34   | 519.496695 | 2021-01-14 14:43 | 481.499519 |
| 44      |                  |             | 2021-01-14 12:35   | 516.076641 | 2021-01-14 14:44 | 481.179029 |
| 45      |                  |             | 2021-01-14 12:36   | 512.561    | 2021-01-14 14:45 | 481.609398 |
| 46      |                  |             | 2021-01-14 12:37   | 510.425752 | 2021-01-14 14:46 | 482.625573 |
| 47      |                  |             | 2021-01-14 12:38   | 509.001417 | 2021-01-14 14:47 | 482.943438 |

| 48       |      | 2021-01-14 12:39                     | 505.652753               | 2021-01-14 14:48                     | 482.242119               |
|----------|------|--------------------------------------|--------------------------|--------------------------------------|--------------------------|
| 49       |      | 2021-01-14 12:40                     | 501.880805               | 2021-01-14 14:49                     | 481.242482               |
| 50       |      | 2021-01-14 12:41                     | 498.485951               | 2021-01-14 14:50                     | 480.198489               |
| 51       |      | 2021-01-14 12:42                     | 498.267455               | 2021-01-14 14:51                     | 479.021043               |
| 52       |      | 2021-01-14 12:43                     | 498.956552               | 2021-01-14 14:52                     | 478.40432                |
| 53       |      | 2021-01-14 12:44                     | 496.942515               | 2021-01-14 14:53                     | 477.263889               |
| 54       |      | 2021-01-14 12:45                     | 493.535268               | 2021-01-14 14:54                     | 476.421801               |
| 55       |      | 2021-01-14 12:46                     | 488.044995               | 2021-01-14 14:55                     | 475.414584               |
| 56       |      | 2021-01-14 12:47                     | 483.104955               | 2021-01-14 14:56                     | 473.29676                |
| 57       |      | 2021-01-14 12:48                     | 477.905757               | 2021-01-14 14:57                     | 469.218785               |
| 58       |      | 2021-01-14 12:49                     | 472.616113               | 2021-01-14 14:58                     | 466.659763               |
| 59       |      | 2021-01-14 12:50                     | 467.917671               | 2021-01-14 14:59                     | 462.893023               |
| 60       |      | 2021-01-14 12:51                     | 464.071128               | 2021-01-14 15:00                     | 457.764969               |
| 61       |      | 2021-01-14 12:52                     | 459.813895               | 2021-01-14 15:01                     | 452.173325               |
| 62       |      | 2021-01-14 12:53                     | 455.968722               | 2021-01-14 15:02                     | 446.123076               |
| 63       |      | 2021-01-14 12:54                     | 453.030896               | 2021-01-14 15:03                     | 441.456325               |
| 64       |      | 2021-01-14 12:55                     | 449.447402               | 2021-01-14 15:04                     | 436.118923               |
| 65       |      | 2021-01-14 12:56                     | 446.79112                | 2021-01-14 15:05                     | 431.259719               |
| 66       |      | 2021-01-14 12:57                     | 443.434187               | 2021-01-14 15:06                     | 424.503919               |
| 67       |      | 2021-01-14 12:58                     | 441.170462               | 2021-01-14 15:07                     | 418.21292                |
| 68       |      | 2021-01-14 12:59                     | 438.781666               | 2021-01-14 15:08                     | 413.026562               |
| 69<br>70 |      | 2021-01-14 13:00<br>2021-01-14 13:01 | 435.453352<br>432.549844 | 2021-01-14 15:09<br>2021-01-14 15:10 | 408.36746<br>403.907308  |
| 70       |      |                                      | 432.549844               |                                      |                          |
| 72       |      | 2021-01-14 13:02<br>2021-01-14 13:03 | 429.655864               | 2021-01-14 15:11<br>2021-01-14 15:12 | 400.216221<br>397.942799 |
| 73       |      | 2021-01-14 13:04                     | 429.033804               | 2021-01-14 15:12                     | 395.570721               |
| 73       |      | 2021-01-14 13:05                     | 426.309129               | 2021-01-14 15:14                     | 393.370721               |
| 75       |      | 2021-01-14 13:06                     | 424.110103               | 2021-01-14 15:15                     | 391.183418               |
| 76       |      | 2021-01-14 13:07                     | 422.459339               | 2021-01-14 15:16                     | 388.944267               |
| 77       |      | 2021-01-14 13:08                     | 421.110435               | 2021-01-14 15:17                     | 386.400153               |
| 78       |      | 2021-01-14 13:09                     | 419.255093               | 2021-01-14 15:18                     | 383.975091               |
| 79       |      | 2021-01-14 13:10                     | 417.134932               | 2021-01-14 15:19                     | 381.825566               |
| 80       |      | 2021-01-14 13:11                     | 414.475724               | 2021-01-14 15:20                     | 378.942533               |
| 81       |      | 2021-01-14 13:12                     | 411.113348               | 2021-01-14 15:21                     | 375.221259               |
| 82       |      | 2021-01-14 13:13                     | 407.207167               | 2021-01-14 15:22                     | 371.483345               |
| 83       |      | 2021-01-14 13:14                     | 403.250309               | 2021-01-14 15:23                     | 366.687358               |
| 84       |      | 2021-01-14 13:15                     | 400.102019               | 2021-01-14 15:24                     | 362.605153               |
| 85       |      | 2021-01-14 13:16                     | 395.521173               | 2021-01-14 15:25                     | 359.139738               |
| 86       |      | 2021-01-14 13:17                     | 390.63445                | 2021-01-14 15:26                     | 356.763076               |
| 87       |      | 2021-01-14 13:18                     | 385.148363               | 2021-01-14 15:27                     | 353.8661                 |
| 88       |      | 2021-01-14 13:19                     | 380.737322               | 2021-01-14 15:28                     | 351.440012               |
| 89       |      | 2021-01-14 13:20                     | 376.779798               | 2021-01-14 15:29                     | 349.556496               |
| 90       |      | 2021-01-14 13:21                     | 373.064728               | 2021-01-14 15:30                     | 348.178324               |
| 91       | <br> | 2021-01-14 13:22                     | 369.93886                | 2021-01-14 15:31                     | 347.062848               |
| 92       |      | 2021-01-14 13:23                     | 366.213046               | 2021-01-14 15:32                     | 345.786936               |
| 93       |      | 2021-01-14 13:24                     | 362.832294               | 2021-01-14 15:33                     | 345.259688               |
| 94       |      | 2021-01-14 13:25                     | 359.875131               | 2021-01-14 15:34                     | 345.468401               |
| 95       |      | 2021-01-14 13:26                     | 357.643038               | 2021-01-14 15:35                     | 344.875028               |
| 96       |      | 2021-01-14 13:27                     | 355.439254               | 2021-01-14 15:36                     | 344.095278               |
| 97       |      | 2021-01-14 13:28                     | 353.743131               | 2021-01-14 15:37                     | 343.133432               |
| 98       |      | 2021-01-14 13:29                     | 352.847332               | 2021-01-14 15:38                     | 342.332882               |
| 99       |      | 2021-01-14 13:30                     | 352.150851               | 2021-01-14 15:39                     | 340.881048               |
| 100      |      | 2021-01-14 13:31                     | 351.228097               | 2021-01-14 15:40                     | 339.543367               |
| 101      |      | 2021-01-14 13:32                     | 350.374403               | 2021-01-14 15:41                     | 338.656373               |
| 102      |      | 2021-01-14 13:33                     | 350.527281               | 2021-01-14 15:42                     | 336.90575                |
| 103      |      | 2021-01-14 13:34                     | 349.178566               | 2021-01-14 15:43                     | 335.500935               |
| 104      |      | 2021-01-14 13:35                     | 348.172171               | 2021-01-14 15:44                     | 333.937032               |
| 105      |      | 2021-01-14 13:36                     | 347.243458               | 2021-01-14 15:45                     | 332.638736               |

|     | ı | 1                |            |                                      |            |
|-----|---|------------------|------------|--------------------------------------|------------|
| 106 |   | 2021-01-14 13:37 | 346.47632  | 2021-01-14 15:46                     | 331.615012 |
| 107 |   | 2021-01-14 13:38 | 347.413028 | 2021-01-14 15:47                     | 330.152074 |
| 108 |   | 2021-01-14 13:39 | 347.175885 | 2021-01-14 15:48                     | 325.955608 |
| 109 |   | 2021-01-14 13:40 | 347.263457 | 2021-01-14 15:49                     | 320.235998 |
| 110 |   | 2021-01-14 13:41 | 347.41766  | 2021-01-14 15:50                     | 314.394433 |
| 111 |   | 2021-01-14 13:42 | 348.841623 | 2021-01-14 15:51                     | 309.334368 |
| 112 |   | 2021-01-14 13:43 | 349.04169  | 2021-01-14 15:52                     | 305.068335 |
| 113 |   | 2021-01-14 13:44 | 348.862391 | 2021-01-14 15:53                     | 300.686866 |
| 114 |   | 2021-01-14 13:45 | 347.338425 | 2021-01-14 15:54                     | 296.285689 |
| 115 |   | 2021-01-14 13:46 | 345.00515  | 2021-01-14 15:55                     | 292.617083 |
| 116 |   | 2021-01-14 13:47 | 342.245219 | 2021-01-14 15:56                     | 289.389584 |
| 117 |   | 2021-01-14 13:48 | 339.680676 | 2021-01-14 15:57                     | 286.253498 |
| 118 |   | 2021-01-14 13:49 | 336.702725 | 2021-01-14 15:58                     | 283.43058  |
| 119 |   | 2021-01-14 13:50 | 334.009667 | 2021-01-14 15:59                     | 280.534248 |
| 120 |   | 2021-01-14 13:51 | 330.998377 | 2021-01-14 16:00                     | 277.853517 |
| 121 |   | 2021-01-14 13:52 | 328.356537 | 2021-01-14 16:01                     | 275.529836 |
| 122 |   | 2021-01-14 13:53 | 325.992008 | 2021-01-14 16:02                     | 273.414832 |
| 123 |   | 2021-01-14 13:54 | 323.979364 | 2021-01-14 16:03                     | 271.834507 |
| 124 |   | 2021-01-14 13:55 | 321.803526 | 2021-01-14 16:04                     | 269.52646  |
| 125 |   | 2021-01-14 13:56 | 319.336168 | 2021-01-14 16:05                     | 267.733943 |
| 126 |   | 2021-01-14 13:57 | 318.041838 | 2021-01-14 16:06                     | 266.065859 |
| 127 |   | 2021-01-14 13:58 | 316.15266  | 2021-01-14 16:07                     | 264.453466 |
| 128 |   | 2021-01-14 13:59 | 314.283548 | 2021-01-14 16:08                     | 263.239817 |
| 129 |   | 2021-01-14 14:00 | 314.027233 | 2021-01-14 16:09                     | 261.827171 |
| 130 |   | 2021-01-14 14:01 | 315.724118 | 2021-01-14 16:10                     | 260.411244 |
| 131 |   |                  |            | 2021-01-14 16:11                     | 259.10495  |
| 132 |   |                  |            | 2021-01-14 16:12                     | 257.848896 |
| 133 |   |                  |            | 2021-01-14 16:13                     | 256.499884 |
| 134 |   |                  |            | 2021-01-14 16:14                     | 255.270879 |
| 135 |   |                  |            | 2021-01-14 16:15                     | 254.206998 |
| 136 |   |                  |            | 2021-01-14 16:16                     | 253.161085 |
| 137 |   |                  |            | 2021-01-14 16:17                     | 252.151503 |
| 138 |   |                  |            | 2021-01-14 16:18                     | 251.204342 |
| 139 |   |                  |            | 2021-01-14 16:19                     | 250.339348 |
| 140 |   |                  |            | 2021-01-14 16:20                     | 249.179794 |
| 141 |   |                  |            | 2021-01-14 16:21                     | 248.19486  |
| 142 |   |                  |            | 2021-01-14 16:22                     | 247.211601 |
| 143 |   |                  |            | 2021-01-14 16:23                     |            |
| 144 |   |                  |            | 2021-01-14 16:24                     | 244.92976  |
| 145 |   |                  |            | 2021-01-14 16:25                     | 243.931269 |
| 146 |   |                  |            | 2021-01-14 16:26                     | 243.372867 |
| 147 |   |                  |            | 2021-01-14 16:27                     | 242.893075 |
| 148 |   |                  |            | 2021-01-14 16:28                     | 242.348042 |
| 149 |   |                  |            | 2021-01-14 16:29                     | 242.155577 |
| 150 |   |                  |            | 2021-01-14 16:30                     | 242.245294 |
| 151 |   |                  |            | 2021-01-14 16:31                     | 242.396032 |
| 152 |   |                  |            | 2021-01-14 16:32                     | 242.390032 |
| 153 |   |                  | 1          | 2021-01-14 16:33                     | 241.829104 |
| 154 |   |                  | 1          | 2021-01-14 16:34                     | 241.593856 |
| 155 |   |                  |            | 2021-01-14 16:35                     | 241.419936 |
| 156 |   |                  |            | 2021-01-14 16:36                     | 241.471969 |
| 157 |   |                  |            |                                      | 240.909738 |
| 157 |   |                  |            | 2021-01-14 16:37<br>2021-01-14 16:38 |            |
| 158 |   |                  |            | 2021-01-14 16:38                     | 240.336397 |
|     |   |                  |            |                                      | 239.881252 |
| 160 |   |                  |            | 2021-01-14 16:40                     | 239.598908 |
| 161 |   |                  |            | 2021-01-14 16:41                     | 239.675601 |
| 162 |   |                  |            | 2021-01-14 16:42                     | 239.423534 |
| 163 |   |                  |            | 2021-01-14 16:43                     | 239.009922 |

| -   | 1 | 1 | 1 |                 | ,            |
|-----|---|---|---|-----------------|--------------|
| 164 |   |   |   | 2021-01-14 16:4 | _            |
| 165 |   |   |   | 2021-01-14 16:4 | _            |
| 166 |   |   |   | 2021-01-14 16:4 |              |
| 167 |   |   |   | 2021-01-14 16:4 |              |
| 168 |   |   |   | 2021-01-14 16:4 |              |
| 169 |   |   |   | 2021-01-14 16:4 | 9 237.741559 |
| 170 |   |   |   | 2021-01-14 16:5 | 0 237.860229 |
| 171 |   |   |   | 2021-01-14 16:5 | 1 237.568753 |
| 172 |   |   |   | 2021-01-14 16:5 | 2 237.170551 |
| 173 |   |   |   | 2021-01-14 16:5 | 3 237.074905 |
| 174 |   |   |   | 2021-01-14 16:5 | 4 236.92814  |
| 175 |   |   |   | 2021-01-14 16:5 | 5 236.728628 |
| 176 |   |   |   | 2021-01-14 16:5 | 6 236.484703 |
| 177 |   |   |   | 2021-01-14 16:5 | 7 236.205089 |
| 178 |   |   |   | 2021-01-14 16:5 | 8 236.066801 |
| 179 |   |   |   | 2021-01-14 16:5 | 9 235.923754 |
| 180 |   |   |   | 2021-01-14 17:0 | 0 235.515361 |
| 181 |   |   |   | 2021-01-14 17:0 | 1 235.17723  |
| 182 |   |   |   | 2021-01-14 17:0 | 2 234.965697 |
| 183 |   |   |   | 2021-01-14 17:0 | 3 234.876984 |
| 184 |   |   |   | 2021-01-14 17:0 | 4 234.807455 |
| 185 |   |   |   | 2021-01-14 17:0 | 5 234.490157 |
| 186 |   |   |   | 2021-01-14 17:0 |              |
| 187 |   |   |   | 2021-01-14 17:0 |              |
| 188 |   |   |   | 2021-01-14 17:0 |              |
| 189 |   |   |   | 2021-01-14 17:0 |              |
| 190 |   |   |   | 2021-01-14 17:1 |              |
| 191 |   |   |   | 2021-01-14 17:1 | _            |
| 192 |   |   |   | 2021-01-14 17:1 |              |
| 193 |   |   |   | 2021-01-14 17:1 |              |
| 194 |   |   |   | 2021-01-14 17:1 |              |
| 195 |   |   |   | 2021-01-14 17:1 | _            |
| 196 |   |   |   | 2021-01-14 17:1 |              |
| 197 |   |   |   | 2021-01-14 17:1 |              |
| 198 |   |   |   | 2021-01-14 17:1 |              |
| 198 |   |   |   | 2021-01-14 17.1 |              |
| 200 |   |   |   | 2021-01-14 17:1 |              |
|     |   |   |   |                 |              |
| 201 |   |   |   | 2021-01-14 17:2 |              |
| 202 |   |   |   | 2021-01-14 17:2 |              |
| 203 |   |   |   | 2021-01-14 17:2 |              |
| 204 |   |   |   | 2021-01-14 17:2 |              |
| 205 |   |   |   | 2021-01-14 17:2 |              |
| 206 |   |   |   | 2021-01-14 17:2 | +            |
| 207 |   |   |   | 2021-01-14 17:2 |              |
| 208 |   |   |   | 2021-01-14 17:2 | +            |
| 209 |   |   |   | 2021-01-14 17:2 |              |
| 210 |   |   |   | 2021-01-14 17:3 | _            |
| 211 |   |   |   | 2021-01-14 17:3 | +            |
| 212 |   |   |   | 2021-01-14 17:3 | +            |
| 213 |   |   |   | 2021-01-14 17:3 | _            |
| 214 |   |   |   | 2021-01-14 17:3 |              |
| 215 |   |   |   | 2021-01-14 17:3 |              |
| 216 |   |   |   | 2021-01-14 17:3 | 6 224.72224  |
| 217 |   |   |   | 2021-01-14 17:3 | 7 223.90626  |
| 218 |   |   |   | 2021-01-14 17:3 | 8 223.527084 |
| 219 |   |   |   | 2021-01-14 17:3 | 9 222.925769 |
| 220 |   |   |   | 2021-01-14 17:4 | 0 222.227492 |
| 221 |   |   |   | 2021-01-14 17:4 | 1 221.647052 |
|     |   |   |   |                 |              |

|            | <br> |                                      |            |
|------------|------|--------------------------------------|------------|
| 222        |      | 2021-01-14 17:42                     | 221.104823 |
| 223        |      | 2021-01-14 17:43                     | 220.475033 |
| 224        |      | 2021-01-14 17:44                     | 219.829251 |
| 225        |      | 2021-01-14 17:45                     | 219.306922 |
| 226        |      | 2021-01-14 17:46                     | 218.669769 |
| 227        |      | 2021-01-14 17:47                     | 218.29939  |
| 228        |      | 2021-01-14 17:48                     | 217.873995 |
| 229        |      | 2021-01-14 17:49                     | 217.728447 |
| 230        |      | 2021-01-14 17:50                     | 216.903283 |
| 231        |      | 2021-01-14 17:51                     | 216.272955 |
| 232        |      | 2021-01-14 17:52                     | 215.800853 |
| 233        |      | 2021-01-14 17:53                     | 215.351924 |
| 234        |      | 2021-01-14 17:54                     | 214.675183 |
| 235        |      | 2021-01-14 17:55                     | 214.278957 |
| 236        |      | 2021-01-14 17:56                     | 213.942845 |
| 237        |      | 2021-01-14 17:57                     | 213.467902 |
| 238        |      | 2021-01-14 17:58                     | 212.843167 |
| 239        |      | 2021-01-14 17:59                     | 212.50164  |
| 240        |      | 2021-01-14 18:00                     | 212.121466 |
| 241        |      | 2021-01-14 18:01                     | 211.630694 |
| 242        |      | 2021-01-14 18:02                     | 211.341975 |
| 243        |      | 2021-01-14 18:03                     | 210.927515 |
| 244        |      | 2021-01-14 18:04                     | 210.627225 |
| 245        |      | 2021-01-14 18:05                     | 210.275409 |
| 246        |      | 2021-01-14 18:06                     | 209.700794 |
| 247        |      | 2021-01-14 18:07                     | 209.206498 |
| 248        |      | 2021-01-14 18:08                     | 208.905847 |
| 249        |      | 2021-01-14 18:09                     | 208.650091 |
| 250        |      | 2021-01-14 18:10                     | 208.116018 |
| 251        |      | 2021-01-14 18:11                     | 207.78676  |
| 252        |      | 2021-01-14 18:12                     | 207.533904 |
| 253        |      | 2021-01-14 18:13                     | 207.228453 |
| 254        |      | 2021-01-14 18:14                     | 206.883119 |
| 255        |      | 2021-01-14 18:15                     | 206.833113 |
| 256        |      | 2021-01-14 18:16                     | 206.195654 |
| 257        |      | 2021-01-14 18:10                     | 205.781156 |
| 258        |      | 2021-01-14 18:17                     | 205.761130 |
| -          |      |                                      |            |
| 259<br>260 |      | 2021-01-14 18:19<br>2021-01-14 18:20 | 204.939451 |
| 261        |      |                                      |            |
|            |      | 2021-01-14 18:21                     | 204.39724  |
| 262        |      | 2021-01-14 18:22                     | 204.102877 |
| 263        |      | 2021-01-14 18:23                     | 203.835564 |
| 264        |      | 2021-01-14 18:24                     | 203.344904 |
| 265        |      | 2021-01-14 18:25                     | 203.355874 |
| 266        |      | 2021-01-14 18:26                     | 202.852504 |
| 267        |      | 2021-01-14 18:27                     | 202.644004 |
| 268        |      | 2021-01-14 18:28                     | 202.197969 |
| 269        |      | 2021-01-14 18:29                     | 201.872579 |
| 270        |      | 2021-01-14 18:30                     | 201.37773  |
| 271        |      | 2021-01-14 18:31                     | 201.402969 |
| 272        |      | 2021-01-14 18:32                     | 200.982757 |
| 273        |      | 2021-01-14 18:33                     | 200.810851 |
| 274        |      | 2021-01-14 18:34                     | 200.559645 |
| 275        |      | 2021-01-14 18:35                     | 200.081599 |
| 276        |      | 2021-01-14 18:36                     | 199.944129 |
| 277        |      | 2021-01-14 18:37                     | 199.421137 |
| 278        |      | 2021-01-14 18:38                     | 199.032345 |
| 279        |      | 2021-01-14 18:39                     | 198.314171 |

| 280       2021-01-14 18:40       197.63829         281       2021-01-14 18:41       197.24375         282       2021-01-14 18:42       196.41685         283       2021-01-14 18:43       195.82612         284       2021-01-14 18:45       194.35822         286       2021-01-14 18:46       193.70378         287       2021-01-14 18:47       193.03474         288       2021-01-14 18:49       191.70947         290       2021-01-14 18:49       191.70764         291       2021-01-14 18:50       191.10762         291       2021-01-14 18:51       190.55964         292       2021-01-14 18:51       190.55964         292       2021-01-14 18:51       190.55964         293       2021-01-14 18:52       190.25397         293       2021-01-14 18:53       189.6170         294       2021-01-14 18:52       189.0949         295       2021-01-14 18:55       188.16804         296       2021-01-14 18:55       187.7402         297       2021-01-14 18:56       187.7402         298       2021-01-14 18:59       186.33453         299       2021-01-14 18:59       186.33803         300       2021- |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 282       2021-01-14 18:42       196.41685         283       2021-01-14 18:43       195.82612         284       2021-01-14 18:44       195.15238         285       2021-01-14 18:45       194.35822         286       2021-01-14 18:47       193.03474         288       2021-01-14 18:49       192.42381         289       2021-01-14 18:50       191.70947         290       2021-01-14 18:51       190.55964         291       2021-01-14 18:51       190.55964         292       2021-01-14 18:52       190.25397         293       2021-01-14 18:53       189.6170         294       2021-01-14 18:53       188.16804         295       2021-01-14 18:55       187.7402         297       2021-01-14 18:57       187.40806         298       2021-01-14 18:57       187.40806         299       2021-01-14 18:58       186.73453         299       2021-01-14 18:58       186.73453         299       2021-01-14 19:59       185.30480         300       2021-01-14 19:00       185.80480         301       2021-01-14 19:01       185.30298         302       2021-01-14 19:01       185.30298         303       202 |
| 283       2021-01-14 18:43       195.82612         284       2021-01-14 18:44       195.15238         285       2021-01-14 18:45       194.35822         286       2021-01-14 18:46       193.70378         287       2021-01-14 18:47       193.03474         288       2021-01-14 18:48       192.42381         289       2021-01-14 18:49       191.70947         290       2021-01-14 18:50       191.10762         291       2021-01-14 18:51       190.55637         292       2021-01-14 18:51       190.55637         293       2021-01-14 18:53       189.6170         294       2021-01-14 18:53       189.6170         295       2021-01-14 18:55       188.16804         296       2021-01-14 18:55       187.7402         297       2021-01-14 18:57       187.40806         298       2021-01-14 18:58       186.73453         299       2021-01-14 18:59       185.38303         300       2021-01-14 19:59       185.80480         301       2021-01-14 19:00       185.80480         302       2021-01-14 19:01       185.30298         303       2021-01-14 19:03       184.50005         304       2021 |
| 284       2021-01-14 18:44       195.15238         285       2021-01-14 18:45       194.35822         286       2021-01-14 18:46       193.70378         287       2021-01-14 18:49       193.03474         288       2021-01-14 18:48       192.42381         289       2021-01-14 18:50       191.10762         291       2021-01-14 18:51       190.55964         292       2021-01-14 18:51       190.55964         292       2021-01-14 18:52       190.25397         293       2021-01-14 18:52       190.25397         294       2021-01-14 18:54       189.0949         295       2021-01-14 18:55       188.16804         296       2021-01-14 18:55       187.7402         297       2021-01-14 18:55       187.7402         298       2021-01-14 18:59       186.3803         300       2021-01-14 18:59       186.3803         300       2021-01-14 19:00       185.8048         301       2021-01-14 19:01       185.30298         302       2021-01-14 19:01       185.30298         303       2021-01-14 19:01       185.30298         304       2021-01-14 19:03       184.50005         304       2021-01 |
| 285       2021-01-14 18:45       194.35822         286       2021-01-14 18:46       193.70378         287       2021-01-14 18:47       193.03474         288       2021-01-14 18:48       192.42381         289       2021-01-14 18:50       191.70947         290       2021-01-14 18:50       191.10762         291       2021-01-14 18:51       190.55964         292       2021-01-14 18:52       190.25397         293       2021-01-14 18:53       189.6170         294       2021-01-14 18:55       188.16804         296       2021-01-14 18:55       188.16804         296       2021-01-14 18:55       187.7402         297       2021-01-14 18:55       187.74086         298       2021-01-14 18:55       186.3833         300       2021-01-14 18:59       186.38303         301       2021-01-14 19:00       185.80480         301       2021-01-14 19:01       185.30298         302       2021-01-14 19:01       185.30298         303       2021-01-14 19:02       185.03976         304       2021-01-14 19:05       183.81223         305       2021-01-14 19:05       183.8723         306       2021- |
| 286       2021-01-14 18:46       193.70378         287       2021-01-14 18:47       193.03474         288       2021-01-14 18:48       192.42381         289       2021-01-14 18:59       191.70947         290       2021-01-14 18:51       191.10762         291       2021-01-14 18:51       190.55964         292       2021-01-14 18:52       190.25397         293       2021-01-14 18:53       189.6170         294       2021-01-14 18:55       188.16804         296       2021-01-14 18:55       183.16804         296       2021-01-14 18:56       187.7402         297       2021-01-14 18:58       186.73453         298       2021-01-14 18:59       186.38303         300       2021-01-14 19:00       185.80480         301       2021-01-14 19:01       185.30298         302       2021-01-14 19:02       185.30298         303       2021-01-14 19:03       184.50005         304       2021-01-14 19:04       183.81223         305       2021-01-14 19:05       183.3708         306       2021-01-14 19:06       182.85513         307       2021-01-14 19:07       182.42808                        |
| 287       2021-01-14 18:47       193.03474         288       2021-01-14 18:48       192.42381         289       2021-01-14 18:49       191.70947         290       2021-01-14 18:50       191.10762         291       2021-01-14 18:51       190.55964         292       2021-01-14 18:52       190.25397         293       2021-01-14 18:54       189.0949         294       2021-01-14 18:55       188.16804         296       2021-01-14 18:55       187.7402         297       2021-01-14 18:55       187.40806         298       2021-01-14 18:59       186.38303         300       2021-01-14 19:00       185.80480         301       2021-01-14 19:01       185.30298         302       2021-01-14 19:01       185.30298         303       2021-01-14 19:01       185.30298         304       2021-01-14 19:04       183.81223         305       2021-01-14 19:05       183.3708         306       2021-01-14 19:06       182.85513         307       2021-01-14 19:07       182.42808                                                                                                                              |
| 288       2021-01-14 18:48       192.42381         289       2021-01-14 18:49       191.70947         290       2021-01-14 18:50       191.10762         291       2021-01-14 18:51       190.55964         292       2021-01-14 18:52       190.25397         293       2021-01-14 18:54       189.6170         294       2021-01-14 18:54       189.0499         295       2021-01-14 18:55       188.16804         296       2021-01-14 18:57       187.40806         297       2021-01-14 18:58       186.73453         298       2021-01-14 18:59       186.38303         300       2021-01-14 19:00       185.80480         301       2021-01-14 19:01       185.30298         302       2021-01-14 19:01       185.30298         303       2021-01-14 19:03       185.03976         304       2021-01-14 19:03       185.38123         305       2021-01-14 19:04       183.81223         306       2021-01-14 19:05       183.3708         307       2021-01-14 19:07       182.42808                                                                                                                              |
| 289       2021-01-14 18:49       191,70947         290       2021-01-14 18:50       191,10762         291       2021-01-14 18:51       190,55964         292       2021-01-14 18:52       190,25397         293       2021-01-14 18:53       189,6170         294       2021-01-14 18:54       189,0949         295       2021-01-14 18:55       188,16804         296       2021-01-14 18:57       187,7402         297       2021-01-14 18:57       187,40806         298       2021-01-14 18:59       186,73453         299       2021-01-14 18:59       186,38303         300       2021-01-14 19:00       185,80480         301       2021-01-14 19:01       185,30298         302       2021-01-14 19:01       185,03976         303       2021-01-14 19:04       183,8123         304       2021-01-14 19:04       183,8123         305       2021-01-14 19:05       183,3708         306       2021-01-14 19:06       182,85513         307       2021-01-14 19:07       182,42808                                                                                                                                 |
| 290       2021-01-14 18:50       191.10762         291       2021-01-14 18:51       190.55964         292       2021-01-14 18:52       190.25397         293       2021-01-14 18:53       189.6170         294       2021-01-14 18:54       189.0949         295       2021-01-14 18:55       188.16804         296       2021-01-14 18:57       187.40806         297       2021-01-14 18:58       186.73453         298       2021-01-14 18:59       186.38303         300       2021-01-14 19:00       185.80480         301       2021-01-14 19:00       185.80480         302       2021-01-14 19:01       185.30298         303       2021-01-14 19:02       185.03976         304       2021-01-14 19:04       183.81223         305       2021-01-14 19:05       183.3708         306       2021-01-14 19:07       182.42808                                                                                                                                                                                                                                                                                       |
| 291       2021-01-14 18:51       190.55964         292       2021-01-14 18:52       190.25397         293       2021-01-14 18:53       189.6170         294       2021-01-14 18:54       189.0949         295       2021-01-14 18:55       188.16804         296       2021-01-14 18:57       187.7402         297       2021-01-14 18:57       187.4806         298       2021-01-14 18:58       186.73453         299       2021-01-14 19:09       185.80480         300       2021-01-14 19:00       185.80480         301       2021-01-14 19:01       185.30298         302       2021-01-14 19:01       185.30298         303       2021-01-14 19:02       185.03976         303       2021-01-14 19:03       184.50005         304       2021-01-14 19:04       183.81223         305       2021-01-14 19:05       183.3708         306       2021-01-14 19:07       182.42808                                                                                                                                                                                                                                      |
| 292       2021-01-14 18:52       190.25397         293       2021-01-14 18:53       189.6170         294       2021-01-14 18:54       189.0949         295       2021-01-14 18:55       188.16804         296       2021-01-14 18:57       187.7402         297       2021-01-14 18:57       187.40806         298       2021-01-14 18:58       186.73453         299       2021-01-14 18:59       186.38303         300       2021-01-14 19:00       185.80480         301       2021-01-14 19:01       185.30298         302       2021-01-14 19:02       185.03976         303       2021-01-14 19:03       184.50005         304       2021-01-14 19:04       183.81223         305       2021-01-14 19:05       183.3708         306       2021-01-14 19:07       182.42808                                                                                                                                                                                                                                                                                                                                           |
| 293       2021-01-14 18:53       189.6170         294       2021-01-14 18:54       189.0949         295       2021-01-14 18:55       188.16804         296       2021-01-14 18:56       187.7402         297       2021-01-14 18:57       187.40806         298       2021-01-14 18:59       186.73453         299       2021-01-14 18:59       186.38303         300       2021-01-14 19:00       185.80480         301       2021-01-14 19:01       185.30298         302       2021-01-14 19:01       185.30298         303       2021-01-14 19:02       185.03976         303       2021-01-14 19:03       184.50005         304       2021-01-14 19:04       183.81223         305       2021-01-14 19:05       183.3708         306       2021-01-14 19:07       182.42808                                                                                                                                                                                                                                                                                                                                           |
| 294       2021-01-14 18:54       189.0949         295       2021-01-14 18:55       188.16804         296       2021-01-14 18:56       187.7402         297       2021-01-14 18:57       187.40806         298       2021-01-14 18:59       186.38303         300       2021-01-14 19:00       185.80480         301       2021-01-14 19:01       185.30298         302       2021-01-14 19:02       185.03976         303       2021-01-14 19:03       184.50005         304       2021-01-14 19:04       183.81223         305       2021-01-14 19:05       183.3708         306       2021-01-14 19:07       182.42808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 295       2021-01-14 18:55       188.16804         296       2021-01-14 18:56       187.7402         297       2021-01-14 18:57       187.40806         298       2021-01-14 18:58       186.73453         299       2021-01-14 19:00       185.80480         301       2021-01-14 19:01       185.30298         302       2021-01-14 19:02       185.03976         303       2021-01-14 19:03       184.50005         304       2021-01-14 19:04       183.81223         305       2021-01-14 19:05       183.3708         306       2021-01-14 19:06       182.85513         307       2021-01-14 19:07       182.42808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 296       2021-01-14 18:56       187.7402         297       2021-01-14 18:57       187.40806         298       2021-01-14 18:58       186.73453         299       2021-01-14 18:59       186.38303         300       2021-01-14 19:00       185.80480         301       2021-01-14 19:01       185.30298         302       2021-01-14 19:02       185.03976         303       2021-01-14 19:03       184.50005         304       2021-01-14 19:04       183.81223         305       2021-01-14 19:05       183.3708         306       2021-01-14 19:07       182.42808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 297       2021-01-14 18:57       187.40806         298       2021-01-14 18:58       186.73453         299       2021-01-14 18:59       186.38303         300       2021-01-14 19:00       185.80480         301       2021-01-14 19:01       185.30298         302       2021-01-14 19:02       185.03976         303       2021-01-14 19:03       184.50005         304       2021-01-14 19:04       183.81223         305       2021-01-14 19:05       183.3708         306       2021-01-14 19:07       182.82513         307       2021-01-14 19:07       182.42808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 298       2021-01-14 18:58       186.73453         299       2021-01-14 18:59       186.38303         300       2021-01-14 19:00       185.80480         301       2021-01-14 19:01       185.30298         302       2021-01-14 19:02       185.03976         303       2021-01-14 19:03       184.50005         304       2021-01-14 19:04       183.81223         305       2021-01-14 19:05       183.3708         306       2021-01-14 19:07       182.42808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 299       2021-01-14 18:59       186.38303         300       2021-01-14 19:00       185.80480         301       2021-01-14 19:01       185.30298         302       2021-01-14 19:02       185.03976         303       2021-01-14 19:03       184.50005         304       2021-01-14 19:04       183.81223         305       2021-01-14 19:05       183.3708         306       2021-01-14 19:07       182.85513         307       2021-01-14 19:07       182.42808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 299       2021-01-14 18:59       186.38303         300       2021-01-14 19:00       185.80480         301       2021-01-14 19:01       185.30298         302       2021-01-14 19:02       185.03976         303       2021-01-14 19:03       184.50005         304       2021-01-14 19:04       183.81223         305       2021-01-14 19:05       183.3708         306       2021-01-14 19:07       182.85513         307       2021-01-14 19:07       182.42808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 300       2021-01-14 19:00       185.80480         301       2021-01-14 19:01       185.30298         302       2021-01-14 19:02       185.03976         303       2021-01-14 19:03       184.50005         304       2021-01-14 19:04       183.81223         305       2021-01-14 19:05       183.3708         306       2021-01-14 19:06       182.85513         307       2021-01-14 19:07       182.42808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 301       2021-01-14 19:01       185.30298         302       2021-01-14 19:02       185.03976         303       2021-01-14 19:03       184.50005         304       2021-01-14 19:04       183.81223         305       2021-01-14 19:05       183.3708         306       2021-01-14 19:06       182.85513         307       2021-01-14 19:07       182.42808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 302       2021-01-14 19:02       185.03976         303       2021-01-14 19:03       184.50005         304       2021-01-14 19:04       183.81223         305       2021-01-14 19:05       183.3708         306       2021-01-14 19:06       182.85513         307       2021-01-14 19:07       182.42808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 303       2021-01-14 19:03       184.50005         304       2021-01-14 19:04       183.81223         305       2021-01-14 19:05       183.3708         306       2021-01-14 19:06       182.85513         307       2021-01-14 19:07       182.42808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 304     2021-01-14 19:04     183.81223       305     2021-01-14 19:05     183.3708       306     2021-01-14 19:06     182.85513       307     2021-01-14 19:07     182.42808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 305     2021-01-14 19:05     183.3708       306     2021-01-14 19:06     182.85513       307     2021-01-14 19:07     182.42808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 306     2021-01-14 19:06     182.85513       307     2021-01-14 19:07     182.42808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 307 2021-01-14 19:07 182.42808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 308 2021-01-14 19:08 181.83180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 309 2021-01-14 19:09 181.31593                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 310 2021-01-14 19:10 180.87307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 311 2021-01-14 19:11 180.4038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 312 2021-01-14 19:11 180:4038<br>2021-01-14 19:12 179.98874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 314 2021-01-14 19:14 179.04148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 315 2021-01-14 19:15 178.53721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 316 2021-01-14 19:16 178.1673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 317 2021-01-14 19:17 177.90019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 318 2021-01-14 19:18 177.57756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 319 2021-01-14 19:19 177.12016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 320 2021-01-14 19:20 176.75264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 321 2021-01-14 19:21 176.22898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 322 2021-01-14 19:22 175.92855                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 323 2021-01-14 19:23 175.59348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 324 2021-01-14 19:24 175.03430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 325 2021-01-14 19:25 174.58603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 326 2021-01-14 19:26 174.29434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 327 2021-01-14 19:27 173.81348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 328 2021-01-14 19:28 173.55257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 329 2021-01-14 19:29 173.11951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 330 2021-01-14 19:30 172.71179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

#### 2.1 Series Pre-burn Data

2021-01-19

Total time (h)

| Load time        | Load type      | Fuel added | Moisture |                    | Time  |
|------------------|----------------|------------|----------|--------------------|-------|
| (-)              | (-)            | (lbs)      | (%)      |                    | (min) |
| 2021-01-19 11:10 | Kindling & SUF | 6.01       | 15.5     | Pre-Charge (min)   | 34    |
| 2021-01-19 11:44 | High fire      | 12.04      | 20.1     | Conditioning (min) | 137   |
| 2021-01-19 14:00 | Medium fire    | 14.41      | 19.5     | Load (min)         | 340   |

|         | Pre-Charge (min) | 34          | Conditioning (min) | 137        | Load (min)       | 340        |
|---------|------------------|-------------|--------------------|------------|------------------|------------|
| Minutes | Date & Time      | Flue (F)    | Date & Time        | Flue (F)   | Date & Time      | Flue (F)   |
| 1       | 2021-01-19 11:10 | 92.10108195 | 2021-01-19 11:44   | 392.611636 | 2021-01-19 14:00 | 323.447614 |
| 2       | 2021-01-19 11:11 | 141.4512581 | 2021-01-19 11:45   | 359.866643 | 2021-01-19 14:01 | 303.031482 |
| 3       | 2021-01-19 11:12 | 181.4276951 | 2021-01-19 11:46   | 337.56932  | 2021-01-19 14:02 | 286.176296 |
| 4       | 2021-01-19 11:13 | 237.6548085 | 2021-01-19 11:47   | 358.125826 | 2021-01-19 14:03 | 287.143807 |
| 5       | 2021-01-19 11:14 | 296.466805  | 2021-01-19 11:48   | 375.76258  | 2021-01-19 14:04 | 317.740941 |
| 6       | 2021-01-19 11:15 | 333.4244341 | 2021-01-19 11:49   | 396.667659 | 2021-01-19 14:05 | 356.758226 |
| 7       | 2021-01-19 11:16 | 374.1420255 | 2021-01-19 11:50   | 423.312524 | 2021-01-19 14:06 | 355.153934 |
| 8       | 2021-01-19 11:17 | 418.524917  | 2021-01-19 11:51   | 447.66139  | 2021-01-19 14:07 | 396.540508 |
| 9       | 2021-01-19 11:18 | 438.4121971 | 2021-01-19 11:52   | 466.300628 | 2021-01-19 14:08 | 446.188617 |
| 10      | 2021-01-19 11:19 | 461.8627379 | 2021-01-19 11:53   | 479.970991 | 2021-01-19 14:09 | 498.042894 |
| 11      | 2021-01-19 11:20 | 482.0316537 | 2021-01-19 11:54   | 489.3553   | 2021-01-19 14:10 | 508.00598  |
| 12      | 2021-01-19 11:21 | 496.5213841 | 2021-01-19 11:55   | 496.049708 | 2021-01-19 14:11 | 506.722167 |
| 13      | 2021-01-19 11:22 | 512.8768227 | 2021-01-19 11:56   | 501.663262 | 2021-01-19 14:12 | 511.840498 |
| 14      | 2021-01-19 11:23 | 538.1422785 | 2021-01-19 11:57   | 505.540928 | 2021-01-19 14:13 | 514.650198 |
| 15      | 2021-01-19 11:24 | 558.9379379 | 2021-01-19 11:58   | 507.203168 | 2021-01-19 14:14 | 512.109501 |
| 16      | 2021-01-19 11:25 | 563.5700849 | 2021-01-19 11:59   | 509.683399 | 2021-01-19 14:15 | 509.890229 |
| 17      | 2021-01-19 11:26 | 563.3325068 | 2021-01-19 12:00   | 511.704827 | 2021-01-19 14:16 | 510.890438 |
| 18      | 2021-01-19 11:27 | 564.7557301 | 2021-01-19 12:01   | 513.175438 | 2021-01-19 14:17 | 511.875841 |
| 19      | 2021-01-19 11:28 | 564.8373019 | 2021-01-19 12:02   | 514.941265 | 2021-01-19 14:18 | 515.534716 |
| 20      | 2021-01-19 11:29 | 563.7556692 | 2021-01-19 12:03   | 516.188522 | 2021-01-19 14:19 | 517.90776  |
| 21      | 2021-01-19 11:30 | 561.4435465 | 2021-01-19 12:04   | 518.733747 | 2021-01-19 14:20 | 517.936177 |
| 22      | 2021-01-19 11:31 | 556.6303765 | 2021-01-19 12:05   | 521.351146 | 2021-01-19 14:21 | 516.341508 |
| 23      | 2021-01-19 11:32 | 549.0530903 | 2021-01-19 12:06   | 522.403665 | 2021-01-19 14:22 | 514.184912 |
| 24      | 2021-01-19 11:33 | 539.9961696 | 2021-01-19 12:07   | 523.539508 | 2021-01-19 14:23 | 512.946056 |
| 25      | 2021-01-19 11:34 | 531.5404648 | 2021-01-19 12:08   | 525.579721 | 2021-01-19 14:24 | 512.087626 |
| 26      | 2021-01-19 11:35 | 522.8987618 | 2021-01-19 12:09   | 526.637812 | 2021-01-19 14:25 | 511.727346 |
| 27      | 2021-01-19 11:36 | 513.3036428 | 2021-01-19 12:10   | 527.381669 | 2021-01-19 14:26 | 511.176601 |
| 28      | 2021-01-19 11:37 | 506.5854249 | 2021-01-19 12:11   | 528.479442 | 2021-01-19 14:27 | 510.988251 |
| 29      | 2021-01-19 11:38 | 499.2524694 | 2021-01-19 12:12   | 528.684231 | 2021-01-19 14:28 | 509.97568  |
| 30      | 2021-01-19 11:39 | 494.0991523 | 2021-01-19 12:13   | 530.261253 | 2021-01-19 14:29 | 509.144787 |
| 31      | 2021-01-19 11:40 | 488.9162323 | 2021-01-19 12:14   | 531.416396 | 2021-01-19 14:30 | 508.464809 |
| 32      | 2021-01-19 11:41 | 481.3594404 | 2021-01-19 12:15   | 531.73012  | 2021-01-19 14:31 | 507.343052 |
| 33      | 2021-01-19 11:42 | 472.5146457 | 2021-01-19 12:16   | 532.970269 | 2021-01-19 14:32 | 506.261241 |
| 34      | 2021-01-19 11:43 | 456.2023285 | 2021-01-19 12:17   | 533.032785 | 2021-01-19 14:33 | 504.842001 |
| 35      |                  |             | 2021-01-19 12:18   | 531.60598  | 2021-01-19 14:34 | 503.7359   |
| 36      |                  |             | 2021-01-19 12:19   |            | 2021-01-19 14:35 | 502.663511 |
| 37      |                  |             | 2021-01-19 12:20   |            | 2021-01-19 14:36 | 499.903511 |
| 38      |                  |             | 2021-01-19 12:21   |            | 2021-01-19 14:37 | 497.747554 |
| 39      |                  |             | 2021-01-19 12:22   | 526.538295 | 2021-01-19 14:38 | 495.12432  |
| 40      |                  |             | 2021-01-19 12:23   | 525.87742  | 2021-01-19 14:39 | 492.843314 |
| 41      |                  |             | 2021-01-19 12:24   |            | 2021-01-19 14:40 | 490.376245 |
| 42      |                  |             | 2021-01-19 12:25   |            | 2021-01-19 14:41 | 488.905691 |
| 43      |                  |             | 2021-01-19 12:26   |            | 2021-01-19 14:42 | 487.516786 |
| 44      |                  |             | 2021-01-19 12:27   |            | 2021-01-19 14:43 | 485.663713 |
| 45      |                  |             | 2021-01-19 12:28   | 518.960    | 2021-01-19 14:44 | 483.807287 |
| 46      |                  |             | 2021-01-19 12:29   |            | 2021-01-19 14:45 | 482.411971 |
| 47      |                  |             | 2021-01-19 12:30   | 514.072934 | 2021-01-19 14:46 | 481.576473 |

| 48  |  | 2021-01-19 12:31 | 511.485762 | 2021-01-19 14:47 | 480.31403  |
|-----|--|------------------|------------|------------------|------------|
| 49  |  | 2021-01-19 12:32 | 508.426249 | 2021-01-19 14:48 | 479.857129 |
| 50  |  | 2021-01-19 12:33 | 505.604949 | 2021-01-19 14:49 | 478.426231 |
| 51  |  | 2021-01-19 12:34 | 503.625213 | 2021-01-19 14:50 | 475.325384 |
| 52  |  | 2021-01-19 12:35 | 501.276312 | 2021-01-19 14:51 | 471.177566 |
| 53  |  | 2021-01-19 12:36 | 499.725089 | 2021-01-19 14:52 | 468.128825 |
| 54  |  | 2021-01-19 12:37 | 497.969425 | 2021-01-19 14:53 | 465.352364 |
| 55  |  | 2021-01-19 12:38 | 496.248239 | 2021-01-19 14:54 | 462.809236 |
| 56  |  | 2021-01-19 12:39 | 494.339148 | 2021-01-19 14:55 | 459.549244 |
| 57  |  | 2021-01-19 12:40 | 491.342933 | 2021-01-19 14:56 | 456.87884  |
| 58  |  | 2021-01-19 12:41 | 489.439819 | 2021-01-19 14:57 | 454.430518 |
| 59  |  | 2021-01-19 12:42 | 487.105717 | 2021-01-19 14:58 | 451.141797 |
| 60  |  | 2021-01-19 12:43 | 481.871159 | 2021-01-19 14:59 | 449.99842  |
| 61  |  | 2021-01-19 12:44 | 476.322006 | 2021-01-19 15:00 | 447.927695 |
| 62  |  | 2021-01-19 12:45 | 470.640753 | 2021-01-19 15:01 | 446.27303  |
| 63  |  | 2021-01-19 12:46 | 465.20688  | 2021-01-19 15:02 | 444.317247 |
| 64  |  | 2021-01-19 12:47 | 460.46514  | 2021-01-19 15:03 | 442.150566 |
| 65  |  | 2021-01-19 12:48 | 456.339138 | 2021-01-19 15:04 | 441.13519  |
| 66  |  | 2021-01-19 12:49 | 452.866772 | 2021-01-19 15:05 | 439.942447 |
| 67  |  | 2021-01-19 12:50 | 449.644268 | 2021-01-19 15:06 | 436.209268 |
| 68  |  | 2021-01-19 12:51 | 446.064648 | 2021-01-19 15:07 | 431.450976 |
| 69  |  | 2021-01-19 12:52 | 442.918814 | 2021-01-19 15:08 | 426.515107 |
| 70  |  | 2021-01-19 12:53 | 439.55123  | 2021-01-19 15:09 | 422.339547 |
| 71  |  | 2021-01-19 12:54 | 436.793416 | 2021-01-19 15:10 | 418.413952 |
| 72  |  | 2021-01-19 12:55 | 432.28158  | 2021-01-19 15:11 | 414.939592 |
| 73  |  | 2021-01-19 12:56 | 426.939028 | 2021-01-19 15:12 | 411.874925 |
| 74  |  | 2021-01-19 12:57 | 422.984207 | 2021-01-19 15:13 | 409.024381 |
| 75  |  | 2021-01-19 12:58 | 419.18038  | 2021-01-19 15:14 | 407.363143 |
| 76  |  | 2021-01-19 12:59 | 415.813712 | 2021-01-19 15:15 | 404.604194 |
| 77  |  | 2021-01-19 13:00 | 413.432895 | 2021-01-19 15:16 | 402.087527 |
| 78  |  | 2021-01-19 13:00 | 411.042181 | 2021-01-19 15:17 | 398.717051 |
| 79  |  | 2021-01-19 13:02 | 408.737724 | 2021-01-19 15:18 | 395.624274 |
| 80  |  | 2021-01-19 13:03 | 407.070497 | 2021-01-19 15:19 | 393.183759 |
| 81  |  | 2021-01-19 13:04 | 405.247972 | 2021-01-19 15:20 | 391.409029 |
| 82  |  | 2021-01-19 13:05 | 403.786812 | 2021-01-19 15:21 | 389.116023 |
| 83  |  | 2021-01-19 13:06 | 403.786812 | 2021-01-19 15:22 | 387.209424 |
| 84  |  | 2021-01-19 13:06 | 402.014313 | 2021-01-19 15:22 |            |
|     |  |                  |            |                  | 386.069125 |
| 85  |  | 2021-01-19 13:08 |            |                  | 384.255298 |
| 86  |  | 2021-01-19 13:09 | 397.147217 | 2021-01-19 15:25 | 381.944148 |
| 87  |  | 2021-01-19 13:10 | 396.216241 | 2021-01-19 15:26 | 379.038571 |
| 88  |  | 2021-01-19 13:11 | 395.574055 | 2021-01-19 15:27 | 376.491915 |
| 89  |  | 2021-01-19 13:12 | 393.831094 | 2021-01-19 15:28 | 374.725202 |
| 90  |  | 2021-01-19 13:13 | 392.70055  | 2021-01-19 15:29 | 372.547685 |
| 91  |  | 2021-01-19 13:14 | 391.536682 | 2021-01-19 15:30 | 370.459847 |
| 92  |  | 2021-01-19 13:15 | 390.469566 | 2021-01-19 15:31 | 368.594909 |
| 93  |  | 2021-01-19 13:16 | 389.09423  | 2021-01-19 15:32 | 366.113332 |
| 94  |  | 2021-01-19 13:17 | 388.743931 | 2021-01-19 15:33 | 364.422615 |
| 95  |  | 2021-01-19 13:18 | 388.416683 | 2021-01-19 15:34 | 363.216592 |
| 96  |  | 2021-01-19 13:19 | 387.571545 | 2021-01-19 15:35 | 362.71613  |
| 97  |  | 2021-01-19 13:20 | 386.23847  | 2021-01-19 15:36 | 363.536254 |
| 98  |  | 2021-01-19 13:21 | 384.804637 | 2021-01-19 15:37 | 363.569035 |
| 99  |  | 2021-01-19 13:22 | 383.681658 | 2021-01-19 15:38 | 363.151597 |
| 100 |  | 2021-01-19 13:23 | 381.574975 | 2021-01-19 15:39 | 363.163901 |
| 101 |  | 2021-01-19 13:24 | 380.120955 | 2021-01-19 15:40 | 361.971366 |
| 102 |  | 2021-01-19 13:25 | 378.859605 | 2021-01-19 15:41 | 360.77502  |
| 103 |  | 2021-01-19 13:26 | 377.85985  | 2021-01-19 15:42 | 357.993524 |
| 104 |  | 2021-01-19 13:27 | 376.370719 | 2021-01-19 15:43 | 354.221727 |
| 105 |  | 2021-01-19 13:28 | 375.179803 | 2021-01-19 15:44 | 351.454818 |
|     |  |                  |            |                  |            |

| 106 |  | 2021-01-19 13:29 | 373.77504  | 2021-01-19 15:45 | 348.908487             |
|-----|--|------------------|------------|------------------|------------------------|
| 107 |  | 2021-01-19 13:30 | 372.880508 | 2021-01-19 15:46 | 346.16179              |
| 108 |  | 2021-01-19 13:31 | 371.260993 | 2021-01-19 15:47 | 342.957479             |
| 109 |  | 2021-01-19 13:32 | 370.030966 | 2021-01-19 15:48 | 339.478166             |
| 110 |  | 2021-01-19 13:33 | 368.674376 | 2021-01-19 15:49 | 336.655933             |
| 111 |  | 2021-01-19 13:34 | 367.148209 | 2021-01-19 15:50 | 334.106065             |
| 112 |  | 2021-01-19 13:35 | 365.912824 | 2021-01-19 15:51 | 331.629054             |
| 113 |  | 2021-01-19 13:36 | 364.376481 | 2021-01-19 15:52 | 329.082287             |
| 114 |  | 2021-01-19 13:37 | 363.361353 | 2021-01-19 15:53 | 327.384654             |
| 115 |  | 2021-01-19 13:38 | 362.375909 | 2021-01-19 15:54 | 325.722025             |
| 116 |  | 2021-01-19 13:39 | 361.284509 | 2021-01-19 15:55 | 324.524099             |
| 117 |  | 2021-01-19 13:40 | 360.277837 | 2021-01-19 15:56 | 323.308945             |
| 118 |  | 2021-01-19 13:41 | 359.069613 | 2021-01-19 15:57 | 322.590985             |
| 119 |  | 2021-01-19 13:42 | 357.983883 | 2021-01-19 15:58 | 320.988168             |
| 120 |  | 2021-01-19 13:43 | 356.826205 | 2021-01-19 15:59 | 320.115838             |
| 121 |  | 2021-01-19 13:44 | 355.824669 | 2021-01-19 16:00 | 319.2301               |
| 122 |  | 2021-01-19 13:45 | 355.011655 | 2021-01-19 16:01 | 317.159316             |
| 123 |  | 2021-01-19 13:46 | 354.600672 | 2021-01-19 16:02 | 314.199194             |
| 124 |  | 2021-01-19 13:47 | 353.611212 | 2021-01-19 16:03 | 307.337265             |
| 125 |  | 2021-01-19 13:48 | 352.974334 | 2021-01-19 16:04 | 301.547421             |
| 126 |  | 2021-01-19 13:49 | 353.770012 | 2021-01-19 16:05 | 296.842257             |
| 127 |  | 2021-01-19 13:50 | 354.197338 | 2021-01-19 16:06 | 292.98494              |
| 128 |  | 2021-01-19 13:51 | 352.269969 | 2021-01-19 16:07 | 289.768624             |
| 129 |  | 2021-01-19 13:52 | 348.743542 | 2021-01-19 16:08 | 286.965265             |
| 130 |  | 2021-01-19 13:53 | 344.944871 | 2021-01-19 16:09 | 284.336065             |
| 131 |  | 2021-01-19 13:54 | 341.437932 | 2021-01-19 16:10 | 281.905006             |
| 132 |  | 2021-01-19 13:55 | 337.904341 | 2021-01-19 16:11 | 279.454109             |
| 133 |  | 2021-01-19 13:56 | 334.793436 | 2021-01-19 16:12 | 277.629056             |
| 134 |  | 2021-01-19 13:57 | 332.269867 | 2021-01-19 16:13 | 275.739272             |
| 135 |  | 2021-01-19 13:58 | 329.597995 | 2021-01-19 16:14 | 274.050715             |
| 136 |  | 2021-01-19 13:59 | 324.810612 | 2021-01-19 16:15 | 272.437645             |
| 137 |  | 2021-01-19 14:00 | 324.306433 | 2021-01-19 16:16 | 271.292439             |
| 138 |  | 2021 01 13 14.00 | 324.300433 | 2021-01-19 16:17 | 269.718132             |
| 139 |  |                  |            | 2021-01-19 16:18 | 268.313897             |
| 140 |  |                  |            | 2021-01-19 16:19 | 267.281414             |
| 141 |  |                  |            | 2021-01-19 16:20 | 266.282296             |
| 142 |  |                  |            | 2021-01-19 16:21 | 265.335197             |
| 143 |  |                  |            | 2021-01-19 16:22 | 264.516319             |
| 143 |  |                  |            | 2021-01-19 16:23 | 263.695017             |
| 145 |  |                  |            | 2021-01-19 16:24 |                        |
| 145 |  |                  |            | 2021-01-19 16:24 | 263.018582             |
| 146 |  |                  |            | 2021-01-19 16:25 | 262.322928<br>261.6287 |
| 147 |  |                  |            | 2021-01-19 16:26 | 261.6287               |
| 148 |  |                  |            | 2021-01-19 16:27 |                        |
|     |  |                  |            |                  | 260.178467             |
| 150 |  |                  |            | 2021-01-19 16:29 | 259.462682             |
| 151 |  |                  |            | 2021-01-19 16:30 | 258.979135             |
| 152 |  |                  |            | 2021-01-19 16:31 | 258.571702             |
| 153 |  |                  |            | 2021-01-19 16:32 | 258.021844             |
| 154 |  |                  |            | 2021-01-19 16:33 | 257.748559             |
| 155 |  |                  |            | 2021-01-19 16:34 | 257.202391             |
| 156 |  |                  |            | 2021-01-19 16:35 | 256.472186             |
| 157 |  |                  |            | 2021-01-19 16:36 | 256.312824             |
| 158 |  |                  |            | 2021-01-19 16:37 | 255.783699             |
| 159 |  |                  |            | 2021-01-19 16:38 | 255.391625             |
| 160 |  |                  |            | 2021-01-19 16:39 | 254.496398             |
| 161 |  |                  |            | 2021-01-19 16:40 | 254.364639             |
| 162 |  |                  |            | 2021-01-19 16:41 | 253.482756             |
| 163 |  |                  |            | 2021-01-19 16:42 | 252.955376             |

| 164 |  |              | 2021-01-19 16:43                     | 252.674556 |
|-----|--|--------------|--------------------------------------|------------|
| 165 |  |              | 2021-01-19 16:44                     | 252.03944  |
| 166 |  |              | 2021-01-19 16:45                     | 251.781052 |
| 167 |  |              | 2021-01-19 16:46                     | 251.360512 |
| 168 |  |              | 2021-01-19 16:47                     | 250.784323 |
| 169 |  |              | 2021-01-19 16:48                     | 250.312282 |
| 170 |  |              | 2021-01-19 16:49                     | 249.790564 |
| 171 |  |              | 2021-01-19 16:50                     | 249.388849 |
| 172 |  |              | 2021-01-19 16:51                     | 249.115575 |
| 173 |  |              | 2021-01-19 16:52                     | 248.989052 |
| 174 |  |              | 2021-01-19 16:53                     | 248.665315 |
| 175 |  |              | 2021-01-19 16:54                     | 248.130544 |
| 176 |  |              | 2021-01-19 16:55                     | 247.824519 |
| 177 |  |              | 2021-01-19 16:56                     | 247.344818 |
| 178 |  |              | 2021-01-19 16:57                     | 247.414593 |
| 179 |  |              | 2021-01-19 16:58                     | 247.292349 |
| 180 |  |              | 2021-01-19 16:59                     | 247.313015 |
| 181 |  |              | 2021-01-19 17:00                     | 247.040351 |
| 182 |  |              | 2021-01-19 17:01                     | 246.619151 |
| 183 |  |              | 2021-01-19 17:02                     | 246.366875 |
| 184 |  |              | 2021-01-19 17:03                     | 245.888748 |
| 185 |  |              | 2021-01-19 17:04                     | 245.562061 |
| 186 |  |              | 2021-01-19 17:05                     | 245.294707 |
| 187 |  |              | 2021-01-19 17:06                     | 244.915605 |
| 188 |  |              | 2021-01-19 17:07                     | 244.825687 |
| 189 |  |              | 2021-01-19 17:08                     | 244.777582 |
| 190 |  |              | 2021-01-19 17:09                     | 244.790207 |
| 191 |  |              | 2021-01-19 17:10                     | 244.475483 |
| 192 |  |              | 2021-01-19 17:11                     | 243.910107 |
| 193 |  |              | 2021-01-19 17:12                     | 243.801564 |
| 194 |  |              | 2021-01-19 17:13                     | 243.695664 |
| 195 |  |              | 2021-01-19 17:14                     | 243.153628 |
| 196 |  |              | 2021-01-19 17:15                     | 242.886836 |
| 197 |  |              | 2021-01-19 17:16                     | 242.643442 |
| 198 |  |              | 2021-01-19 17:17                     | 242.385714 |
| 199 |  |              | 2021-01-19 17:18                     | 241.825233 |
| 200 |  |              | 2021-01-19 17:19                     | 241.701997 |
| 201 |  |              | 2021-01-19 17:20                     | 241.577492 |
| 201 |  |              | 2021-01-19 17:21                     | 241.577492 |
| 202 |  |              | 2021-01-19 17:22                     | 241.429837 |
| 203 |  |              | 2021-01-19 17:22                     | 241.429837 |
| 204 |  |              | 2021-01-19 17:23                     | 241.26035  |
| 205 |  |              | 2021-01-19 17:24                     | 241.17504  |
| 206 |  |              |                                      |            |
| 207 |  |              | 2021-01-19 17:26<br>2021-01-19 17:27 | 240.560791 |
|     |  |              |                                      | 240.767154 |
| 209 |  |              | 2021-01-19 17:28                     | 240.484608 |
| 210 |  | <del> </del> | 2021-01-19 17:29                     | 240.364856 |
| 211 |  |              | 2021-01-19 17:30                     | 240.352041 |
| 212 |  |              | 2021-01-19 17:31                     | 240.074571 |
| 213 |  |              | 2021-01-19 17:32                     | 239.660322 |
| 214 |  |              | 2021-01-19 17:33                     | 239.370258 |
| 215 |  |              | 2021-01-19 17:34                     | 239.335267 |
| 216 |  |              | 2021-01-19 17:35                     | 239.126451 |
| 217 |  |              | 2021-01-19 17:36                     | 238.668113 |
| 218 |  |              | 2021-01-19 17:37                     | 238.530364 |
| 219 |  |              | 2021-01-19 17:38                     | 238.260254 |
| 220 |  |              | 2021-01-19 17:39                     | 237.664247 |
| 221 |  |              | 2021-01-19 17:40                     | 237.062987 |

| 222 |  |   | 2021-01-19 17:41 | 236.654072 |
|-----|--|---|------------------|------------|
| 223 |  |   | 2021-01-19 17:42 | 236.391872 |
| 224 |  |   | 2021-01-19 17:43 | 235.962996 |
| 225 |  |   | 2021-01-19 17:44 | 235.623043 |
| 226 |  |   | 2021-01-19 17:45 | 235.312158 |
| 227 |  |   | 2021-01-19 17:46 | 234.846069 |
| 228 |  |   | 2021-01-19 17:47 | 234.423569 |
| 229 |  |   | 2021-01-19 17:48 | 234.400514 |
| 230 |  |   | 2021-01-19 17:49 | 234.127814 |
| 231 |  |   | 2021-01-19 17:50 | 233.631262 |
| 232 |  |   | 2021-01-19 17:51 | 233.298794 |
| 233 |  |   | 2021-01-19 17:52 | 233.15613  |
| 234 |  |   | 2021-01-19 17:53 | 232.794542 |
| 235 |  |   | 2021-01-19 17:54 | 232.277083 |
| 236 |  |   | 2021-01-19 17:55 | 232.266342 |
| 237 |  |   | 2021-01-19 17:56 | 231.978271 |
| 238 |  |   | 2021-01-19 17:57 | 231.780737 |
| 239 |  |   | 2021-01-19 17:58 | 231.747797 |
| 240 |  |   | 2021-01-19 17:59 | 231.090319 |
| 241 |  |   | 2021-01-19 18:00 | 230.824408 |
| 242 |  |   | 2021-01-19 18:01 | 230.279472 |
| 243 |  |   | 2021-01-19 18:02 | 229.526151 |
| 244 |  |   | 2021-01-19 18:03 | 228.924721 |
| 245 |  |   | 2021-01-19 18:04 | 228.270121 |
| 246 |  |   | 2021-01-19 18:05 | 227.880337 |
| 247 |  |   | 2021-01-19 18:06 | 227.380325 |
| 248 |  |   | 2021-01-19 18:07 | 227.041025 |
| 249 |  |   | 2021-01-19 18:08 | 226.777942 |
| 250 |  |   | 2021-01-19 18:09 | 226.253795 |
| 251 |  |   | 2021-01-19 18:10 | 225.77927  |
| 252 |  |   | 2021-01-19 18:11 | 225.416122 |
| 253 |  |   | 2021-01-19 18:12 | 225.10255  |
| 254 |  |   | 2021-01-19 18:13 | 224.550675 |
| 255 |  |   | 2021-01-19 18:14 | 223.770564 |
| 256 |  |   | 2021-01-19 18:15 | 223.102793 |
| 257 |  |   | 2021-01-19 18:16 | 222.326911 |
| 258 |  |   | 2021-01-19 18:17 | 221.796052 |
| 259 |  |   | 2021-01-19 18:18 | 221.730032 |
| 260 |  |   | 2021-01-19 18:19 | 220.67061  |
| 261 |  |   | 2021-01-19 18:19 | 220.07001  |
| 262 |  |   | 2021-01-19 18:21 | 219.588306 |
| 263 |  |   | 2021-01-19 18:22 | 218.968063 |
| 264 |  |   | 2021-01-19 18:23 | 218.584661 |
| 265 |  |   | 2021-01-19 18:24 | 218.03664  |
| 266 |  |   | 2021-01-19 18:24 | 217.604667 |
| 266 |  |   | 2021-01-19 18:25 |            |
| 267 |  |   |                  | 217.050125 |
| 269 |  |   | 2021-01-19 18:27 | 216.575755 |
|     |  |   | 2021-01-19 18:28 | 216.155775 |
| 270 |  |   | 2021-01-19 18:29 | 215.767416 |
| 271 |  | - | 2021-01-19 18:30 | 215.21447  |
| 272 |  | - | 2021-01-19 18:31 | 214.981166 |
| 273 |  |   | 2021-01-19 18:33 | 214.528713 |
| 274 |  |   | 2021-01-19 18:34 | 213.999508 |
| 275 |  |   | 2021-01-19 18:35 | 213.676067 |
| 276 |  |   | 2021-01-19 18:36 | 212.952388 |
| 277 |  |   | 2021-01-19 18:37 | 212.667961 |
| 278 |  |   | 2021-01-19 18:38 | 212.160728 |
| 279 |  |   | 2021-01-19 18:39 | 211.922423 |

| 281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | 1    | T | 1                | I          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|---|------------------|------------|
| 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 280 |      |   | 2021-01-19 18:40 | 211.464947 |
| 283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      |   |                  |            |
| 284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      |   |                  |            |
| 285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 283 |      |   |                  | 210.002596 |
| 286   2021-01-19 18-46   209.085206 287   2021-01-19 18-47   208.0852064 288   2021-01-19 18-48   208.212075 289   2021-01-19 18-49   207.380257 290   2021-01-19 18-59   207.380257 291   2021-01-19 18-51   206.955472 292   2021-01-19 18-51   206.955472 293   2021-01-19 18-51   206.219778 294   2021-01-19 18-53   205.655697 295   2021-01-19 18-55   204.882925 296   2021-01-19 18-55   204.882925 296   2021-01-19 18-55   204.882925 296   2021-01-19 18-55   204.882925 297   2021-01-19 18-56   204.881745 297   2021-01-19 18-56   204.881745 298   2021-01-19 18-56   204.881745 299   2021-01-19 18-56   204.881745 299   2021-01-19 18-56   204.201-01-19 18-56   300   2021-01-19 19-56   203.036151 301   2021-01-19 19-00   202.635964 301   2021-01-19 19-00   202.635964 301   2021-01-19 19-00   202.635964 303   2021-01-19 19-00   202.635964 304   2021-01-19 19-00   202.635964 305   2021-01-19 19-00   202.635964 306   2021-01-19 19-00   202.635964 307   2021-01-19 19-00   202.635964 308   2021-01-19 19-00   202.635964 309   2021-01-19 19-00   202.635964 309   2021-01-19 19-00   309.0586196 300   300-10-10-10-10-10-10-10-10-10-10-10-10-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |   |                  | 209.636629 |
| 287 288 2010-11-918-87 2010-12-918-90 2010-11-918-87 2010-12-918-90 2010-11-918-90 2010-11-918-90 2010-11-918-90 2010-11-918-90 2010-11-918-90 2010-11-918-90 2010-11-918-90 2010-11-918-90 2010-11-918-90 2010-11-918-90 2010-11-918-90 2010-11-918-90 2010-11-918-90 2010-11-918-90 2010-11-918-90 2010-11-918-90 2010-11-918-90 2010-11-918-90 2010-11-918-90 2010-11-918-90 2010-11-918-90 2010-11-918-90 2010-11-918-90 2010-11-918-90 2010-11-918-90 2010-11-918-90 2010-11-918-90 2010-11-918-90 2010-11-918-90 2010-11-918-90 2010-11-918-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-11-919-90 2010-91-919-90 2010-91-919-90 2010-91-919-90 2010-91-919-90 2010-91-919-90 2010-91-919-90 2010-91-919-90 2010-91-919-90 2010-91-919-90 2010-91-919-90 2010-91-919-90 2010-91-919-90 2010-91-919-90 2010-91-919-90 2010-91-919-90 2010-91-919-90 2010-91-919-90 2010-91-919-90 2010-91-919-90 2010-91-919-90 2010-91-919-90 2010-91-919-90 2010-91-919-90 2010-91-919-90 2010-91-919-90 2010-91-919-9 | 285 |      |   | 2021-01-19 18:45 | 209.416638 |
| 288         2021-01-1918-84         208 22:2075           299         2021-01-1918-50         207.382875           291         2021-01-1918-50         207.382875           292         2021-01-1918-32         206.595472           293         2021-01-1918-34         206.2197878           294         2021-01-1918-35         206.832972           295         2021-01-1918-35         206.832925           296         2021-01-1918-57         203.90958           297         2021-01-1918-57         203.90958           298         2021-01-1918-58         204.84154           299         2021-01-1918-59         203.345118           300         2021-01-1918-59         203.345118           301         2021-01-1919-00         2021-01-1919-01         2021-01-1919-01           301         2021-01-1919-01         2021-01-1919-01         2021-01-1919-01           302         2021-01-1919-01         2021-01-1919-01         2021-01-1919-01           303         2021-01-1919-03         201-01-1919-03         201-01-1919-03           304         2021-01-1919-03         201-01-1919-03         201-01-1919-03           305         2021-01-1919-05         399.96325           306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 286 |      |   | 2021-01-19 18:46 | 209.085208 |
| 289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 287 |      |   | 2021-01-19 18:47 | 208.636264 |
| 290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 288 |      |   | 2021-01-19 18:48 | 208.212075 |
| 291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 289 |      |   | 2021-01-19 18:49 | 207.820329 |
| 292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 290 |      |   | 2021-01-19 18:50 | 207.388257 |
| 293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 291 |      |   | 2021-01-19 18:51 | 206.955472 |
| 294   2021-01-19 18:54   205.400432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 292 |      |   | 2021-01-19 18:52 | 206.219778 |
| 295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 293 |      |   | 2021-01-19 18:53 | 205.655697 |
| 296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 294 |      |   | 2021-01-19 18:54 | 205.400432 |
| 297   2021-01-19 18:57   203.990958   298   2021-01-19 18:59   203.451188   209.3036151   300   2021-01-19 19:00   202.635964   301   2021-01-19 19:00   202.635964   301   2021-01-19 19:00   202.635964   302   2021-01-19 19:00   202.635964   303   2021-01-19 19:00   201.609875   303   2021-01-19 19:00   201.609875   303   2021-01-19 19:00   201.609875   304   2021-01-19 19:00   201.609875   305   2021-01-19 19:00   199.953215   306   2021-01-19 19:00   199.953215   306   2021-01-19 19:00   199.953215   307   2021-01-19 19:00   199.953319   307   2021-01-19 19:00   199.953319   309   2021-01-19 19:00   199.853889   310   2021-01-19 19:00   198.858869   311   2021-01-19 19:10   198.858869   311   2021-01-19 19:11   198.041028   312   2021-01-19 19:11   198.041028   313   2021-01-19 19:11   197.73430   313   2021-01-19 19:11   197.785635   314   2021-01-19 19:12   197.785635   314   2021-01-19 19:14   196.68441   315   2021-01-19 19:16   195.768497   316   2021-01-19 19:16   195.768497   317   2021-01-19 19:16   195.768497   317   2021-01-19 19:16   195.768497   318   2021-01-19 19:17   195.164822   318   2021-01-19 19:19   194.376158   320   2021-01-19 19:19   194.376158   320   2021-01-19 19:21   193.3478607   322   2021-01-19 19:21   193.3478607   322   2021-01-19 19:21   193.3478607   323   2021-01-19 19:22   193.361993   323   2021-01-19 19:25   191.69099   324   2021-01-19 19:25   191.69099   324   2021-01-19 19:25   191.69099   325   2021-01-19 19:25   191.69099   326   2021-01-19 19:25   191.69099   326   2021-01-19 19:25   191.69099   326   2021-01-19 19:25   191.09099   326   2021-01-19 19:25   191.69099   326   2021-01-19 19:27   191.085854   328   2021-01-19 19:28   190.740607   323   2021-01-19 19:28   190.740607   323   2021-01-19 19:28   190.740607   323   2021-01-19 19:39   318.612145   324   2021-01-19 19:31   318.612145   328   2021-01-19 19:31   318.612145   334   2021-01-19 19:31   318.612145   335   2021-01-19 19:31   318.612145   335   2021-01-19 19:31   318.612145   336   2021-01-19 19:31    | 295 |      |   | 2021-01-19 18:55 | 204.852925 |
| 298         2021-01-19 18:58         203.453138           299         2021-01-19 19:50         202.635964           301         2021-01-19 19:01         202.16919           302         2021-01-19 19:02         201.6069875           303         2021-01-19 19:03         201.071214           304         2021-01-19 19:04         200.556169           305         2021-01-19 19:06         199.96325           306         2021-01-19 19:06         199.503919           307         2021-01-19 19:06         199.503919           308         2021-01-19 19:07         199.61839           309         2021-01-19 19:09         198.743649           310         2021-01-19 19:01         198.56836           311         2021-01-19 19:11         198.041028           312         2021-01-19 19:11         197.74399           313         2021-01-19 19:12         197.74399           314         2021-01-19 19:13         197.828535           316         2021-01-19 19:15         196.614988           315         2021-01-19 19:17         195.768497           317         2021-01-19 19:17         195.768497           318         2021-01-19 19:17         195.164822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 296 |      |   | 2021-01-19 18:56 | 204.481754 |
| 299       2021-01-19 18:59       203.036151         300       2021-01-19 19:00       202.635964         301       2021-01-19 19:01       202.10:19         302       2021-01-19 19:02       201.609875         303       2021-01-19 19:02       201.609875         304       2021-01-19 19:03       200.551696         305       2021-01-19 19:05       199.50319         306       2021-01-19 19:07       199.50319         307       2021-01-19 19:08       199.50319         308       2021-01-19 19:09       198.763869         310       2021-01-19 19:09       198.763869         311       2021-01-19 19:11       198.61028         312       2021-01-19 19:11       197.74309         313       2021-01-19 19:12       197.74309         314       2021-01-19 19:14       196.68441         315       2021-01-19 19:14       196.68441         316       2021-01-19 19:14       196.68441         317       2021-01-19 19:17       195.164822         318       2021-01-19 19:17       195.164822         318       2021-01-19 19:19       194.376158         320       2021-01-19 19:20       193.37817         321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 297 |      |   | 2021-01-19 18:57 | 203.990958 |
| 299       2021-01-19 18:59       203.036151         300       2021-01-19 19:00       202.635964         301       2021-01-19 19:02       202.10.19 19:02       202.10.19 19:02       202.10.19 19:02       201.069875         303       2021-01-19 19:03       201.07.2114       203.036191       2021-01-19 19:03       201.07.2114         304       2021-01-19 19:04       200.556196       305       2021-01-19 19:05       199.96325         306       2021-01-19 19:05       199.96325       306       2021-01-19 19:07       199.163188         308       2021-01-19 19:08       199.001941       309       198.748649       310       199.01941       309.856869       311       2021-01-19 19:01       198.568869       311       2021-01-19 19:01       198.568869       311       2021-01-19 19:11       198.748649       311       2021-01-19 19:11       197.74809       313       312       2021-01-19 19:11       197.74809       313       2021-01-19 19:14       196.68441       315       2021-01-19 19:14       196.68441       315       2021-01-19 19:14       196.68441       315       2021-01-19 19:14       196.76487       317       195.76487       317       195.76487       318       2021-01-19 19:17       195.76487       318       2021-01-19 19:17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 298 |      |   | 2021-01-19 18:58 | 203.453138 |
| 301   2021-01-19 19:01   202.13175   302   3021-01-19 19:02   201.609875   303   2021-01-19 19:03   201.072114   304   2021-01-19 19:04   200.556196   305   2021-01-19 19:06   199.969325   306   2021-01-19 19:07   199.969325   306   2021-01-19 19:07   199.163198   308   2021-01-19 19:07   199.163198   309   2021-01-19 19:09   198.743649   310   2021-01-19 19:01   198.568869   311   2021-01-19 19:11   198.041028   312   2021-01-19 19:12   197.74309   313   2021-01-19 19:12   197.74309   313   2021-01-19 19:13   197.285635   314   2021-01-19 19:13   197.285635   314   2021-01-19 19:15   196.214985   315   2021-01-19 19:15   196.214985   316   2021-01-19 19:15   196.214985   316   2021-01-19 19:15   196.214985   318   2021-01-19 19:16   195.768497   318   2021-01-19 19:18   194.74654   319   2021-01-19 19:19   191.37   319.348179   320   2021-01-19 19:19   191.37   319.348179   322   2021-01-19 19:12   193.376178   322   2021-01-19 19:21   193.376178   322   2021-01-19 19:21   193.376179   322   2021-01-19 19:21   193.376179   322   2021-01-19 19:21   193.47607   322   2021-01-19 19:21   193.47607   322   2021-01-19 19:22   193.167993   324   2021-01-19 19:24   192.23738   325   2021-01-19 19:26   191.61103   327   328   2021-01-19 19:27   191.08554   328   2021-01-19 19:28   190.740607   329   2021-01-19 19:29   191.237358   328   2021-01-19 19:30   191.29578   333   2021-01-19 19:31   189.073373   333   2021-01-19 19:33   189.073373   333   2021-01-19 19:33   189.073373   333   2021-01-19 19:33   189.073373   333   2021-01-19 19:33   189.073373   333   333   2021-01-19 19:33   189.073373   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   33   | 299 |      |   | 2021-01-19 18:59 |            |
| 301   2021-01-19 19:01   202.13175   302   3021-01-19 19:02   201.609875   303   2021-01-19 19:03   201.072114   304   2021-01-19 19:04   200.556196   305   2021-01-19 19:06   199.969325   306   2021-01-19 19:07   199.969325   306   2021-01-19 19:07   199.163198   308   2021-01-19 19:07   199.163198   309   2021-01-19 19:09   198.743649   310   2021-01-19 19:01   198.568869   311   2021-01-19 19:11   198.041028   312   2021-01-19 19:12   197.74309   313   2021-01-19 19:12   197.74309   313   2021-01-19 19:13   197.285635   314   2021-01-19 19:13   197.285635   314   2021-01-19 19:15   196.214985   315   2021-01-19 19:15   196.214985   316   2021-01-19 19:15   196.214985   316   2021-01-19 19:15   196.214985   318   2021-01-19 19:16   195.768497   318   2021-01-19 19:18   194.74654   319   2021-01-19 19:19   191.37   319.348179   320   2021-01-19 19:19   191.37   319.348179   322   2021-01-19 19:12   193.376178   322   2021-01-19 19:21   193.376178   322   2021-01-19 19:21   193.376179   322   2021-01-19 19:21   193.376179   322   2021-01-19 19:21   193.47607   322   2021-01-19 19:21   193.47607   322   2021-01-19 19:22   193.167993   324   2021-01-19 19:24   192.23738   325   2021-01-19 19:26   191.61103   327   328   2021-01-19 19:27   191.08554   328   2021-01-19 19:28   190.740607   329   2021-01-19 19:29   191.237358   328   2021-01-19 19:30   191.29578   333   2021-01-19 19:31   189.073373   333   2021-01-19 19:33   189.073373   333   2021-01-19 19:33   189.073373   333   2021-01-19 19:33   189.073373   333   2021-01-19 19:33   189.073373   333   333   2021-01-19 19:33   189.073373   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   33   | 300 |      |   | 2021-01-19 19:00 | 202.635964 |
| 302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 301 |      |   |                  | 202.13175  |
| 303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 302 |      |   | 2021-01-19 19:02 |            |
| 304   2021-01-19 19:04   200.556196   305   2021-01-19 19:05   199.996325   306   2021-01-19 19:06   199.956325   307   2021-01-19 19:07   199.163198   308   2021-01-19 19:09   199.001941   309   2021-01-19 19:01   198.743649   310   2021-01-19 19:10   198.56886   311   2021-01-19 19:11   198.041028   312   2021-01-19 19:12   197.74309   313   2021-01-19 19:13   197.285635   314   2021-01-19 19:13   197.285635   314   2021-01-19 19:13   197.285635   315   2021-01-19 19:15   195.68441   315   2021-01-19 19:15   195.68441   315   2021-01-19 19:16   195.768497   317   2021-01-19 19:17   195.164822   318   2021-01-19 19:17   195.164822   318   2021-01-19 19:17   195.164822   319   2021-01-19 19:19   191.376158   320   2021-01-19 19:20   193.938179   321   2021-01-19 19:20   193.938179   322   2021-01-19 19:20   193.938179   322   2021-01-19 19:22   193.476607   322   2021-01-19 19:22   193.476508   324   2021-01-19 19:22   193.47693   323   2021-01-19 19:22   193.47693   324   2021-01-19 19:25   191.940909   326   2021-01-19 19:26   191.058554   329   2021-01-19 19:26   191.058554   339   2021-01-19 19:28   190.573645   330   2021-01-19 19:28   190.573645   330   2021-01-19 19:28   190.573645   330   2021-01-19 19:28   190.573645   330   2021-01-19 19:28   190.5736545   330   2021-01-19 19:28   190.5736545   330   2021-01-19 19:28   190.5736545   330   2021-01-19 19:28   190.5736545   330   2021-01-19 19:28   190.5736545   330   2021-01-19 19:28   190.5736545   330   2021-01-19 19:28   190.5736545   330   2021-01-19 19:29   190.5523456   330   2021-01-19 19:29   190.523456   330   2021-01-19 19:39   180.570217   332   333   333   333   333   333   333   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334      | 303 |      |   |                  | 201.072114 |
| 305   2021-01-19 19:05   199.996325   306   2021-01-19 19:06   199.503919   307   2021-01-19 19:07   199.163198   308   2021-01-19 19:08   199.001941   309   2021-01-19 19:01   198.68869   311   2021-01-19 19:10   198.68869   311   2021-01-19 19:11   198.041028   312   2021-01-19 19:12   197.74309   313   2021-01-19 19:12   197.74309   313   2021-01-19 19:14   196.68441   315   2021-01-19 19:15   196.214985   316   2021-01-19 19:15   196.214985   316   2021-01-19 19:15   196.214985   316   2021-01-19 19:15   196.214985   316   2021-01-19 19:17   199.16   195.768497   317   2021-01-19 19:17   199.164822   318   2021-01-19 19:18   194.724654   319   2021-01-19 19:19   194.376158   320   2021-01-19 19:29   193.938179   2021-01-19 19:29   193.938179   321   2021-01-19 19:21   193.476679   322   2021-01-19 19:21   193.476679   322   2021-01-19 19:22   193.167993   323   2021-01-19 19:24   192.237358   325   2021-01-19 19:25   191.940909   326   2021-01-19 19:26   191.61103   327   2021-01-19 19:26   191.61103   327   2021-01-19 19:28   191.085554   328   2021-01-19 19:29   190.52356   329   2021-01-19 19:29   190.52356   330   2021-01-19 19:29   190.52356   330   2021-01-19 19:29   190.52356   330   2021-01-19 19:29   190.52356   330   2021-01-19 19:39   189.79337   333   2021-01-19 19:39   189.79337   333   2021-01-19 19:39   189.79337   333   2021-01-19 19:39   189.79337   333   2021-01-19 19:39   190.52356   330   2021-01-19 19:39   190.52356   330   2021-01-19 19:39   190.52356   330   2021-01-19 19:39   189.79337   333   2021-01-19 19:39   189.79337   333   2021-01-19 19:39   189.79337   333   2021-01-19 19:39   189.79337   333   2021-01-19 19:39   189.79337   333   2021-01-19 19:39   189.79337   333   2021-01-19 19:39   189.79337   333   2021-01-19 19:39   189.79337   333   2021-01-19 19:33   188.612145   334   2021-01-19 19:33   188.612145   334   2021-01-19 19:33   188.612145   334   2021-01-19 19:33   188.612145   334   2021-01-19 19:33   188.612145   336   2021-01-19 19:35   189.79337   335   2021-01-19    |     |      |   |                  |            |
| 306   2021-01-19 19:06   199.503919   307   2021-01-19 19:07   199.163198   308   2021-01-19 19:08   199.001941   309   2021-01-19 19:09   198.743649   310   2021-01-19 19:10   198.568669   311   2021-01-19 19:11   198.041028   312   2021-01-19 19:12   197.74309   313   2021-01-19 19:12   197.74309   313   2021-01-19 19:14   196.68441   315   2021-01-19 19:15   196.68441   315   2021-01-19 19:15   196.68441   315   2021-01-19 19:15   195.764879   317   2021-01-19 19:17   195.164822   318   2021-01-19 19:17   195.164822   318   2021-01-19 19:17   195.164822   318   2021-01-19 19:19   194.376158   320   2021-01-19 19:19   194.376158   320   2021-01-19 19:21   193.472607   322   2021-01-19 19:21   193.472607   322   2021-01-19 19:22   193.167993   323   2021-01-19 19:22   193.167993   324   2021-01-19 19:23   192.645109   326   2021-01-19 19:25   191.940909   326   2021-01-19 19:26   191.61103   327   2021-01-19 19:26   191.61103   327   2021-01-19 19:27   191.058554   338   2021-01-19 19:28   190.746007   329   2021-01-19 19:29   190.523456   330   2021-01-19 19:29   190.523456   333   2021-01-19 19:29   190.523456   333   2021-01-19 19:39   189.093337   333   2021-01-19 19:33   188.093337   333   2021-01-19 19:33   188.093337   333   2021-01-19 19:33   188.093337   333   333   2021-01-19 19:33   188.093337   333   333   333   2021-01-19 19:33   188.093337   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334   334     |     |      |   |                  |            |
| 307   2021-01-19 19:07   199.163198   308   2021-01-19 19:08   199.001941   309   2021-01-19 19:09   198.743649   310   2021-01-19 19:11   198.568866   311   2021-01-19 19:11   198.041028   312   2021-01-19 19:12   197.74309   313   2021-01-19 19:13   197.285633   2021-01-19 19:13   197.285633   314   2021-01-19 19:14   196.68441   315   2021-01-19 19:15   196.214985   316   2021-01-19 19:16   195.768497   317   2021-01-19 19:16   195.768497   317   2021-01-19 19:16   195.768497   317   2021-01-19 19:18   194.724654   319   2021-01-19 19:18   194.724654   319   2021-01-19 19:21   193.472607   322   2021-01-19 19:22   193.472607   322   2021-01-19 19:22   193.472607   322   2021-01-19 19:22   193.472607   322   2021-01-19 19:22   193.167993   323   2021-01-19 19:22   193.167993   324   2021-01-19 19:25   191.940909   326   2021-01-19 19:25   191.940909   326   2021-01-19 19:26   191.61103   327   2021-01-19 19:27   191.058554   328   2021-01-19 19:28   30.740607   329   2021-01-19 19:29   30.523456   3201-01-19 19:29   30.523456   3201-01-19 19:29   30.523456   3201-01-19 19:29   30.523456   3201-01-19 19:29   30.523456   3201-01-19 19:33   388.612145   334   2021-01-19 19:33   388.612145   334   2021-01-19 19:33   388.612145   334   2021-01-19 19:34   388.612145   335   2021-01-19 19:34   388.612145   336   2021-01-19 19:34   388.612145   336   2021-01-19 19:34   388.612145   336   2021-01-19 19:34   388.612145   336   2021-01-19 19:34   388.612145   336   2021-01-19 19:34   388.612145   336   2021-01-19 19:34   388.612145   336   2021-01-19 19:34   388.612145   336   2021-01-19 19:36   388.612145   336   2021-01-19 19:36   388.612145   336   2021-01-19 19:36   388.612145   336   2021-01-19 19:36   388.612145   336   2021-01-19 19:36   388.612145   336   2021-01-19 19:36   388.612145   336   2021-01-19 19:36   388.612145   336   2021-01-19 19:36   388.612145   336   2021-01-19 19:36   388.612145   336   2021-01-19 19:36   388.612145   336   2021-01-19 19:36   388.612145   336   2021-01-19 19:36   388.612145     | -   |      |   |                  |            |
| 308   2021-01-19 19:08   199.001941   309   2021-01-19 19:09   198.743649   310   2021-01-19 19:01   198.568869   311   2021-01-19 19:11   198.041028   312   2021-01-19 19:12   197.74309   313   2021-01-19 19:12   197.74309   313   2021-01-19 19:13   197.285635   314   2021-01-19 19:15   196.68441   315   2021-01-19 19:15   196.68441   315   2021-01-19 19:15   196.214985   316   2021-01-19 19:16   195.768497   317   2021-01-19 19:16   195.768497   317   2021-01-19 19:17   195.164822   318   2021-01-19 19:18   194.724654   319   2021-01-19 19:19   194.376158   320   2021-01-19 19:19   194.376158   320   2021-01-19 19:20   193.938179   321   2021-01-19 19:21   193.472607   322   2021-01-19 19:22   193.167993   323   2021-01-19 19:22   193.167993   323   2021-01-19 19:23   192.645109   324   2021-01-19 19:24   192.237358   325   2021-01-19 19:25   191.940909   326   2021-01-19 19:25   191.940909   326   2021-01-19 19:27   191.68554   327   2021-01-19 19:27   191.68554   328   2021-01-19 19:28   190.740607   329   2021-01-19 19:28   190.740607   329   2021-01-19 19:31   189.770217   332   2021-01-19 19:31   189.770217   332   2021-01-19 19:31   189.770217   332   2021-01-19 19:31   189.770217   332   2021-01-19 19:31   189.770217   332   2021-01-19 19:31   189.770217   333   2021-01-19 19:33   188.612145   334   2021-01-19 19:35   187.837524   336   2021-01-19 19:35   187.837524   336   2021-01-19 19:35   187.837524   336   2021-01-19 19:35   187.837524   336   2021-01-19 19:35   187.837524   336   2021-01-19 19:35   187.837524   336   2021-01-19 19:35   187.837524   336   2021-01-19 19:35   187.837524   336   2021-01-19 19:35   187.837524   336   2021-01-19 19:35   187.837524   336   2021-01-19 19:35   187.837524   336   2021-01-19 19:35   187.837524   336   2021-01-19 19:35   187.837524   336   2021-01-19 19:35   187.837524   336   2021-01-19 19:35   187.837524   336   2021-01-19 19:35   187.837524   336   2021-01-19 19:35   187.837524   336   2021-01-19 19:36   187.411191   336   2021-01-19 19:36   187.411191    |     |      |   |                  |            |
| 309   2021-01-19 19:09   198.743649   310   2021-01-19 19:10   198.568869   311   2021-01-19 19:11   198.041028   312   2021-01-19 19:12   197.74309   313   2021-01-19 19:13   197.285635   314   2021-01-19 19:13   197.285635   314   2021-01-19 19:15   196.68441   315   2021-01-19 19:15   196.214985   316   2021-01-19 19:16   195.768497   317   2021-01-19 19:17   195.164822   318   2021-01-19 19:17   195.164822   318   2021-01-19 19:17   195.164822   318   2021-01-19 19:19   194.376158   320   2021-01-19 19:20   193.393179   2021-01-19 19:20   193.393179   2021-01-19 19:21   194.376158   320   2021-01-19 19:22   193.47657   322   2021-01-19 19:22   193.476679   322   2021-01-19 19:22   193.476679   322   2021-01-19 19:22   193.167993   323   2021-01-19 19:22   193.167993   324   2021-01-19 19:22   193.167993   325   2021-01-19 19:22   193.167993   325   2021-01-19 19:24   192.237358   325   2021-01-19 19:26   191.61103   327   2021-01-19 19:26   191.61103   327   2021-01-19 19:26   191.61103   327   2021-01-19 19:26   191.61103   327   2021-01-19 19:27   191.058554   328   2021-01-19 19:28   190.740607   329   2021-01-19 19:28   190.740607   329   2021-01-19 19:32   190.523456   330   2021-01-19 19:33   188.612145   334   2021-01-19 19:33   188.612145   334   2021-01-19 19:33   188.612145   334   2021-01-19 19:33   188.612145   334   2021-01-19 19:35   187.837524   336   2021-01-19 19:35   187.837524   336   2021-01-19 19:35   187.837524   336   2021-01-19 19:35   187.837524   336   2021-01-19 19:35   187.837524   336   2021-01-19 19:35   187.837524   336   2021-01-19 19:35   187.837524   336   2021-01-19 19:35   187.837524   336   2021-01-19 19:35   187.837524   336   2021-01-19 19:35   187.837524   336   2021-01-19 19:35   187.837524   336   2021-01-19 19:35   187.837524   336   2021-01-19 19:35   187.837524   336   2021-01-19 19:35   187.837524   336   2021-01-19 19:35   187.837524   336   2021-01-19 19:36   187.419191   336   2021-01-19 19:36   187.419191   336   2021-01-19 19:36   187.419191   336   2021-   |     |      |   |                  |            |
| 310       2021-01-19 19:10       198.568869         311       2021-01-19 19:11       198.041028         312       2021-01-19 19:12       197.74309         313       2021-01-19 19:13       197.285635         314       2021-01-19 19:14       196.68441         315       2021-01-19 19:15       196.214985         316       2021-01-19 19:17       195.768497         317       2021-01-19 19:17       195.164822         318       2021-01-19 19:19       194.376158         320       2021-01-19 19:20       193.938179         321       2021-01-19 19:21       193.472607         322       2021-01-19 19:21       193.47693         323       2021-01-19 19:23       192.645109         324       2021-01-19 19:25       191.49099         325       2021-01-19 19:25       191.49099         326       2021-01-19 19:27       191.05854         328       2021-01-19 19:27       191.05854         328       2021-01-19 19:27       191.05854         330       2021-01-19 19:30       190.729578         331       2021-01-19 19:31       189.770217         332       2021-01-19 19:33       189.770217         333 <td>-</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -   |      |   |                  |            |
| 311       2021-01-19 19:11       198.041028         312       2021-01-19 19:12       197.74309         313       2021-01-19 19:13       197.285635         314       2021-01-19 19:15       196.214985         315       2021-01-19 19:15       196.214985         316       2021-01-19 19:16       195.768497         317       2021-01-19 19:17       195.164822         318       2021-01-19 19:19       194.376158         320       2021-01-19 19:19       194.376158         320       2021-01-19 19:20       193.938179         321       2021-01-19 19:21       193.472607         322       2021-01-19 19:22       193.167993         323       2021-01-19 19:22       193.167993         324       2021-01-19 19:23       192.237358         325       2021-01-19 19:24       192.237358         325       2021-01-19 19:25       191.94090         326       2021-01-19 19:26       191.61103         327       2021-01-19 19:26       191.61103         328       2021-01-19 19:28       190.740607         329       2021-01-19 19:29       190.523456         330       2021-01-19 19:30       189.17927         331<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      |   |                  |            |
| 312       2021-01-19 19:12       197.74309         313       2021-01-19 19:13       197.285635         314       2021-01-19 19:14       196.68441         315       2021-01-19 19:15       196.214985         316       2021-01-19 19:17       195.768497         317       2021-01-19 19:17       195.164822         318       2021-01-19 19:18       194.774654         319       2021-01-19 19:20       193.938179         320       2021-01-19 19:21       193.472607         322       2021-01-19 19:22       193.167993         323       2021-01-19 19:22       193.167993         323       2021-01-19 19:22       193.167993         324       2021-01-19 19:24       192.237358         325       2021-01-19 19:24       192.237358         326       2021-01-19 19:26       191.61103         327       2021-01-19 19:26       191.61103         328       2021-01-19 19:27       191.058554         328       2021-01-19 19:29       190.523456         330       2021-01-19 19:31       189.770217         332       2021-01-19 19:31       189.770217         333       2021-01-19 19:31       189.770217         334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      |   | <del>-</del>     |            |
| 313       2021-01-19 19:13       197.285635         314       2021-01-19 19:14       196.68441         315       2021-01-19 19:15       196.214985         316       2021-01-19 19:16       195.768497         317       2021-01-19 19:17       195.164822         318       2021-01-19 19:18       194.724654         319       2021-01-19 19:19       194.376158         320       2021-01-19 19:20       193.938179         321       2021-01-19 19:21       193.472607         322       2021-01-19 19:21       193.472607         322       2021-01-19 19:22       193.167993         323       2021-01-19 19:22       193.472607         324       2021-01-19 19:23       192.645109         324       2021-01-19 19:23       192.237358         325       2021-01-19 19:25       191.61103         327       2021-01-19 19:26       191.61103         328       2021-01-19 19:27       191.058554         328       2021-01-19 19:29       190.523456         330       2021-01-19 19:30       190.129578         331       2021-01-19 19:31       189.093337         332       2021-01-19 19:31       189.093337         33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -   |      |   |                  |            |
| 314       2021-01-19 19:14       196.68441         315       2021-01-19 19:15       196.214985         316       2021-01-19 19:16       195.768497         317       2021-01-19 19:17       195.164822         318       2021-01-19 19:18       194.724654         319       2021-01-19 19:19       194.376158         320       2021-01-19 19:20       193.938179         321       2021-01-19 19:21       193.472607         322       2021-01-19 19:22       193.167993         323       2021-01-19 19:22       193.167993         324       2021-01-19 19:23       192.645109         325       2021-01-19 19:24       192.237358         325       2021-01-19 19:25       191.94009         326       2021-01-19 19:26       191.6103         327       2021-01-19 19:26       191.6103         327       2021-01-19 19:28       190.740607         329       2021-01-19 19:28       190.740607         329       2021-01-19 19:30       190.129578         331       2021-01-19 19:31       189.07337         332       2021-01-19 19:31       189.09337         333       2021-01-19 19:33       188.612145         334 <td></td> <td></td> <td></td> <td><del>-</del></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |      |   | <del>-</del>     |            |
| 315       2021-01-19 19:15       196.214985         316       2021-01-19 19:16       195.768497         317       2021-01-19 19:17       195.164822         318       2021-01-19 19:18       194.724654         319       2021-01-19 19:21       193.938179         320       2021-01-19 19:20       193.938179         321       2021-01-19 19:21       193.472607         322       2021-01-19 19:22       193.167993         323       2021-01-19 19:22       193.167993         324       2021-01-19 19:24       192.237588         325       2021-01-19 19:24       192.237588         326       2021-01-19 19:25       191.61103         327       2021-01-19 19:26       191.65103         327       2021-01-19 19:27       191.058554         328       2021-01-19 19:28       190.740607         329       2021-01-19 19:28       190.72578         331       2021-01-19 19:31       189.070217         332       2021-01-19 19:31       189.07337         333       2021-01-19 19:31       189.070217         334       2021-01-19 19:33       188.612145         334       2021-01-19 19:35       187.419191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -   |      |   |                  |            |
| 316       2021-01-19 19:16       195.768497         317       2021-01-19 19:17       195.164822         318       2021-01-19 19:18       194.724654         319       2021-01-19 19:19       194.376158         320       2021-01-19 19:20       193.938179         321       2021-01-19 19:21       193.472607         322       2021-01-19 19:22       193.167993         323       2021-01-19 19:23       192.645109         324       2021-01-19 19:24       192.237358         325       2021-01-19 19:25       191.940909         326       2021-01-19 19:25       191.61103         327       2021-01-19 19:27       191.058554         328       2021-01-19 19:28       190.740607         329       2021-01-19 19:28       190.740607         329       2021-01-19 19:30       190.129578         330       2021-01-19 19:31       189.770217         331       2021-01-19 19:33       188.612145         334       2021-01-19 19:33       188.612145         334       2021-01-19 19:35       187.837524         336       2021-01-19 19:35       187.837524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |      |   |                  |            |
| 317       2021-01-19 19:17       195.164822         318       2021-01-19 19:18       194.724654         319       2021-01-19 19:19       194.376158         320       2021-01-19 19:20       193.938179         321       2021-01-19 19:21       193.472607         322       2021-01-19 19:22       193.167993         323       2021-01-19 19:23       192.645109         324       2021-01-19 19:24       192.237358         325       2021-01-19 19:25       191.940909         326       2021-01-19 19:26       191.61103         327       2021-01-19 19:27       191.058554         328       2021-01-19 19:28       190.740607         329       2021-01-19 19:29       190.523456         330       2021-01-19 19:30       190.129578         331       2021-01-19 19:31       189.770217         332       2021-01-19 19:31       189.770217         333       2021-01-19 19:31       188.612145         334       2021-01-19 19:34       188.144172         335       2021-01-19 19:35       187.837524         336       2021-01-19 19:35       187.837524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |      |   | <del> </del>     |            |
| 318       2021-01-19 19:18       194.724654         319       2021-01-19 19:19       194.376158         320       2021-01-19 19:20       193.938179         321       2021-01-19 19:21       193.472607         322       2021-01-19 19:22       193.167993         323       2021-01-19 19:23       192.645109         324       2021-01-19 19:24       192.237358         325       2021-01-19 19:25       191.940909         326       2021-01-19 19:26       191.61103         327       2021-01-19 19:26       191.05153         328       2021-01-19 19:28       190.740607         329       2021-01-19 19:29       190.523456         330       2021-01-19 19:30       190.129578         331       2021-01-19 19:31       189.770217         332       2021-01-19 19:32       189.093337         333       2021-01-19 19:33       188.612145         334       2021-01-19 19:34       188.144172         335       2021-01-19 19:35       187.837524         336       2021-01-19 19:35       187.419191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |   |                  |            |
| 319       2021-01-19 19:19       194.376158         320       2021-01-19 19:20       193.938179         321       2021-01-19 19:21       193.472607         322       2021-01-19 19:22       193.167993         323       2021-01-19 19:23       192.645109         324       2021-01-19 19:24       192.237358         325       2021-01-19 19:25       191.940909         326       2021-01-19 19:26       191.61103         327       2021-01-19 19:27       191.058554         328       2021-01-19 19:28       190.740607         329       2021-01-19 19:29       190.523456         330       2021-01-19 19:30       190.129578         331       2021-01-19 19:31       188.770217         332       2021-01-19 19:31       188.770217         333       2021-01-19 19:33       188.612145         334       2021-01-19 19:34       188.144172         335       2021-01-19 19:35       187.837524         336       2021-01-19 19:36       187.419191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |      |   | <del> </del>     |            |
| 320       2021-01-19 19:20       193.938179         321       2021-01-19 19:21       193.472607         322       2021-01-19 19:22       193.167993         323       2021-01-19 19:23       192.645109         324       2021-01-19 19:24       192.237358         325       2021-01-19 19:25       191.940909         326       2021-01-19 19:26       191.61103         327       2021-01-19 19:27       191.058554         328       2021-01-19 19:28       190.740607         329       2021-01-19 19:29       190.523456         330       2021-01-19 19:30       190.129578         331       2021-01-19 19:31       189.770217         332       2021-01-19 19:31       189.093337         333       2021-01-19 19:32       189.093337         334       2021-01-19 19:34       188.612145         334       2021-01-19 19:35       187.837524         336       2021-01-19 19:35       187.837524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |      |   |                  |            |
| 321       2021-01-19 19:21       193.472607         322       2021-01-19 19:22       193.167993         323       2021-01-19 19:23       192.645109         324       2021-01-19 19:24       192.237358         325       2021-01-19 19:25       191.940909         326       2021-01-19 19:26       191.61103         327       2021-01-19 19:27       191.058554         328       2021-01-19 19:28       190.740607         329       2021-01-19 19:29       190.523456         330       2021-01-19 19:30       190.129578         331       2021-01-19 19:31       189.770217         332       2021-01-19 19:32       189.093337         333       2021-01-19 19:33       188.612145         334       2021-01-19 19:34       188.144172         335       2021-01-19 19:35       187.837524         336       2021-01-19 19:36       187.419191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |      |   |                  |            |
| 322       2021-01-19 19:22       193.167993         323       2021-01-19 19:23       192.645109         324       2021-01-19 19:24       192.237358         325       2021-01-19 19:25       191.940909         326       2021-01-19 19:26       191.61103         327       2021-01-19 19:27       191.058554         328       2021-01-19 19:28       190.740607         329       2021-01-19 19:29       190.523456         330       2021-01-19 19:30       190.129578         331       2021-01-19 19:31       189.770217         332       2021-01-19 19:32       189.093337         333       2021-01-19 19:33       188.612145         334       2021-01-19 19:34       188.144172         335       2021-01-19 19:35       187.837524         336       2021-01-19 19:36       187.419191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |      |   |                  |            |
| 323       2021-01-19 19:23       192.645109         324       2021-01-19 19:24       192.237358         325       2021-01-19 19:25       191.940909         326       2021-01-19 19:26       191.61103         327       2021-01-19 19:27       191.058554         328       2021-01-19 19:28       190.740607         329       2021-01-19 19:29       190.523456         330       2021-01-19 19:30       190.129578         331       2021-01-19 19:31       189.770217         332       2021-01-19 19:32       189.093337         333       2021-01-19 19:33       188.612145         334       2021-01-19 19:34       188.144172         335       2021-01-19 19:35       187.837524         336       2021-01-19 19:36       187.419191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |      |   |                  |            |
| 324       2021-01-19 19:24       192.237358         325       2021-01-19 19:25       191.940909         326       2021-01-19 19:26       191.61103         327       2021-01-19 19:27       191.058554         328       2021-01-19 19:28       190.740607         329       2021-01-19 19:29       190.523456         330       2021-01-19 19:30       190.129578         331       2021-01-19 19:31       189.770217         332       2021-01-19 19:32       189.093337         333       2021-01-19 19:33       188.612145         334       2021-01-19 19:34       188.144172         335       2021-01-19 19:35       187.837524         336       2021-01-19 19:36       187.419191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |      |   |                  |            |
| 325       2021-01-19 19:25       191.940909         326       2021-01-19 19:26       191.61103         327       2021-01-19 19:27       191.058554         328       2021-01-19 19:28       190.740607         329       2021-01-19 19:29       190.523456         330       2021-01-19 19:30       190.129578         331       2021-01-19 19:31       189.770217         332       2021-01-19 19:32       189.093337         333       2021-01-19 19:33       188.612145         334       2021-01-19 19:34       188.144172         335       2021-01-19 19:35       187.837524         336       2021-01-19 19:36       187.419191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |      |   |                  |            |
| 326       2021-01-19 19:26       191.61103         327       2021-01-19 19:27       191.058554         328       2021-01-19 19:28       190.740607         329       2021-01-19 19:29       190.523456         330       2021-01-19 19:30       190.129578         331       2021-01-19 19:31       189.770217         332       2021-01-19 19:32       189.093337         333       2021-01-19 19:33       188.612145         334       2021-01-19 19:34       188.144172         335       2021-01-19 19:35       187.837524         336       2021-01-19 19:36       187.419191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |      |   | <del>-</del>     |            |
| 327       2021-01-19 19:27       191.058554         328       2021-01-19 19:28       190.740607         329       2021-01-19 19:29       190.523456         330       2021-01-19 19:30       190.129578         331       2021-01-19 19:31       189.770217         332       2021-01-19 19:32       189.093337         333       2021-01-19 19:33       188.612145         334       2021-01-19 19:34       188.144172         335       2021-01-19 19:35       187.837524         336       2021-01-19 19:36       187.419191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |   |                  |            |
| 328       2021-01-19 19:28       190.740607         329       2021-01-19 19:29       190.523456         330       2021-01-19 19:30       190.129578         331       2021-01-19 19:31       189.770217         332       2021-01-19 19:32       189.093337         333       2021-01-19 19:33       188.612145         334       2021-01-19 19:34       188.144172         335       2021-01-19 19:35       187.837524         336       2021-01-19 19:36       187.419191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |      |   |                  |            |
| 329       2021-01-19 19:29       190.523456         330       2021-01-19 19:30       190.129578         331       2021-01-19 19:31       189.770217         332       2021-01-19 19:32       189.093337         333       2021-01-19 19:33       188.612145         334       2021-01-19 19:34       188.144172         335       2021-01-19 19:35       187.837524         336       2021-01-19 19:36       187.419191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |      |   |                  |            |
| 330       2021-01-19 19:30       190.129578         331       2021-01-19 19:31       189.770217         332       2021-01-19 19:32       189.093337         333       2021-01-19 19:33       188.612145         334       2021-01-19 19:34       188.144172         335       2021-01-19 19:35       187.837524         336       2021-01-19 19:36       187.419191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      |   |                  |            |
| 331       2021-01-19 19:31       189.770217         332       2021-01-19 19:32       189.093337         333       2021-01-19 19:33       188.612145         334       2021-01-19 19:34       188.144172         335       2021-01-19 19:35       187.837524         336       2021-01-19 19:36       187.419191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |   |                  |            |
| 332     2021-01-19 19:32     189.093337       333     2021-01-19 19:33     188.612145       334     2021-01-19 19:34     188.144172       335     2021-01-19 19:35     187.837524       336     2021-01-19 19:36     187.419191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |   |                  |            |
| 333     2021-01-19 19:33     188.612145       334     2021-01-19 19:34     188.144172       335     2021-01-19 19:35     187.837524       336     2021-01-19 19:36     187.419191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |   |                  |            |
| 334     2021-01-19 19:34     188.144172       335     2021-01-19 19:35     187.837524       336     2021-01-19 19:36     187.419191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      |   |                  |            |
| 335     2021-01-19 19:35     187.837524       336     2021-01-19 19:36     187.419191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |      |   |                  | 188.612145 |
| 336 2021-01-19 19:36 187.419191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |   |                  | 188.144172 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |   | 2021-01-19 19:35 | 187.837524 |
| 337 2021-01-19 19:37 186.801601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 336 | <br> |   | 2021-01-19 19:36 | 187.419191 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 337 | <br> |   | 2021-01-19 19:37 | 186.801601 |

| 338 |  |  | 2021-01-19 19:38 | 186.498466 |
|-----|--|--|------------------|------------|
| 339 |  |  | 2021-01-19 19:39 | 186.041349 |
| 340 |  |  | 2021-01-19 19:40 | 185.628795 |

#### 2.1 Series Pre-burn Data

2021-01-21

Total time (h)

8.67

| Load time        | Load type      | Fuel added | Moisture |                    | Time  |
|------------------|----------------|------------|----------|--------------------|-------|
| (-)              | (-)            | (lbs)      | (%)      |                    | (min) |
| 2021-01-21 11:09 | Kindling & SUF | 5.59       | 16.4     | Pre-Charge (min)   | 169   |
| 2021-01-21 11:36 | High fire      | 12.04      | 20.7     | Conditioning (min) | 1     |
| 2021-01-21 13:59 | Medium fire    | 14.44      | 19 3     | Load (min)         | 350   |

|         | Pre-Charge (min) | 169         | Conditioning (min) | 1          | Load (min)       | 350        |
|---------|------------------|-------------|--------------------|------------|------------------|------------|
| Minutes | Date & Time      | Flue (F)    | Date & Time        | Flue (F)   | Date & Time      | Flue (F)   |
| 1       | 2021-01-21 11:09 | 129.8430609 | 2021-01-21 13:58   | 306.032455 | 2021-01-21 13:59 | 305.562154 |
| 2       | 2021-01-21 11:10 | 188.8214097 |                    |            | 2021-01-21 14:00 | 298.407759 |
| 3       | 2021-01-21 11:11 | 271.9269523 |                    |            | 2021-01-21 14:01 | 279.418155 |
| 4       | 2021-01-21 11:12 | 338.230932  |                    |            | 2021-01-21 14:02 | 279.137167 |
| 5       | 2021-01-21 11:13 | 384.7765793 |                    |            | 2021-01-21 14:03 | 287.710793 |
| 6       | 2021-01-21 11:14 | 416.4914304 |                    |            | 2021-01-21 14:04 | 315.557159 |
| 7       | 2021-01-21 11:15 | 440.1193196 |                    |            | 2021-01-21 14:05 | 333.61945  |
| 8       | 2021-01-21 11:16 | 465.3337109 |                    |            | 2021-01-21 14:06 | 344.523015 |
| 9       | 2021-01-21 11:17 | 496.3521171 |                    |            | 2021-01-21 14:07 | 350.801454 |
| 10      | 2021-01-21 11:18 | 516.2781744 |                    |            | 2021-01-21 14:08 | 355.199229 |
| 11      | 2021-01-21 11:19 | 525.4556646 |                    |            | 2021-01-21 14:09 | 360.437669 |
| 12      | 2021-01-21 11:20 | 529.3363942 |                    |            | 2021-01-21 14:10 | 368.709469 |
| 13      | 2021-01-21 11:21 | 538.3515312 |                    |            | 2021-01-21 14:11 | 380.902445 |
| 14      | 2021-01-21 11:22 | 543.1895759 |                    |            | 2021-01-21 14:12 | 396.947592 |
| 15      | 2021-01-21 11:23 | 543.1449038 |                    |            | 2021-01-21 14:13 | 413.632375 |
| 16      | 2021-01-21 11:24 | 542.7492886 |                    |            | 2021-01-21 14:14 | 422.161315 |
| 17      | 2021-01-21 11:25 | 543.0059535 |                    |            | 2021-01-21 14:15 | 426.328592 |
| 18      | 2021-01-21 11:26 | 544.8587295 |                    |            | 2021-01-21 14:16 | 420.240646 |
| 19      | 2021-01-21 11:27 | 546.7310584 |                    |            | 2021-01-21 14:17 | 414.741144 |
| 20      | 2021-01-21 11:28 | 546.059949  |                    |            | 2021-01-21 14:18 | 414.070647 |
| 21      | 2021-01-21 11:29 | 544.1187645 |                    |            | 2021-01-21 14:19 | 413.983602 |
| 22      | 2021-01-21 11:30 | 544.5340463 |                    |            | 2021-01-21 14:20 | 412.617837 |
| 23      | 2021-01-21 11:31 | 539.5651277 |                    |            | 2021-01-21 14:21 | 411.180033 |
| 24      | 2021-01-21 11:32 | 530.9215603 |                    |            | 2021-01-21 14:22 | 411.243545 |
| 25      | 2021-01-21 11:33 | 519.5263071 |                    |            | 2021-01-21 14:23 | 413.297298 |
| 26      | 2021-01-21 11:34 | 507.7178196 |                    |            | 2021-01-21 14:24 | 414.19595  |
| 27      | 2021-01-21 11:35 | 499.3677607 |                    |            | 2021-01-21 14:25 | 415.780312 |
| 28      | 2021-01-21 11:36 | 481.9912307 |                    |            | 2021-01-21 14:26 | 417.979289 |
| 29      | 2021-01-21 11:37 | 447.9471881 |                    |            | 2021-01-21 14:27 | 422.233722 |
| 30      | 2021-01-21 11:38 | 446.7485058 |                    |            | 2021-01-21 14:28 | 430.293491 |
| 31      | 2021-01-21 11:39 | 472.7458514 |                    |            | 2021-01-21 14:29 | 440.332183 |
| 32      | 2021-01-21 11:40 | 501.0092943 |                    |            | 2021-01-21 14:30 | 451.344592 |
| 33      | 2021-01-21 11:41 | 522.7004197 |                    |            | 2021-01-21 14:31 | 459.456158 |
| 34      | 2021-01-21 11:42 | 539.322026  |                    |            | 2021-01-21 14:32 | 464.45535  |
| 35      | 2021-01-21 11:43 | 552.1898874 |                    |            | 2021-01-21 14:33 | 467.44296  |
| 36      |                  |             |                    |            | 2021-01-21 14:34 |            |
| 37      |                  | 564.4573981 |                    |            | 2021-01-21 14:35 | 472.131566 |
| 38      |                  | 567.8493687 |                    |            | 2021-01-21 14:36 | 475.157477 |
| 39      |                  | 570.3913662 |                    |            | 2021-01-21 14:37 | 477.631425 |
| 40      |                  |             |                    |            | 2021-01-21 14:38 | 478.411941 |
| 41      | 2021-01-21 11:49 |             |                    |            | 2021-01-21 14:39 | 479.320223 |
| 42      | 2021-01-21 11:50 | 572.245388  |                    |            | 2021-01-21 14:40 | 480.77148  |
| 43      | 2021-01-21 11:51 | 571.645473  |                    |            | 2021-01-21 14:41 | 481.611565 |
| 44      | 2021-01-21 11:52 |             |                    |            | 2021-01-21 14:42 | 483.992251 |
| 45      |                  |             |                    |            | 2021-01-21 14:43 | 484.794876 |
| 46      |                  |             |                    |            | 2021-01-21 14:44 | 486.166439 |
| 47      | 2021-01-21 11:55 | 566.8884153 |                    |            | 2021-01-21 14:45 | 486.334086 |

| 48  | 2021-01-21 11:56 | 565.1734525 | 2021-01-21 14:46 | 486.348953 |
|-----|------------------|-------------|------------------|------------|
| 49  | 2021-01-21 11:57 | 564.6382697 | 2021-01-21 14:47 | 486.856011 |
| 50  | 2021-01-21 11:58 | 562.4408868 | 2021-01-21 14:48 | 486.907306 |
| 51  | 44217.49998      | 559.8836357 | 2021-01-21 14:49 | 486.001401 |
| 52  | 44217.50067      | 557.8822022 | 2021-01-21 14:50 | 484.506181 |
| 53  | 44217.50137      | 556.3420972 | 2021-01-21 14:51 | 482.563489 |
| 54  | 44217.50206      | 555.6462117 | 2021-01-21 14:52 | 480.842465 |
| 55  | 44217.50275      | 555.0170904 | 2021-01-21 14:53 | 479.503408 |
| 56  | 44217.50345      | 553.857624  | 2021-01-21 14:54 | 477.610192 |
| 57  | 44217.50414      | 552.4582713 | 2021-01-21 14:55 | 476.026405 |
| 58  | 44217.50484      | 551.7439916 | 2021-01-21 14:56 | 474.632478 |
| 59  | 44217.50553      | 551.0156448 | 2021-01-21 14:57 | 472.243663 |
| 60  | 44217.50623      | 549.4270103 | 2021-01-21 14:58 | 469.901586 |
| 61  | 44217.50692      | 549.1851912 | 2021-01-21 14:59 | 467.867996 |
| 62  | 44217.50762      | 547.9836713 | 2021-01-21 15:00 | 466.160467 |
| 63  | 44217.50831      | 547.3690159 | 2021-01-21 15:01 | 464.798595 |
| 64  | 44217.509        | 547.2663346 | 2021-01-21 15:02 | 463.758464 |
| 65  | 44217.5097       | 546.178793  | 2021-01-21 15:03 | 462.66118  |
| 66  | 44217.51039      | 545.7913639 | 2021-01-21 15:04 | 461.266623 |
| 67  | 44217.51109      | 545.8676576 | 2021-01-21 15:05 | 459.765417 |
| 68  | 44217.51178      | 545.9236359 | 2021-01-21 15:06 | 458.818946 |
| 69  | 44217.51248      | 546.4472654 | 2021-01-21 15:07 | 457.759095 |
| 70  | 44217.51317      | 546.0146124 | 2021-01-21 15:08 | 456.637837 |
| 71  | 44217.51387      | 545.1105413 | 2021-01-21 15:09 | 455.518522 |
| 72  | 44217.51456      | 543.705623  | 2021-01-21 15:10 | 454.88346  |
| 73  | 44217.51525      | 542.1694568 | 2021-01-21 15:11 | 454.753595 |
| 74  | 44217.51595      | 539.485893  | 2021-01-21 15:12 | 455.58873  |
| 75  | 44217.51664      | 537.1272296 | 2021-01-21 15:13 | 456.254888 |
| 76  | 44217.51734      | 535.5267667 | 2021-01-21 15:14 | 455.632985 |
| 77  | 44217.51803      | 531.9314079 | 2021-01-21 15:15 | 454.515186 |
| 78  | 44217.51873      | 527.7617481 | 2021-01-21 15:16 | 453.681855 |
| 79  | 44217.51942      | 524.3454665 | 2021-01-21 15:17 | 451.886817 |
| 80  | 44217.52012      | 520.0602686 | 2021-01-21 15:18 | 449.104344 |
| 81  | 44217.52081      | 517.3613306 | 2021-01-21 15:19 | 444.518225 |
| 82  | 44217.5215       | 514.2205871 | 2021-01-21 15:20 | 438.980769 |
| 83  | 44217.5222       | 512.1106122 | 2021-01-21 15:21 | 433.534067 |
| 84  | 44217.52289      | 509.6737205 | 2021-01-21 15:22 | 427.919071 |
| 85  | 44217.52359      | 507.1321503 | 2021-01-21 15:23 | 423.001816 |
| 86  | 44217.52428      | 504.0224627 | 2021-01-21 15:24 | 418.640222 |
| 87  | 44217.52498      | 498.1980515 | 2021-01-21 15:25 | 414.94972  |
| 88  | 44217.52567      | 492.4369131 | 2021-01-21 15:26 | 411.185716 |
| 89  | 44217.52637      | 486.9111146 | 2021-01-21 15:27 | 407.563221 |
| 90  | 44217.52706      | 482.4934151 | 2021-01-21 15:28 | 404.506122 |
| 91  | 44217.52775      | 478.6599598 | 2021-01-21 15:29 | 401.291514 |
| 92  | 44217.52845      | 474.6671896 | 2021-01-21 15:30 | 397.138023 |
| 93  | 44217.52914      | 471.4168806 | 2021-01-21 15:31 | 393.515729 |
| 94  | 44217.52984      | 467.6895094 | 2021-01-21 15:32 | 390.428929 |
| 95  | 44217.53053      | 464.5813116 | 2021-01-21 15:33 | 387.306325 |
| 96  | 44217.53123      | 461.340274  | 2021-01-21 15:34 | 383.794567 |
| 97  | 44217.53192      | 457.8540385 | 2021-01-21 15:35 | 380.779361 |
| 98  | 44217.53262      | 454.5221425 | 2021-01-21 15:36 | 377.939853 |
| 99  | 44217.53331      | 451.2799238 | 2021-01-21 15:37 | 374.568086 |
| 100 | 44217.534        | 447.7338548 | 2021-01-21 15:38 | 371.336518 |
| 101 | 44217.5347       | 444.1702272 | 2021-01-21 15:39 | 367.623233 |
| 102 | 44217.53539      | 441.1755451 | 2021-01-21 15:40 | 362.815511 |
| 103 | 44217.53609      | 438.7943987 | 2021-01-21 15:41 | 358.588684 |
| 104 | 44217.53678      | 435.4556416 | 2021-01-21 15:42 | 354.260304 |
| 105 | 44217.53748      | 432.9643625 | 2021-01-21 15:43 | 349.917426 |
|     | I                |             |                  |            |

| 106   44217.53817   4224.0433791   2021.01.21.544   345.638117   107   44217.53956   422.9869605   2021.01.21.545   388.946221   388.946221   2021.01.21.546   388.946221   2021.01.21.546   388.946221   2021.01.21.546   388.946221   2021.01.21.546   388.946221   2021.01.21.546   388.946221   2021.01.21.548   338.951279   2021.01.21.548   338.951279   2021.01.21.548   338.951279   2021.01.21.548   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.559   2021.01.21.55 |     |             |             |                  |            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------|-------------|------------------|------------|
| 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 106 | 44217.53817 | 429.4033791 | 2021-01-21 15:44 | 345.633117 |
| 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 107 | 44217.53887 | 425.8235172 | 2021-01-21 15:45 | 341.935097 |
| 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 108 | 44217.53956 | 422.9869605 | 2021-01-21 15:46 | 338.946221 |
| 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109 | 44217.54025 | 420.1669901 | 2021-01-21 15:47 | 335.915279 |
| 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110 | 44217.54095 | 417.6196663 | 2021-01-21 15:48 | 333.057183 |
| 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 111 | 44217.54164 | 415.4297277 | 2021-01-21 15:49 | 329.800372 |
| 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 112 | 44217.54234 | 413.1494435 | 2021-01-21 15:50 | 326.415357 |
| 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 113 | 44217.54303 | 410.4981627 | 2021-01-21 15:51 | 322.44045  |
| 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 114 | 44217.54373 | 407.4053688 | 2021-01-21 15:52 | 318.314236 |
| 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 115 | 44217.54442 | 404.6586405 | 2021-01-21 15:53 | 313.454351 |
| 118         44217.5465         397.6333765         2021-01-21 15:56         302.15049           119         44217.5472         395.1568015         2021-01-21 15:57         298.965556           120         44217.54789         392.5118794         2021-01-21 15:59         298.965556           121         44217.54928         387.9618235         2021-01-21 16:00         291.078667           122         44217.54928         387.9618235         2021-01-21 16:00         291.078667           123         44217.55967         383.8788265         2021-01-21 16:01         288.485615           124         44217.55167         383.8788865         2021-01-21 16:02         286.078084           125         44217.5517         383.8788865         2021-01-21 16:02         286.078084           126         44217.5517         383.8788865         2021-01-21 16:02         286.078084           127         44217.55275         388.074866         2021-01-21 16:05         279.418162           128         44217.55414         375.1530878         2021-01-21 16:06         279.418162           129         44217.55444         375.1530878         2021-01-21 16:07         275.848921           130         44217.55563         377.0742391         2021-01-21 16:07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 116 | 44217.54512 | 402.4743502 | 2021-01-21 15:54 | 309.02867  |
| 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 117 | 44217.54581 | 400.436326  | 2021-01-21 15:55 | 305.326243 |
| 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 118 | 44217.5465  | 397.6333765 | 2021-01-21 15:56 | 302.155049 |
| 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 119 | 44217.5472  | 395.1568015 | 2021-01-21 15:57 | 298.965556 |
| 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120 | 44217.54789 | 392.5118794 | 2021-01-21 15:58 | 296.239935 |
| 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 121 | 44217.54859 | 389.8783236 | 2021-01-21 15:59 | 293.688915 |
| 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 122 | 44217.54928 | 387.9618235 | 2021-01-21 16:00 | 291.078667 |
| 124   44217.55067   383.8788865   2021-01-2116:03   286.078084   125   44217.55137   381.8548304   2021-01-2116:04   281.361099   126   44217.55275   380.3169097   2021-01-2116:04   281.361099   127   44217.55275   378.074846   2021-01-2116:06   277.473699   129   44217.55414   375.1530878   2021-01-2116:06   277.473699   129   44217.55414   375.1530878   2021-01-2116:07   275.848921   130   44217.5544   375.1530878   2021-01-2116:07   275.848921   131   44217.55523   370.7442391   2021-01-2116:01   271.571955   133   44217.55623   370.7442391   2021-01-2116:10   271.571955   133   44217.55623   369.1238821   2021-01-2116:10   270.395234   42217.55623   369.1238821   2021-01-2116:11   270.395234   42217.5562   369.1238821   2021-01-2116:11   270.395234   135   44217.55562   369.1238821   2021-01-2116:11   269.435937   135   44217.5593   366.3939617   2021-01-2116:12   269.435937   135   44217.5593   366.3638686   2021-01-2116:14   267.371558   137   44217.5593   362.052651   2021-01-2116:14   267.371558   137   44217.5593   360.871268   2021-01-2116:14   267.371558   138   44217.56039   360.871268   2021-01-2116:16   265.50159   139   44217.56109   359.6630831   2021-01-2116:16   265.50159   139   44217.56178   358.0385651   2021-01-2116:17   264.802258   140   44217.56178   358.0385651   2021-01-2116:19   263.181981   142   44217.56387   351.0480833   2021-01-2116:21   261.72455   144   44217.56387   351.0480833   2021-01-2116:21   261.72455   144   44217.56387   351.0480833   2021-01-2116:22   261.072436   44217.56387   344.045499   2021-01-2116:22   261.072436   144   44217.56664   348.4045499   2021-01-2116:22   261.072436   144   44217.56664   348.4045499   2021-01-2116:22   261.072436   144   44217.56664   348.4045499   2021-01-2116:22   261.072436   144   44217.56664   348.4045499   2021-01-2116:24   262.258.92479   146   44217.56664   344.802858   360.0914342   2021-01-2116:24   262.258.92479   146   44217.56942   334.42387875   2021-01-2116:24   259.859278   148   44217.57963   334.028646   2021-01-2 | 123 | 44217.54998 |             | 2021-01-21 16:01 | 288.485615 |
| 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 124 | 44217.55067 |             | 2021-01-21 16:02 | 286.078084 |
| 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 125 |             | 381.8548304 | 2021-01-21 16:03 | 283.536294 |
| 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 126 | 44217.55206 |             | 2021-01-21 16:04 | 281.361099 |
| 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 127 |             | 378.074846  | 2021-01-21 16:05 | 279.418162 |
| 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 128 |             | 376.8468767 | 2021-01-21 16:06 | 277.473699 |
| 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 129 | 44217.55414 | 375.1530878 | 2021-01-21 16:07 | 275.848921 |
| 132       44217.55623       370.7442391       2021-01-21 16:10       271.571955         133       44217.55692       369.1238821       2021-01-21 16:11       270.395234         134       44217.55762       366.9309617       2021-01-21 16:12       269.435937         135       44217.55831       365.5022031       2021-01-21 16:13       268.543291         136       44217.5599       363.6818826       2021-01-21 16:14       267.371558         137       44217.5597       362.1052651       2021-01-21 16:15       266.49293         138       44217.56039       360.8717268       2021-01-21 16:16       265.50159         139       44217.56178       358.0385651       2021-01-21 16:18       263.773028         140       44217.56178       358.0385651       2021-01-21 16:19       263.18181         142       44217.56248       356.2338832       2021-01-21 16:19       263.18181         142       44217.56347       354.3620605       2021-01-21 16:21       261.72455         144       44217.56387       351.0480833       2021-01-21 16:22       261.072436         145       44217.56456       348.4045499       2021-01-21 16:22       261.072436         145       44217.56525       346.0605618 <td< td=""><td>130</td><td>44217.55484</td><td>374.0787502</td><td>2021-01-21 16:08</td><td>274.568884</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 130 | 44217.55484 | 374.0787502 | 2021-01-21 16:08 | 274.568884 |
| 133       44217.55692       369.1238821       2021-01-21 16:11       270.395234         134       44217.55762       366.9309617       2021-01-21 16:12       269.435937         135       44217.55831       365.5022031       2021-01-21 16:13       268.543291         136       44217.5597       363.6818826       2021-01-21 16:15       266.543293         137       44217.55039       360.8717268       2021-01-21 16:15       266.492393         138       44217.56039       359.6630831       2021-01-21 16:16       265.50159         139       44217.56179       359.6630831       2021-01-21 16:16       265.50159         140       44217.56178       358.0385651       2021-01-21 16:18       263.773028         141       44217.56248       356.2338832       2021-01-21 16:19       263.181981         142       44217.56317       354.3620605       2021-01-21 16:20       262.479018         143       44217.56456       348.4045499       2021-01-21 16:22       261.072436         145       44217.56555       344.0286446       2021-01-21 16:22       261.072436         146       44217.56643       341.9892871       2021-01-21 16:22       258.362189         147       44217.56734       340.1576938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 131 | 44217.55553 | 372.2333412 | 2021-01-21 16:09 | 273.060182 |
| 134         44217.55762         366.9309617         2021-01-21 16:12         269.435937           135         44217.55831         365.5022031         2021-01-21 16:13         268.543291           136         44217.5597         362.1052651         2021-01-21 16:15         266.492393           137         44217.56039         360.8717268         2021-01-21 16:16         265.50159           139         44217.56109         359.6630831         2021-01-21 16:17         264.802258           140         44217.56178         358.0385651         2021-01-21 16:19         263.773028           141         44217.56373         354.3620605         2021-01-21 16:20         262.479018           143         44217.56387         351.0480833         2021-01-21 16:21         261.72455           144         44217.56456         348.4045499         2021-01-21 16:22         261.072436           145         44217.565525         346.0605618         2021-01-21 16:23         260.27707           146         44217.56664         341.9892871         2021-01-21 16:24         259.249229           147         44217.56664         341.9892871         2021-01-21 16:27         258.862189           149         44217.56734         340.1576938         2021-01-21 16:29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 132 | 44217.55623 | 370.7442391 | 2021-01-21 16:10 | 271.571955 |
| 135         44217.55831         365.5022031         2021-01-21 16:13         268.543291           136         44217.5597         363.6818826         2021-01-21 16:14         267.371558           137         44217.5597         362.1052651         2021-01-21 16:16         266.92393           138         44217.56039         360.8717268         2021-01-21 16:16         265.50159           139         44217.56109         359.6630831         2021-01-21 16:17         264.802258           140         44217.56178         358.0385651         2021-01-21 16:18         263.773028           141         44217.56248         356.233832         2021-01-21 16:20         262.479018           142         44217.56373         354.3620605         2021-01-21 16:21         261.72455           144         44217.56456         348.4045499         2021-01-21 16:22         261.072436           145         44217.56525         346.0605618         2021-01-21 16:22         260.227707           146         44217.566523         344.0286446         2021-01-21 16:24         259.249229           147         44217.56664         341.9892871         2021-01-21 16:25         258.929758           148         44217.56603         337.9926824         2021-01-21 16:27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 133 | 44217.55692 | 369.1238821 | 2021-01-21 16:11 | 270.395234 |
| 136         44217.559         363.6818826         2021-01-21 16:14         267.371558           137         44217.5597         362.1052651         2021-01-21 16:15         266.492393           138         44217.56109         359.6630831         2021-01-21 16:16         265.50159           139         44217.56178         358.0385651         2021-01-21 16:18         263.773028           140         44217.56248         356.2338832         2021-01-21 16:19         263.181981           142         44217.56387         354.3620605         2021-01-21 16:20         262.479018           143         44217.56387         351.0480833         2021-01-21 16:21         261.072436           144         44217.56456         348.4045499         2021-01-21 16:22         261.072436           145         44217.56555         344.0286446         2021-01-21 16:24         259.249229           147         44217.56664         341.9892871         2021-01-21 16:25         258.362189           148         44217.56734         340.1576938         2021-01-21 16:26         258.362189           149         44217.56803         337.9926824         2021-01-21 16:26         258.362189           150         44217.56803         337.9926824         2021-01-21 16:26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 134 | 44217.55762 | 366.9309617 | 2021-01-21 16:12 | 269.435937 |
| 137         44217.5597         362.1052651         2021-01-21 16:15         266.492393           138         44217.56039         360.8717268         2021-01-21 16:16         265.50159           139         44217.56178         359.6630831         2021-01-21 16:17         264.802258           140         44217.56178         358.0385651         2021-01-21 16:18         263.773028           141         44217.56248         356.2338832         2021-01-21 16:20         262.479018           142         44217.56317         354.3620605         2021-01-21 16:20         262.479018           143         44217.56387         351.0480833         2021-01-21 16:21         261.72455           144         44217.56525         346.0605618         2021-01-21 16:22         260.227707           146         44217.56595         344.0286446         2021-01-21 16:22         260.227707           146         44217.56664         341.9892871         2021-01-21 16:25         258.929758           148         44217.56633         337.9926824         2021-01-21 16:26         258.362189           149         44217.56873         336.0914342         2021-01-21 16:26         258.362189           150         44217.56873         336.0914342         2021-01-21 16:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 135 | 44217.55831 | 365.5022031 | 2021-01-21 16:13 | 268.543291 |
| 138       44217.56039       360.8717268       2021-01-21 16:16       265.50159         139       44217.56109       359.6630831       2021-01-21 16:17       264.802258         140       44217.56178       358.0385651       2021-01-21 16:18       263.773028         141       44217.56248       356.2338832       2021-01-21 16:19       263.181981         142       44217.56317       354.3620605       2021-01-21 16:20       262.479018         143       44217.56387       351.0480833       2021-01-21 16:21       261.72455         144       44217.56456       348.4045499       2021-01-21 16:22       261.072436         145       44217.56525       346.0605618       2021-01-21 16:23       260.227707         146       44217.56695       344.0286446       2021-01-21 16:24       259.249229         147       44217.56664       341.9892871       2021-01-21 16:25       258.929758         148       44217.56734       340.1576938       2021-01-21 16:26       258.362189         149       44217.56803       337.9926824       2021-01-21 16:27       257.500021         150       44217.56942       334.2397875       2021-01-21 16:32       256.826782974         151       44217.57081       332.4668601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 136 | 44217.559   | 363.6818826 | 2021-01-21 16:14 | 267.371558 |
| 139       44217.56109       359.6630831       2021-01-21 16:17       264.802258         140       44217.56178       358.0385651       2021-01-21 16:18       263.773028         141       44217.56248       356.2338832       2021-01-21 16:29       262.479018         142       44217.56387       351.0480833       2021-01-21 16:22       261.72455         144       44217.56456       348.4045499       2021-01-21 16:22       261.072436         145       44217.56555       346.0605618       2021-01-21 16:22       262.27707         146       44217.56595       344.0286446       2021-01-21 16:24       259.249229         147       44217.56664       341.9892871       2021-01-21 16:26       258.362189         148       44217.56734       340.1576938       2021-01-21 16:26       258.362189         149       44217.56803       337.9926824       2021-01-21 16:27       257.500021         150       44217.56873       336.0914342       2021-01-21 16:29       256.081606         152       44217.57012       332.4666801       2021-01-21 16:32       255.08526         153       44217.57012       332.90407051       2021-01-21 16:32       255.084452         154       44217.5728       329.0407051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 137 | 44217.5597  | 362.1052651 | 2021-01-21 16:15 | 266.492393 |
| 140       44217.56178       358.0385651       2021-01-21 16:18       263.773028         141       44217.56248       356.2338832       2021-01-21 16:19       263.181981         142       44217.56317       354.3620605       2021-01-21 16:20       262.479018         143       44217.56387       351.0480833       2021-01-21 16:21       261.072436         144       44217.56556       348.4045499       2021-01-21 16:22       261.072436         145       44217.56525       346.0605618       2021-01-21 16:23       260.227707         146       44217.56595       344.0286446       2021-01-21 16:25       258.929758         148       44217.56664       341.9892871       2021-01-21 16:25       258.929758         148       44217.56803       337.9926824       2021-01-21 16:26       258.362189         149       44217.56803       337.9926824       2021-01-21 16:27       257.500021         150       44217.56942       334.2397875       2021-01-21 16:28       256.782974         151       44217.57012       332.4668601       2021-01-21 16:30       255.684452         153       44217.57081       330.8383787       2021-01-21 16:32       256.081606         154       44217.5722       327.094043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 138 | 44217.56039 | 360.8717268 | 2021-01-21 16:16 | 265.50159  |
| 141       44217.56248       356.2338832       2021-01-21 16:19       263.181981         142       44217.56317       354.3620605       2021-01-21 16:20       262.479018         143       44217.56387       351.0480833       2021-01-21 16:21       261.72455         144       44217.56456       348.4045499       2021-01-21 16:22       261.072436         145       44217.56595       344.0286446       2021-01-21 16:23       260.227707         146       44217.56595       344.0286446       2021-01-21 16:25       258.929758         148       44217.5664       341.9892871       2021-01-21 16:26       258.362189         149       44217.56803       337.9926824       2021-01-21 16:27       257.500021         150       44217.56873       336.0914342       2021-01-21 16:28       256.782974         151       44217.56942       334.2397875       2021-01-21 16:32       256.081606         152       44217.57012       332.4668601       2021-01-21 16:30       255.684452         153       44217.57081       330.8383787       2021-01-21 16:32       254.342234         154       44217.5722       327.094043       2021-01-21 16:33       255.08450         155       44217.57289       325.4888342       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 139 | 44217.56109 | 359.6630831 | 2021-01-21 16:17 | 264.802258 |
| 142       44217.56317       354.3620605       2021-01-21 16:20       262.479018         143       44217.56387       351.0480833       2021-01-21 16:21       261.72455         144       44217.56456       348.4045499       2021-01-21 16:22       261.072436         145       44217.56525       346.0605618       2021-01-21 16:23       260.227707         146       44217.56595       344.0286446       2021-01-21 16:25       258.929758         147       44217.56664       341.9892871       2021-01-21 16:26       258.362189         148       44217.56803       337.9926824       2021-01-21 16:27       257.500021         150       44217.56803       337.9926824       2021-01-21 16:28       256.081606         151       44217.56942       334.2397875       2021-01-21 16:29       256.081606         152       44217.57012       332.4668601       2021-01-21 16:30       255.684452         153       44217.57081       330.8383787       2021-01-21 16:31       255.08852         154       44217.5715       329.0407051       2021-01-21 16:32       254.342234         155       44217.57289       325.4888342       2021-01-21 16:34       253.02505         157       44217.57359       325.948662       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 140 | 44217.56178 | 358.0385651 | 2021-01-21 16:18 | 263.773028 |
| 143       44217.56387       351.0480833       2021-01-21 16:21       261.72455         144       44217.56456       348.4045499       2021-01-21 16:22       261.072436         145       44217.56525       346.0605618       2021-01-21 16:23       260.227707         146       44217.56595       344.0286446       2021-01-21 16:24       259.249229         147       44217.56664       341.9892871       2021-01-21 16:25       258.929758         148       44217.56734       340.1576938       2021-01-21 16:26       258.362189         149       44217.56803       337.9926824       2021-01-21 16:27       257.500021         150       44217.56873       336.0914342       2021-01-21 16:29       256.081606         151       44217.56942       334.2397875       2021-01-21 16:30       255.684452         153       44217.57012       332.4668601       2021-01-21 16:31       255.08852         154       44217.57081       330.8383787       2021-01-21 16:32       254.342234         155       44217.5715       329.0407051       2021-01-21 16:32       254.342234         155       44217.5722       327.094043       2021-01-21 16:33       253.02505         156       44217.5739       323.9943662 <td< td=""><td>141</td><td>44217.56248</td><td>356.2338832</td><td>2021-01-21 16:19</td><td>263.181981</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 141 | 44217.56248 | 356.2338832 | 2021-01-21 16:19 | 263.181981 |
| 144       44217.56456       348.4045499       2021-01-21 16:22       261.072436         145       44217.56525       346.0605618       2021-01-21 16:23       260.227707         146       44217.56595       344.0286446       2021-01-21 16:24       259.249229         147       44217.56664       341.9892871       2021-01-21 16:25       258.929758         148       44217.56734       340.1576938       2021-01-21 16:26       258.362189         149       44217.56803       337.9926824       2021-01-21 16:27       257.500021         150       44217.56873       336.0914342       2021-01-21 16:28       256.782974         151       44217.56942       334.2397875       2021-01-21 16:29       256.081606         152       44217.57012       332.4668601       2021-01-21 16:30       255.684452         153       44217.57081       330.8383787       2021-01-21 16:31       255.08852         154       44217.5715       329.0407051       2021-01-21 16:32       254.342234         155       44217.5728       327.094043       2021-01-21 16:33       253.795169         156       44217.57289       325.4888342       2021-01-21 16:33       253.02505         157       44217.57428       321.9656203       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 142 | 44217.56317 | 354.3620605 | 2021-01-21 16:20 | 262.479018 |
| 145       44217.56525       346.0605618       2021-01-21 16:23       260.227707         146       44217.56595       344.0286446       2021-01-21 16:24       259.249229         147       44217.56664       341.9892871       2021-01-21 16:25       258.929758         148       44217.56734       340.1576938       2021-01-21 16:26       258.362189         149       44217.56803       337.9926824       2021-01-21 16:27       257.500021         150       44217.56873       336.0914342       2021-01-21 16:28       256.782974         151       44217.56942       334.2397875       2021-01-21 16:39       256.081606         152       44217.57012       332.4668601       2021-01-21 16:30       255.684452         153       44217.57081       330.8383787       2021-01-21 16:31       255.08852         154       44217.57081       332.9407051       2021-01-21 16:32       254.342234         155       44217.5722       327.094043       2021-01-21 16:33       253.795169         156       44217.57359       323.9943662       2021-01-21 16:35       252.26423         157       44217.57428       321.9656203       2021-01-21 16:36       251.594612         159       44217.57498       320.6430311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 143 | 44217.56387 | 351.0480833 | 2021-01-21 16:21 | 261.72455  |
| 146       44217.56595       344.0286446       2021-01-21 16:24       259.249229         147       44217.56664       341.9892871       2021-01-21 16:25       258.929758         148       44217.56734       340.1576938       2021-01-21 16:26       258.362189         149       44217.56803       337.9926824       2021-01-21 16:27       257.500021         150       44217.56873       336.0914342       2021-01-21 16:28       256.782974         151       44217.56942       334.2397875       2021-01-21 16:29       256.081606         152       44217.57012       332.4668601       2021-01-21 16:30       255.684452         153       44217.57081       330.8383787       2021-01-21 16:31       255.08852         154       44217.5715       329.0407051       2021-01-21 16:32       254.342234         155       44217.5722       327.094043       2021-01-21 16:33       253.795169         156       44217.57359       323.9943662       2021-01-21 16:34       253.02505         157       44217.57428       321.9656203       2021-01-21 16:36       251.594612         159       44217.57498       320.6430311       2021-01-21 16:38       250.130736         160       44217.57637       318.8858123       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 144 | 44217.56456 | 348.4045499 | 2021-01-21 16:22 | 261.072436 |
| 147       44217.56664       341.9892871       2021-01-21 16:25       258.929758         148       44217.56734       340.1576938       2021-01-21 16:26       258.362189         149       44217.56803       337.9926824       2021-01-21 16:27       257.500021         150       44217.56873       336.0914342       2021-01-21 16:28       256.782974         151       44217.56942       334.2397875       2021-01-21 16:29       256.081606         152       44217.57012       332.4668601       2021-01-21 16:30       255.684452         153       44217.57081       330.8383787       2021-01-21 16:31       255.08852         154       44217.5715       329.0407051       2021-01-21 16:32       254.342234         155       44217.5722       327.094043       2021-01-21 16:33       253.795169         156       44217.57289       325.4888342       2021-01-21 16:34       253.02505         157       44217.57359       323.9943662       2021-01-21 16:35       252.26423         158       44217.57428       321.9656203       2021-01-21 16:36       251.594612         159       44217.57567       318.8858123       2021-01-21 16:39       249.615394         160       44217.57637       317.182535 <td< td=""><td>145</td><td>44217.56525</td><td>346.0605618</td><td>2021-01-21 16:23</td><td>260.227707</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 145 | 44217.56525 | 346.0605618 | 2021-01-21 16:23 | 260.227707 |
| 148       44217.56734       340.1576938       2021-01-21 16:26       258.362189         149       44217.56803       337.9926824       2021-01-21 16:27       257.500021         150       44217.56873       336.0914342       2021-01-21 16:28       256.782974         151       44217.56942       334.2397875       2021-01-21 16:29       256.081606         152       44217.57012       332.4668601       2021-01-21 16:30       255.684452         153       44217.57081       330.8383787       2021-01-21 16:31       255.08852         154       44217.5715       329.0407051       2021-01-21 16:32       254.342234         155       44217.5722       327.094043       2021-01-21 16:33       253.795169         156       44217.57289       325.4888342       2021-01-21 16:34       253.02505         157       44217.57359       323.9943662       2021-01-21 16:35       252.26423         158       44217.57428       321.9656203       2021-01-21 16:36       251.594612         159       44217.57567       318.8858123       2021-01-21 16:39       290.101-21 16:39       249.615394         160       44217.57637       317.9084147       2021-01-21 16:40       249.055936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 146 | 44217.56595 | 344.0286446 | 2021-01-21 16:24 | 259.249229 |
| 149       44217.56803       337.9926824       2021-01-21 16:27       257.500021         150       44217.56873       336.0914342       2021-01-21 16:28       256.782974         151       44217.56942       334.2397875       2021-01-21 16:29       256.081606         152       44217.57012       332.4668601       2021-01-21 16:30       255.684452         153       44217.57081       330.8383787       2021-01-21 16:31       255.08852         154       44217.5715       329.0407051       2021-01-21 16:32       254.342234         155       44217.5722       327.094043       2021-01-21 16:33       253.795169         156       44217.57289       325.4888342       2021-01-21 16:34       253.02505         157       44217.57359       323.9943662       2021-01-21 16:35       252.26423         158       44217.57428       321.9656203       2021-01-21 16:36       251.594612         159       44217.57498       320.6430311       2021-01-21 16:38       250.130736         160       44217.57667       318.8858123       2021-01-21 16:39       249.615394         162       44217.57706       317.1182535       2021-01-21 16:40       249.055936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 147 | 44217.56664 | 341.9892871 | 2021-01-21 16:25 | 258.929758 |
| 150       44217.56873       336.0914342       2021-01-21 16:28       256.782974         151       44217.56942       334.2397875       2021-01-21 16:29       256.081606         152       44217.57012       332.4668601       2021-01-21 16:30       255.684452         153       44217.57081       330.8383787       2021-01-21 16:31       255.08852         154       44217.5715       329.0407051       2021-01-21 16:32       254.342234         155       44217.5722       327.094043       2021-01-21 16:33       253.795169         156       44217.57289       325.4888342       2021-01-21 16:34       253.02505         157       44217.57359       323.9943662       2021-01-21 16:35       252.26423         158       44217.57428       321.9656203       2021-01-21 16:36       251.594612         159       44217.57498       320.6430311       2021-01-21 16:37       250.745202         160       44217.57667       318.8858123       2021-01-21 16:39       249.615394         161       44217.57706       317.1182535       2021-01-21 16:40       249.055936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 148 | 44217.56734 | 340.1576938 | 2021-01-21 16:26 | 258.362189 |
| 151       44217.56942       334.2397875       2021-01-21 16:29       256.081606         152       44217.57012       332.4668601       2021-01-21 16:30       255.684452         153       44217.57081       330.8383787       2021-01-21 16:31       255.08852         154       44217.5715       329.0407051       2021-01-21 16:32       254.342234         155       44217.5722       327.094043       2021-01-21 16:33       253.795169         156       44217.57289       325.4888342       2021-01-21 16:34       253.02505         157       44217.57359       323.9943662       2021-01-21 16:35       252.26423         158       44217.57428       321.9656203       2021-01-21 16:36       251.594612         159       44217.57498       320.6430311       2021-01-21 16:37       250.745202         160       44217.57567       318.8858123       2021-01-21 16:38       250.130736         161       44217.57637       317.9084147       2021-01-21 16:40       249.055936         162       44217.57706       317.1182535       2021-01-21 16:40       249.055936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 149 | 44217.56803 | 337.9926824 | 2021-01-21 16:27 | 257.500021 |
| 152       44217.57012       332.4668601       2021-01-21 16:30       255.684452         153       44217.57081       330.8383787       2021-01-21 16:31       255.08852         154       44217.5715       329.0407051       2021-01-21 16:32       254.342234         155       44217.5722       327.094043       2021-01-21 16:33       253.795169         156       44217.57289       325.4888342       2021-01-21 16:34       253.02505         157       44217.57359       323.9943662       2021-01-21 16:35       252.26423         158       44217.57428       321.9656203       2021-01-21 16:36       251.594612         159       44217.57498       320.6430311       2021-01-21 16:37       250.745202         160       44217.57567       318.8858123       2021-01-21 16:38       250.130736         161       44217.57637       317.9084147       2021-01-21 16:39       249.615394         162       44217.57706       317.1182535       2021-01-21 16:40       249.055936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 150 | 44217.56873 | 336.0914342 | 2021-01-21 16:28 | 256.782974 |
| 153       44217.57081       330.8383787       2021-01-21 16:31       255.08852         154       44217.5715       329.0407051       2021-01-21 16:32       254.342234         155       44217.5722       327.094043       2021-01-21 16:33       253.795169         156       44217.57289       325.4888342       2021-01-21 16:34       253.02505         157       44217.57359       323.9943662       2021-01-21 16:35       252.26423         158       44217.57428       321.9656203       2021-01-21 16:36       251.594612         159       44217.57498       320.6430311       2021-01-21 16:37       250.745202         160       44217.57567       318.8858123       2021-01-21 16:38       250.130736         161       44217.57637       317.9084147       2021-01-21 16:39       249.615394         162       44217.57706       317.1182535       2021-01-21 16:40       249.055936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 151 | 44217.56942 | 334.2397875 | 2021-01-21 16:29 | 256.081606 |
| 154       44217.5715       329.0407051       2021-01-21 16:32       254.342234         155       44217.5722       327.094043       2021-01-21 16:33       253.795169         156       44217.57289       325.4888342       2021-01-21 16:34       253.02505         157       44217.57359       323.9943662       2021-01-21 16:35       252.26423         158       44217.57428       321.9656203       2021-01-21 16:36       251.594612         159       44217.57498       320.6430311       2021-01-21 16:37       250.745202         160       44217.57567       318.8858123       2021-01-21 16:38       250.130736         161       44217.57637       317.9084147       2021-01-21 16:39       249.615394         162       44217.57706       317.1182535       2021-01-21 16:40       249.055936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 152 | 44217.57012 | 332.4668601 | 2021-01-21 16:30 | 255.684452 |
| 155       44217.5722       327.094043       2021-01-21 16:33       253.795169         156       44217.57289       325.4888342       2021-01-21 16:34       253.02505         157       44217.57359       323.9943662       2021-01-21 16:35       252.26423         158       44217.57428       321.9656203       2021-01-21 16:36       251.594612         159       44217.57498       320.6430311       2021-01-21 16:37       250.745202         160       44217.57567       318.8858123       2021-01-21 16:38       250.130736         161       44217.57637       317.9084147       2021-01-21 16:39       249.615394         162       44217.57706       317.1182535       2021-01-21 16:40       249.055936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 153 | 44217.57081 | 330.8383787 | 2021-01-21 16:31 | 255.08852  |
| 156       44217.57289       325.4888342       2021-01-21 16:34       253.02505         157       44217.57359       323.9943662       2021-01-21 16:35       252.26423         158       44217.57428       321.9656203       2021-01-21 16:36       251.594612         159       44217.57498       320.6430311       2021-01-21 16:37       250.745202         160       44217.57567       318.8858123       2021-01-21 16:38       250.130736         161       44217.57637       317.9084147       2021-01-21 16:39       249.615394         162       44217.57706       317.1182535       2021-01-21 16:40       249.055936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 154 | 44217.5715  | 329.0407051 | 2021-01-21 16:32 | 254.342234 |
| 157       44217.57359       323.9943662       2021-01-21 16:35       252.26423         158       44217.57428       321.9656203       2021-01-21 16:36       251.594612         159       44217.57498       320.6430311       2021-01-21 16:37       250.745202         160       44217.57567       318.8858123       2021-01-21 16:38       250.130736         161       44217.57637       317.9084147       2021-01-21 16:39       249.615394         162       44217.57706       317.1182535       2021-01-21 16:40       249.055936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 155 | 44217.5722  | 327.094043  | 2021-01-21 16:33 | 253.795169 |
| 158       44217.57428       321.9656203       2021-01-21 16:36       251.594612         159       44217.57498       320.6430311       2021-01-21 16:37       250.745202         160       44217.57567       318.8858123       2021-01-21 16:38       250.130736         161       44217.57637       317.9084147       2021-01-21 16:39       249.615394         162       44217.57706       317.1182535       2021-01-21 16:40       249.055936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 156 | 44217.57289 | 325.4888342 | 2021-01-21 16:34 | 253.02505  |
| 159       44217.57498       320.6430311       2021-01-21 16:37       250.745202         160       44217.57567       318.8858123       2021-01-21 16:38       250.130736         161       44217.57637       317.9084147       2021-01-21 16:39       249.615394         162       44217.57706       317.1182535       2021-01-21 16:40       249.055936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 157 | 44217.57359 | 323.9943662 | 2021-01-21 16:35 | 252.26423  |
| 160       44217.57567       318.8858123       2021-01-21 16:38       250.130736         161       44217.57637       317.9084147       2021-01-21 16:39       249.615394         162       44217.57706       317.1182535       2021-01-21 16:40       249.055936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 158 | 44217.57428 | 321.9656203 | 2021-01-21 16:36 | 251.594612 |
| 161     44217.57637     317.9084147     2021-01-21 16:39     249.615394       162     44217.57706     317.1182535     2021-01-21 16:40     249.055936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 159 | 44217.57498 | 320.6430311 | 2021-01-21 16:37 | 250.745202 |
| 162         44217.57706         317.1182535         2021-01-21 16:40         249.055936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 160 | 44217.57567 | 318.8858123 | 2021-01-21 16:38 | 250.130736 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 161 | 44217.57637 | 317.9084147 | 2021-01-21 16:39 | 249.615394 |
| 163     44217.57775     316.3510833     2021-01-21 16:41     248.463405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 162 | 44217.57706 | 317.1182535 | 2021-01-21 16:40 | 249.055936 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 163 | 44217.57775 | 316.3510833 | 2021-01-21 16:41 | 248.463405 |

| 164        | 44217 57945                | 215 06/1966               | 2021 01 21 16:42                        | 247 949002 |
|------------|----------------------------|---------------------------|-----------------------------------------|------------|
|            | 44217.57845                | 315.0641866               | 2021-01-21 16:42                        | 247.848992 |
| 165        | 44217.57914                | 313.8686038               | 2021-01-21 16:43                        | 247.303695 |
| 166<br>167 | 44217.57984                | 312.6098615               | 2021-01-21 16:44<br>2021-01-21 16:45    | 246.608788 |
| -          | 44217.58053                | 311.5440523               |                                         | 246.386441 |
| 168<br>169 | 44217.58123<br>44217.58192 | 310.6697947<br>310.135414 | 2021-01-21 16:46<br>2021-01-21 16:47    | 245.758199 |
| 170        | 44217.58192                | 310.135414                | 2021-01-21 16:47                        | 245.326639 |
|            |                            |                           |                                         | 244.887408 |
| 171        |                            |                           | 2021-01-21 16:49                        | 244.428027 |
| 172        |                            |                           | 2021-01-21 16:50                        | 244.00599  |
| 173<br>174 |                            |                           | 2021-01-21 16:51                        | 243.689062 |
| 174        |                            |                           | 2021-01-21 16:52                        | 243.504379 |
|            |                            |                           | 2021-01-21 16:53                        | 243.246764 |
| 176<br>177 |                            |                           | 2021-01-21 16:54                        | 242.968174 |
| 177        |                            |                           | 2021-01-21 16:55                        | 242.932574 |
|            |                            |                           | 2021-01-21 16:56                        | 242.664925 |
| 179        |                            |                           | 2021-01-21 16:57                        | 242.594216 |
| 180        |                            |                           | 2021-01-21 16:58                        | 242.465826 |
| 181        |                            |                           | 2021-01-21 16:59                        | 242.340965 |
| 182        |                            |                           | 2021-01-21 17:00                        | 242.16484  |
| 183        |                            |                           | 2021-01-21 17:01                        | 242.010453 |
| 184        |                            |                           | 2021-01-21 17:02                        | 241.978519 |
| 185        |                            |                           | 2021-01-21 17:03                        | 241.740202 |
| 186        |                            |                           | 2021-01-21 17:04                        | 241.778118 |
| 187        |                            |                           | 2021-01-21 17:05                        | 241.388641 |
| 188        |                            |                           | 2021-01-21 17:06                        | 241.22812  |
| 189        |                            |                           | 2021-01-21 17:07                        | 240.747888 |
| 190        |                            |                           | 2021-01-21 17:08                        | 240.524142 |
| 191        |                            |                           | 2021-01-21 17:09                        | 239.76065  |
| 192        |                            |                           | 2021-01-21 17:10                        | 239.152636 |
| 193        |                            |                           | 2021-01-21 17:11                        | 238.437687 |
| 194        |                            |                           | 2021-01-21 17:12                        | 238.026886 |
| 195        |                            |                           | 2021-01-21 17:13                        | 237.451323 |
| 196        |                            |                           | 2021-01-21 17:14                        | 236.710248 |
| 197        |                            |                           | 2021-01-21 17:15                        | 236.762495 |
| 198        |                            |                           | 2021-01-21 17:16                        | 236.142431 |
| 199        |                            |                           | 2021-01-21 17:17                        | 235.689244 |
| 200        |                            |                           | 2021-01-21 17:18                        | 235.463273 |
| 201        |                            |                           | 2021-01-21 17:19                        | 234.792195 |
| 202        |                            |                           | 2021-01-21 17:20                        | 234.477363 |
| 203        |                            |                           | 2021-01-21 17:21                        | 234.099859 |
| 204        |                            |                           | 2021-01-21 17:22                        | 233.79808  |
| 205        |                            |                           | 2021-01-21 17:23                        | 233.525288 |
| 206        |                            |                           | 2021-01-21 17:24                        | 232.969847 |
| 207        |                            |                           | 2021-01-21 17:25                        | 232.482832 |
| 208        |                            |                           | 2021-01-21 17:26                        | 232.24211  |
| 209        |                            |                           | 2021-01-21 17:27                        | 231.942277 |
| 210        |                            |                           | 2021-01-21 17:28                        | 231.887616 |
| 211        |                            |                           | 2021-01-21 17:29                        | 231.404004 |
| 212        |                            |                           | 2021-01-21 17:30                        | 231.24425  |
| 213        |                            |                           | 2021-01-21 17:31                        | 230.919539 |
| 214        |                            |                           | 2021-01-21 17:32                        | 230.641451 |
| 215        |                            |                           | 2021-01-21 17:33                        | 230.218311 |
| 216        |                            |                           | 2021-01-21 17:34                        | 229.917147 |
| 217        |                            |                           | 2021-01-21 17:35                        | 229.698934 |
| 218        |                            |                           | 2021-01-21 17:36                        | 229.018739 |
| 219        |                            |                           | 2021-01-21 17:37                        | 228.61637  |
| 220        |                            |                           | 2021-01-21 17:38                        | 228.307164 |
| 221        |                            |                           | 2021-01-21 17:39                        | 228.295596 |
| <u> </u>   |                            |                           | , , , , , , , , , , , , , , , , , , , , |            |

|     | T | T | 1 |                                                  | 2004 24 24 47 42 | 227 52225  |
|-----|---|---|---|--------------------------------------------------|------------------|------------|
| 222 |   |   |   |                                                  | 2021-01-21 17:40 | 227.583296 |
| 223 |   |   |   |                                                  | 2021-01-21 17:41 | 227.018295 |
| 224 |   |   |   |                                                  | 2021-01-21 17:42 | 226.4727   |
| 225 |   |   |   |                                                  | 2021-01-21 17:43 | 225.841037 |
| 226 |   |   |   |                                                  | 2021-01-21 17:44 | 225.318772 |
| 227 |   |   |   |                                                  | 2021-01-21 17:45 | 224.601408 |
| 228 |   |   |   |                                                  | 2021-01-21 17:46 | 224.195571 |
| 229 |   |   |   |                                                  | 2021-01-21 17:47 | 223.862483 |
| 230 |   |   |   |                                                  | 2021-01-21 17:48 | 223.447021 |
| 231 |   |   |   |                                                  | 2021-01-21 17:49 | 223.008922 |
| 232 |   |   |   |                                                  | 2021-01-21 17:50 | 222.544584 |
| 233 |   |   |   |                                                  | 2021-01-21 17:51 | 222.041615 |
| 234 |   |   |   |                                                  | 2021-01-21 17:52 | 221.813096 |
| 235 |   |   |   |                                                  | 2021-01-21 17:53 | 221.443047 |
| 236 |   |   |   |                                                  | 2021-01-21 17:54 | 221.123382 |
| 237 |   |   |   |                                                  | 2021-01-21 17:55 | 220.793053 |
| 238 |   |   |   |                                                  | 2021-01-21 17:56 | 220.446729 |
| 239 |   |   |   |                                                  | 2021-01-21 17:57 | 220.051431 |
| 240 |   |   |   |                                                  | 2021-01-21 17:58 | 219.662162 |
| 241 |   |   |   |                                                  | 2021-01-21 17:59 | 219.379486 |
| 242 |   |   |   |                                                  | 2021-01-21 18:00 | 219.136563 |
| 243 |   |   |   |                                                  | 2021-01-21 18:01 | 218.715789 |
| 244 |   |   |   |                                                  | 2021-01-21 18:02 | 218.370065 |
| 245 |   |   |   |                                                  | 2021-01-21 18:03 | 217.872136 |
| 246 |   |   |   |                                                  | 2021-01-21 18:04 | 217.612719 |
| 247 |   |   |   |                                                  | 2021-01-21 18:05 | 217.158158 |
| 248 |   |   |   |                                                  | 2021-01-21 18:06 | 217.12382  |
| 249 |   |   |   |                                                  | 2021-01-21 18:07 | 216.892928 |
| 250 |   |   |   |                                                  | 2021-01-21 18:08 | 216.549337 |
| 251 |   |   |   |                                                  | 2021-01-21 18:09 | 216.284014 |
| 252 |   |   |   |                                                  | 2021-01-21 18:10 | 216.086608 |
| 253 |   |   |   |                                                  | 2021-01-21 18:11 | 216.218794 |
| 254 |   |   |   |                                                  | 2021-01-21 18:12 | 215.92944  |
| 255 |   |   |   |                                                  | 2021-01-21 18:13 | 215.719492 |
| 256 |   |   |   |                                                  | 2021-01-21 18:14 | 215.467224 |
| 257 |   |   |   |                                                  | 2021-01-21 18:15 | 215.245784 |
| 258 |   |   |   |                                                  | 2021-01-21 18:16 | 214.694223 |
| 259 |   |   |   |                                                  | 2021-01-21 18:17 |            |
| 260 |   |   |   |                                                  | 2021-01-21 18:18 | 213.933918 |
| 261 |   |   |   |                                                  | 2021-01-21 18:19 | 213.548578 |
| 262 |   |   |   |                                                  | 2021-01-21 18:19 | 213.165511 |
| 263 |   |   |   |                                                  | 2021-01-21 18:21 | 212.73722  |
| 264 |   |   |   | +                                                | 2021-01-21 18:22 | 212.73722  |
| 265 |   |   |   | +                                                | 2021-01-21 18:23 | 212.433302 |
| 266 |   |   |   |                                                  | 2021-01-21 18:24 | 212.048939 |
| 267 |   |   |   |                                                  | 2021-01-21 18:25 | 211.317874 |
| 268 |   |   |   |                                                  | 2021-01-21 18:26 | 211.222283 |
| 269 |   |   |   |                                                  | 2021-01-21 18:26 | 210.855697 |
| -   |   |   |   |                                                  |                  |            |
| 270 |   |   |   | <del>                                     </del> | 2021-01-21 18:28 | 210.08214  |
| 271 |   |   |   | <del>                                     </del> | 2021-01-21 18:29 | 209.661354 |
| 272 |   |   |   |                                                  | 2021-01-21 18:30 | 209.355005 |
| 273 |   |   |   |                                                  | 2021-01-21 18:31 | 208.86433  |
| 274 |   |   |   |                                                  | 2021-01-21 18:32 | 208.675172 |
| 275 |   |   |   |                                                  | 2021-01-21 18:33 | 208.687227 |
| 276 |   |   |   |                                                  | 2021-01-21 18:34 | 208.378776 |
| 277 |   |   |   |                                                  | 2021-01-21 18:35 | 207.851259 |
| 278 |   |   |   |                                                  | 2021-01-21 18:36 | 207.401148 |
| 279 |   |   |   |                                                  | 2021-01-21 18:37 | 207.115087 |

| 280 |  |              | 2021-01-21 18:38                     | 206.939091 |
|-----|--|--------------|--------------------------------------|------------|
| 281 |  |              | 2021-01-21 18:39                     | 206.064032 |
| 282 |  |              | 2021-01-21 18:40                     | 205.1216   |
| 283 |  |              | 2021-01-21 18:41                     | 204.508531 |
| 284 |  |              | 2021-01-21 18:42                     | 203.609103 |
| 285 |  |              | 2021-01-21 18:43                     | 202.917891 |
| 286 |  |              | 2021-01-21 18:44                     | 202.190664 |
| 287 |  |              | 2021-01-21 18:45                     | 201.358673 |
| 288 |  |              | 2021-01-21 18:45                     | 201.338073 |
|     |  |              |                                      | 200.757997 |
| 289 |  |              | 2021-01-21 18:47<br>2021-01-21 18:48 |            |
| 290 |  |              |                                      | 199.410485 |
| 291 |  |              | 2021-01-21 18:49                     | 198.537743 |
| 292 |  |              | 2021-01-21 18:50                     | 197.972925 |
| 293 |  |              | 2021-01-21 18:51                     | 197.323704 |
| 294 |  |              | 2021-01-21 18:52                     | 196.61889  |
| 295 |  |              | 2021-01-21 18:53                     | 195.998619 |
| 296 |  |              | 2021-01-21 18:54                     | 195.412469 |
| 297 |  |              | 2021-01-21 18:55                     | 194.860477 |
| 298 |  |              | 2021-01-21 18:56                     | 194.282324 |
| 299 |  |              | 2021-01-21 18:57                     | 193.707199 |
| 300 |  |              | 2021-01-21 18:58                     | 193.070555 |
| 301 |  |              | 2021-01-21 18:59                     | 192.65354  |
| 302 |  |              | 2021-01-21 19:00                     | 192.198084 |
| 303 |  |              | 2021-01-21 19:01                     | 191.670367 |
| 304 |  |              | 2021-01-21 19:02                     | 191.265187 |
| 305 |  |              | 2021-01-21 19:03                     | 190.642999 |
| 306 |  |              | 2021-01-21 19:04                     | 190.269169 |
| 300 |  |              | 2021-01-21 19:05                     | 189.636327 |
| 307 |  |              | 2021-01-21 19:06                     | 189.030327 |
|     |  |              |                                      |            |
| 309 |  |              | 2021-01-21 19:07                     | 188.805096 |
| 310 |  |              | 2021-01-21 19:08                     | 188.482785 |
| 311 |  |              | 2021-01-21 19:09                     | 188.033166 |
| 312 |  |              | 2021-01-21 19:10                     | 187.616926 |
| 313 |  |              | 2021-01-21 19:11                     | 187.332672 |
| 314 |  |              | 2021-01-21 19:12                     | 186.981395 |
| 315 |  |              | 2021-01-21 19:13                     | 186.325336 |
| 316 |  |              | 2021-01-21 19:14                     | 185.803522 |
| 317 |  |              | 2021-01-21 19:15                     | 185.601135 |
| 318 |  |              | 2021-01-21 19:16                     | 185.023788 |
| 319 |  |              | 2021-01-21 19:17                     | 184.580853 |
| 320 |  |              | 2021-01-21 19:18                     | 184.240832 |
| 321 |  |              | 2021-01-21 19:19                     | 183.8565   |
| 322 |  |              | 2021-01-21 19:20                     | 183.525798 |
| 323 |  |              | 2021-01-21 19:21                     | 182.883067 |
| 324 |  |              | 2021-01-21 19:22                     | 182.367655 |
| 325 |  |              | 2021-01-21 19:23                     | 181.994934 |
| 326 |  |              | 2021-01-21 19:24                     | 181.625955 |
| 327 |  |              | 2021-01-21 19:25                     | 181.023933 |
| 327 |  |              | 2021-01-21 19:26                     | 180.664432 |
| 328 |  | <del> </del> |                                      |            |
|     |  |              | 2021-01-21 19:27                     | 180.222304 |
| 330 |  | <del> </del> | 2021-01-21 19:28                     | 179.914588 |
| 331 |  |              | 2021-01-21 19:29                     | 179.460862 |
| 332 |  |              | 2021-01-21 19:30                     | 179.019056 |
| 333 |  |              | 2021-01-21 19:31                     | 178.636818 |
| 334 |  | ļ            | 2021-01-21 19:32                     | 178.068619 |
| 335 |  |              | 2021-01-21 19:33                     | 177.626726 |
| 336 |  |              | 2021-01-21 19:34                     | 177.079234 |
| 337 |  |              | 2021-01-21 19:35                     | 176.559774 |

| 338 |  |  | 2021-01-21 19:36 | 176.199618 |
|-----|--|--|------------------|------------|
| 339 |  |  | 2021-01-21 19:37 | 175.689782 |
| 340 |  |  | 2021-01-21 19:38 | 175.223071 |
| 341 |  |  | 2021-01-21 19:39 | 174.922174 |
| 342 |  |  | 2021-01-21 19:40 | 174.423682 |
| 343 |  |  | 2021-01-21 19:41 | 174.064855 |
| 344 |  |  | 2021-01-21 19:42 | 173.546911 |
| 345 |  |  | 2021-01-21 19:43 | 173.061585 |
| 346 |  |  | 2021-01-21 19:44 | 172.595828 |
| 347 |  |  | 2021-01-21 19:45 | 172.307116 |
| 348 |  |  | 2021-01-21 19:46 | 171.831792 |
| 349 |  |  | 2021-01-21 19:47 | 171.356839 |
| 350 |  |  | 2021-01-21 19:48 | 171.012205 |

#### 2.1 Series Pre-burn Data

2021-01-28

Total time (h)

7.82

| Load time        | Load type      | Fuel added | Moisture | 7                  | Time  |
|------------------|----------------|------------|----------|--------------------|-------|
| (-)              | (-)            | (lbs)      | (%)      | 1                  | (min) |
| 2021-01-28 11:10 | Kindling & SUF | 5.99       | 16       | Pre-Charge (min)   | 34    |
| 2021-01-21 11:36 | High fire      | 12.06      | 23.8     | Conditioning (min) | 155   |
| 2021-01-28 14:19 | Medium fire    | 14.49      | 21.0     | Load (min)         | 280   |

|         | Pre-Charge (min) | 34          | Conditioning (min) | 155        | Load (min)       | 280        |
|---------|------------------|-------------|--------------------|------------|------------------|------------|
| Minutes | Date & Time      | Flue (F)    | Date & Time        | Flue (F)   | Date & Time      | Flue (F)   |
| 1       | 2021-01-28 11:10 | 73.81131946 | 2021-01-28 11:44   | 432.963235 | 2021-01-28 14:19 | 302.835643 |
| 2       | 2021-01-28 11:11 | 105.1368809 | 2021-01-28 11:45   | 430.215829 | 2021-01-28 14:20 | 284.111023 |
| 3       | 2021-01-28 11:12 | 143.7467458 | 2021-01-28 11:46   | 428.883015 | 2021-01-28 14:21 | 281.756572 |
| 4       | 2021-01-28 11:13 | 223.7084985 | 2021-01-28 11:47   | 426.362975 | 2021-01-28 14:22 | 271.033895 |
| 5       | 2021-01-28 11:14 | 297.6157139 | 2021-01-28 11:48   | 433.280677 | 2021-01-28 14:23 | 260.844604 |
| 6       | 2021-01-28 11:15 | 362.8456243 | 2021-01-28 11:49   | 455.71705  | 2021-01-28 14:24 | 261.851842 |
| 7       | 2021-01-28 11:16 | 421.8644326 | 2021-01-28 11:50   | 472.296923 | 2021-01-28 14:25 | 259.146761 |
| 8       | 2021-01-28 11:17 | 447.5750093 | 2021-01-28 11:51   | 481.769366 | 2021-01-28 14:26 | 256.560372 |
| 9       | 2021-01-28 11:18 | 453.5630505 | 2021-01-28 11:52   | 486.761396 | 2021-01-28 14:27 | 255.269134 |
| 10      | 2021-01-28 11:19 | 457.4969509 | 2021-01-28 11:53   | 489.035081 | 2021-01-28 14:28 | 253.818871 |
| 11      | 2021-01-28 11:20 | 465.7756911 | 2021-01-28 11:54   | 490.22157  | 2021-01-28 14:29 | 266.774918 |
| 12      | 2021-01-28 11:21 | 473.5510251 | 2021-01-28 11:55   | 491.027208 | 2021-01-28 14:30 | 286.784531 |
| 13      | 2021-01-28 11:22 | 492.4747725 | 2021-01-28 11:56   | 491.734789 | 2021-01-28 14:31 | 292.273577 |
| 14      | 2021-01-28 11:23 | 500.7485509 | 2021-01-28 11:57   | 492.268611 | 2021-01-28 14:32 | 292.909254 |
| 15      | 2021-01-28 11:24 | 506.0147845 | 2021-01-28 11:58   | 492.480005 | 2021-01-28 14:33 | 292.170518 |
| 16      | 2021-01-28 11:25 | 513.2045074 | 2021-01-28 11:59   | 493.436111 | 2021-01-28 14:34 | 293.735372 |
| 17      | 2021-01-28 11:26 | 522.6600473 | 2021-01-28 12:00   | 494.351959 | 2021-01-28 14:35 | 315.345385 |
| 18      | 2021-01-28 11:27 | 528.9358473 | 2021-01-28 12:01   | 495.36936  | 2021-01-28 14:36 | 338.976356 |
| 19      | 2021-01-28 11:28 | 530.3473781 | 2021-01-28 12:02   | 497.047784 | 2021-01-28 14:37 | 368.718108 |
| 20      | 2021-01-28 11:29 | 522.9832031 | 2021-01-28 12:03   | 498.78634  | 2021-01-28 14:38 | 396.975025 |
| 21      | 2021-01-28 11:30 | 516.4091134 | 2021-01-28 12:04   | 500.152908 | 2021-01-28 14:39 | 432.472684 |
| 22      | 2021-01-28 11:31 | 510.7601727 | 2021-01-28 12:05   | 503.353598 | 2021-01-28 14:40 | 456.387444 |
| 23      | 2021-01-28 11:32 | 505.033143  | 2021-01-28 12:06   | 506.785125 | 2021-01-28 14:41 | 467.372263 |
| 24      | 2021-01-28 11:33 | 500.3065629 | 2021-01-28 12:07   | 508.209111 | 2021-01-28 14:42 | 474.40933  |
| 25      | 2021-01-28 11:34 | 493.9696163 | 2021-01-28 12:08   | 509.926285 | 2021-01-28 14:43 | 482.130133 |
| 26      | 2021-01-28 11:35 | 487.2790617 | 2021-01-28 12:09   | 510.926184 | 2021-01-28 14:44 | 489.949717 |
| 27      | 2021-01-28 11:36 | 480.0059893 | 2021-01-28 12:10   | 512.274764 | 2021-01-28 14:45 | 499.349586 |
| 28      | 2021-01-28 11:37 | 473.4699754 | 2021-01-28 12:11   | 513.674344 | 2021-01-28 14:46 | 511.682754 |
| 29      | 2021-01-28 11:38 | 467.6274176 | 2021-01-28 12:12   | 516.093298 | 2021-01-28 14:47 | 531.244854 |
| 30      | 2021-01-28 11:39 | 462.6755803 | 2021-01-28 12:13   | 519.696397 | 2021-01-28 14:48 | 549.414196 |
| 31      | 2021-01-28 11:40 | 458.3215696 | 2021-01-28 12:14   | 521.724364 | 2021-01-28 14:49 | 560.370868 |
| 32      | 2021-01-28 11:41 | 454.5554826 | 2021-01-28 12:15   | 525.022628 | 2021-01-28 14:50 | 567.075933 |
| 33      | 2021-01-28 11:42 | 473.4098626 | 2021-01-28 12:16   | 527.334951 | 2021-01-28 14:51 | 571.180414 |
| 34      | 2021-01-28 11:43 | 440.2829032 | 2021-01-28 12:17   | 529.775598 | 2021-01-28 14:52 | 575.540246 |
| 35      |                  |             | 2021-01-28 12:18   | 531.692031 | 2021-01-28 14:53 | 580.108631 |
| 36      |                  |             | 2021-01-28 12:19   | 532.529062 | 2021-01-28 14:54 | 585.223944 |
| 37      |                  |             | 2021-01-28 12:20   | 533.302616 | 2021-01-28 14:55 | 587.833933 |
| 38      |                  |             | 2021-01-28 12:21   | 533.809181 | 2021-01-28 14:56 | 588.063593 |
| 39      |                  |             | 2021-01-28 12:22   | 534.840909 | 2021-01-28 14:57 | 590.186743 |
| 40      |                  |             | 2021-01-28 12:23   | 534.513145 | 2021-01-28 14:58 | 592.32279  |
| 41      |                  |             | 2021-01-28 12:24   | 532.227968 | 2021-01-28 14:59 | 594.097399 |
| 42      |                  |             | 2021-01-28 12:25   | 531.361166 | 2021-01-28 15:00 | 596.083    |
| 43      |                  |             | 2021-01-28 12:26   | 529.081347 | 2021-01-28 15:01 | 596.539195 |
| 44      |                  |             | 2021-01-28 12:27   | 527.692128 | 2021-01-28 15:02 | 595.923055 |
| 45      |                  |             | 2021-01-28 12:28   | 525.227    | 2021-01-28 15:03 | 593.956982 |
| 46      |                  |             | 2021-01-28 12:29   | 523.940403 | 2021-01-28 15:04 | 593.889229 |
| 47      |                  |             | 2021-01-28 12:30   | 522.893912 | 2021-01-28 15:05 | 594.801642 |
| 48      |                  |             | 2021-01-28 12:31   | 521.410879 | 2021-01-28 15:06 | 591.242937 |

Medium Burn rate

| 1   |                  | 1          | 1                |            |
|-----|------------------|------------|------------------|------------|
| 107 | 2021-01-28 13:30 | -          |                  | 377.129758 |
| 108 | 2021-01-28 13:3: | -          | 2021-01-28 16:06 | 374.962247 |
| 109 | 2021-01-28 13:33 |            | 2021-01-28 16:07 | 373.094887 |
| 110 | 2021-01-28 13:33 |            | 2021-01-28 16:08 | 370.967632 |
| 111 | 2021-01-28 13:34 |            | 2021-01-28 16:09 | 368.288995 |
| 112 | 2021-01-28 13:3  | +          | 2021-01-28 16:10 | 366.261422 |
| 113 | 2021-01-28 13:30 | 363.919185 | 2021-01-28 16:11 | 364.156273 |
| 114 | 2021-01-28 13:3  |            |                  | 360.514015 |
| 115 | 2021-01-28 13:38 |            | 2021-01-28 16:13 | 355.668901 |
| 116 | 2021-01-28 13:39 | 358.522711 | 2021-01-28 16:14 | 350.710125 |
| 117 | 2021-01-28 13:40 | 356.716822 | 2021-01-28 16:15 | 346.127303 |
| 118 | 2021-01-28 13:4: | 355.335627 | 2021-01-28 16:16 | 342.65929  |
| 119 | 2021-01-28 13:42 | 353.400819 | 2021-01-28 16:17 | 339.229572 |
| 120 | 2021-01-28 13:43 | 352.333621 | 2021-01-28 16:18 | 336.270226 |
| 121 | 2021-01-28 13:44 | 351.214149 | 2021-01-28 16:19 | 333.469565 |
| 122 | 2021-01-28 13:4  | 349.837894 | 2021-01-28 16:20 | 331.024024 |
| 123 | 2021-01-28 13:40 | 348.802631 | 2021-01-28 16:21 | 328.542586 |
| 124 | 2021-01-28 13:4  | 347.281851 | 2021-01-28 16:22 | 326.155079 |
| 125 | 2021-01-28 13:48 | 346.239712 | 2021-01-28 16:23 | 323.611919 |
| 126 | 2021-01-28 13:49 | 345.479528 | 2021-01-28 16:24 | 320.693801 |
| 127 | 2021-01-28 13:50 | 345.448429 | 2021-01-28 16:25 | 318.077839 |
| 128 | 2021-01-28 13:5: | 345.262533 | 2021-01-28 16:26 | 315.89048  |
| 129 | 2021-01-28 13:52 | 345.40737  | 2021-01-28 16:27 | 313.761493 |
| 130 | 2021-01-28 13:53 | 345.583907 | 2021-01-28 16:28 | 311.823991 |
| 131 | 2021-01-28 13:54 |            | 2021-01-28 16:29 | 310.04596  |
| 132 | 2021-01-28 13:5  | +          |                  | 308.126537 |
| 133 | 2021-01-28 13:50 |            | 2021-01-28 16:31 | 306.859783 |
| 134 | 2021-01-28 13:5  |            | 2021-01-28 16:32 | 305.367913 |
| 135 | 2021-01-28 13:58 | +          | 2021-01-28 16:33 | 303.749544 |
| 136 | 2021-01-28 13:59 |            | 2021-01-28 16:34 | 302.2889   |
| 137 | 2021-01-28 14:00 |            |                  | 300.754065 |
| 138 | 2021-01-28 14:0: | +          | 2021-01-28 16:36 | 299.166837 |
| 139 | 2021-01-28 14:02 |            | 2021-01-28 16:37 | 297.929067 |
| 140 | 2021-01-28 14:03 | +          | 2021-01-28 16:38 | 296.564772 |
| 141 | 2021-01-28 14:04 |            | 2021-01-28 16:39 | 295.386889 |
| 142 | 2021-01-28 14:09 |            | 2021-01-28 16:40 | 294.311046 |
| 143 | 2021-01-28 14:00 |            |                  | 293.474744 |
| 144 | 2021-01-28 14:0  |            |                  |            |
| 145 | 2021-01-28 14:08 |            |                  | 291.720598 |
| 146 | 2021-01-28 14:09 | -          |                  | 290.855405 |
| 147 | 2021-01-28 14:10 | +          |                  | 289.935226 |
| 147 | 2021-01-28 14:10 |            |                  | 289.933220 |
| 149 | 2021-01-28 14:1: | +          | 2021-01-28 16:47 | 285.997244 |
| 150 | 2021-01-28 14:13 |            |                  | 284.082788 |
| 150 | 2021-01-28 14:13 |            |                  | 284.082788 |
|     |                  |            |                  |            |
| 152 | 2021-01-28 14:1  |            |                  | 281.216185 |
| 153 | 2021-01-28 14:10 | +          |                  | 279.626234 |
| 154 | 2021-01-28 14:1  |            |                  | 278.269302 |
| 155 | 2021-01-28 14:18 | 305.657475 |                  | 276.997115 |
| 156 |                  | +          | 2021-01-28 16:54 | 275.693082 |
| 157 |                  |            | 2021-01-28 16:55 | 274.51483  |
| 158 |                  |            | 2021-01-28 16:56 | 273.39032  |
| 159 |                  |            | 2021-01-28 16:57 | 272.558215 |
| 160 |                  |            | 2021-01-28 16:58 | 271.232245 |
| 161 |                  |            | 2021-01-28 16:59 | 270.230824 |
| 162 |                  |            | 2021-01-28 17:00 | 269.306925 |
| 163 |                  |            | 2021-01-28 17:01 | 268.269479 |
| 164 |                  |            | 2021-01-28 17:02 | 267.283445 |

Medium Burn rate

| 165        |  |  | 2021-01-28 17:03                     | 266.297695               |
|------------|--|--|--------------------------------------|--------------------------|
| 166        |  |  | 2021-01-28 17:04                     | 265.572699               |
| 167        |  |  | 2021-01-28 17:05                     | 264.653551               |
| 168        |  |  | 2021-01-28 17:06                     | 263.674494               |
| 169        |  |  | 2021-01-28 17:07                     | 262.77265                |
| 170        |  |  | 2021-01-28 17:08                     | 262.170408               |
| 171        |  |  | 2021-01-28 17:09                     | 261.419764               |
| 172        |  |  | 2021-01-28 17:10                     | 260.696208               |
| 173        |  |  | 2021-01-28 17:11                     | 259.976859               |
| 174        |  |  | 2021-01-28 17:12                     | 259.292522               |
| 175        |  |  | 2021-01-28 17:13                     | 258.663028               |
| 176        |  |  | 2021-01-28 17:14                     | 258.211955               |
| 177        |  |  | 2021-01-28 17:15                     | 257.805345               |
| 178        |  |  | 2021-01-28 17:16                     | 257.037385               |
| 179        |  |  | 2021-01-28 17:17                     | 256.27786                |
| 180        |  |  | 2021-01-28 17:17                     | 255.701479               |
| 181        |  |  | 2021-01-28 17:19                     | 255.305285               |
| 182        |  |  | 2021-01-28 17:19                     | 254.695178               |
| 183        |  |  | 2021-01-28 17:21                     | 254.212662               |
| 184        |  |  | 2021-01-28 17:22                     | 253.878352               |
| 185        |  |  | 2021-01-28 17:23                     | 253.105055               |
| 186        |  |  | 2021-01-28 17:24                     | 252.643117               |
| 187        |  |  | 2021-01-28 17:25                     | 251.927562               |
| 188        |  |  | 2021-01-28 17:26                     | 251.560368               |
| 189        |  |  | 2021-01-28 17:27                     | 251.560368               |
| 190        |  |  | 2021-01-28 17:28                     | 250.34573                |
| 190        |  |  | 2021-01-28 17:29                     | 249.501905               |
| 191        |  |  | 2021-01-28 17:29                     | 249.501905               |
| 192        |  |  | 2021-01-28 17:31                     | 248.345431               |
| 193        |  |  | 2021-01-28 17:32                     | 247.88265                |
| 194        |  |  | 2021-01-28 17:33                     | 247.88203                |
| 195        |  |  | 2021-01-28 17:34                     | 246.537149               |
| 190        |  |  | 2021-01-28 17:35                     | 246.337149               |
| 197        |  |  | 2021-01-28 17:36                     | 245.238398               |
| 199        |  |  | 2021-01-28 17:37                     | 244.911428               |
| 200        |  |  | 2021-01-28 17:38                     | 244.45147                |
| 200        |  |  | 2021-01-28 17:39                     | 243.96169                |
| 201        |  |  | 2021-01-28 17:39                     | 243.36109                |
| 202        |  |  | 2021-01-28 17:40                     | 242.806252               |
| 203        |  |  | 2021-01-28 17:42                     | 242.530288               |
|            |  |  |                                      |                          |
| 205<br>206 |  |  | 2021-01-28 17:43<br>2021-01-28 17:44 | 241.910093<br>241.389298 |
| 206        |  |  | 2021-01-28 17:44                     | 241.389298               |
|            |  |  |                                      |                          |
| 208        |  |  | 2021-01-28 17:46                     | 240.233077               |
| 209        |  |  | 2021-01-28 17:47                     | 239.52976                |
| 210        |  |  | 2021-01-28 17:48                     | 238.764541               |
| 211        |  |  | 2021-01-28 17:49                     | 238.20534                |
|            |  |  | 2021-01-28 17:50                     | 237.798554               |
| 213<br>214 |  |  | 2021-01-28 17:51<br>2021-01-28 17:52 | 237.224589<br>236.695975 |
| 214        |  |  | 2021-01-28 17:52                     | 236.695975               |
| 215        |  |  | 2021-01-28 17:54                     | 235.637528               |
| 216        |  |  | 2021-01-28 17:54                     | 235.637528               |
| 217        |  |  |                                      |                          |
|            |  |  | 2021-01-28 17:56                     | 234.818031               |
| 219<br>220 |  |  | 2021-01-28 17:57                     | 234.430146               |
| 220        |  |  | 2021-01-28 17:58<br>2021-01-28 17:59 | 233.894781<br>233.583542 |
|            |  |  |                                      |                          |
| 222        |  |  | 2021-01-28 18:00                     | 233.742668               |

|     | 1 | 1 | ı |                  |            |
|-----|---|---|---|------------------|------------|
| 223 |   |   |   | 2021-01-28 18:01 | 233.569383 |
| 224 |   |   |   | 2021-01-28 18:02 | 233.379558 |
| 225 |   |   |   | 2021-01-28 18:03 | 233.030259 |
| 226 |   |   |   | 2021-01-28 18:04 | 232.681708 |
| 227 |   |   |   | 2021-01-28 18:05 | 232.128084 |
| 228 |   |   |   | 2021-01-28 18:06 | 231.43207  |
| 229 |   |   |   | 2021-01-28 18:07 | 230.592911 |
| 230 |   |   |   | 2021-01-28 18:08 | 229.884214 |
| 231 |   |   |   | 2021-01-28 18:09 | 229.076883 |
| 232 |   |   |   | 2021-01-28 18:10 | 228.338127 |
| 233 |   |   |   | 2021-01-28 18:11 | 227.400423 |
| 234 |   |   |   | 2021-01-28 18:12 | 226.889205 |
| 235 |   |   |   | 2021-01-28 18:13 | 226.103647 |
| 236 |   |   |   | 2021-01-28 18:14 | 225.531682 |
| 237 |   |   |   | 2021-01-28 18:15 | 224.704568 |
| 238 |   |   |   | 2021-01-28 18:16 | 223.940167 |
| 239 |   |   |   | 2021-01-28 18:17 | 223.048429 |
| 240 |   |   |   | 2021-01-28 18:18 | 221.934514 |
| 241 |   |   |   | 2021-01-28 18:19 | 220.99467  |
| 242 |   |   |   | 2021-01-28 18:20 | 219.940741 |
| 243 |   |   |   | 2021-01-28 18:21 | 218.877535 |
| 244 |   |   |   | 2021-01-28 18:22 | 218.022975 |
| 245 |   |   |   | 2021-01-28 18:23 | 217.107397 |
| 246 |   |   |   | 2021-01-28 18:24 | 216.212543 |
| 247 |   |   |   | 2021-01-28 18:25 | 215.319282 |
| 248 |   |   |   | 2021-01-28 18:26 | 214.340928 |
| 249 |   |   |   | 2021-01-28 18:27 | 213.369098 |
| 250 |   |   |   | 2021-01-28 18:28 | 212.658123 |
| 251 |   |   |   | 2021-01-28 18:29 | 211.512125 |
| 252 |   |   |   | 2021-01-28 18:30 | 210.693724 |
| 253 |   |   |   | 2021-01-28 18:31 | 209.818392 |
| 254 |   |   |   | 2021-01-28 18:32 | 208.858649 |
| 255 |   |   |   | 2021-01-28 18:33 | 207.979575 |
| 256 |   |   |   | 2021-01-28 18:34 | 207.2999   |
| 257 |   |   |   | 2021-01-28 18:35 | 206.408384 |
| 258 |   |   |   | 2021-01-28 18:36 | 205.48114  |
| 259 |   |   |   | 2021-01-28 18:37 | 204.685437 |
| 260 |   |   |   | 2021-01-28 18:38 | 203.913954 |
| 261 |   |   |   | 2021-01-28 18:39 | 202.800278 |
| 262 |   |   |   | 2021-01-28 18:40 | 201.980089 |
| 263 |   |   |   | 2021-01-28 18:41 | 201.106298 |
| 264 |   |   |   | 2021-01-28 18:42 | 200.384118 |
| 265 |   |   |   | 2021-01-28 18:43 | 199.58525  |
| 266 |   |   |   | 2021-01-28 18:44 | 198.914323 |
| 267 |   |   |   | 2021-01-28 18:45 | 198.162041 |
| 268 |   |   |   | 2021-01-28 18:46 | 197.403182 |
| 269 |   |   |   | 2021-01-28 18:47 | 196.74399  |
| 270 |   |   |   | 2021-01-28 18:48 | 196.242589 |
| 270 |   |   |   | 2021-01-28 18:49 | 195.495525 |
| 271 |   |   |   | 2021-01-28 18:50 | 193.493323 |
| 272 |   |   |   | 2021-01-28 18:51 | 194.768001 |
| 273 |   |   |   | 2021-01-28 18:52 | 193.62247  |
| 274 |   |   |   | 2021-01-28 18:53 | 193.02247  |
| 275 |   |   |   | 2021-01-28 18:54 | 192.826038 |
| 270 |   |   |   |                  |            |
| 277 |   |   |   | 2021-01-28 18:55 | 191.628987 |
| 278 |   |   |   | 2021-01-28 18:56 | 191.14341  |
| -   |   |   |   | 2021-01-28 18:57 | 190.497899 |
| 280 |   |   |   | 2021-01-28 18:58 | 189.889625 |

#### 2.1 Series Pre-burn Data

2021-02-10

Total time (h)

8.75

| Load time        | Load type      | Fuel added | Moisture |                    | Time  |
|------------------|----------------|------------|----------|--------------------|-------|
| (-)              | (-)            | (lbs)      | (%)      |                    | (min) |
| 2021-02-10 10:58 | Kindling & SUF | 5.85       | 16       | Pre-Charge (min)   | 42    |
| 2021-02-10 11:40 | High fire      | 11.75      | 20.1     | Conditioning (min) | 128   |
| 2021-02-10 13:48 | Medium fire    | 14.30      | 20.4     | Load (min)         | 355   |

|         | Pre-Charge (min) | 42          | Conditioning (min) | 128        | Load (min)       | 355        |
|---------|------------------|-------------|--------------------|------------|------------------|------------|
| Minutes | Date & Time      | Flue (F)    | Date & Time        | Flue (F)   | Date & Time      | Flue (F)   |
| 1       | 2021-02-10 10:58 | 101.7287734 | 2021-02-10 11:40   | 386.868072 | 2021-02-10 13:48 | 315.537797 |
| 2       | 2021-02-10 10:59 | 135.6598931 | 2021-02-10 11:41   | 377.473963 | 2021-02-10 13:49 | 295.238611 |
| 3       | 2021-02-10 11:00 | 162.1910605 | 2021-02-10 11:42   | 373.015909 | 2021-02-10 13:50 | 270.371274 |
| 4       | 2021-02-10 11:01 | 191.328721  | 2021-02-10 11:43   | 374.678235 | 2021-02-10 13:51 | 256.079194 |
| 5       | 2021-02-10 11:02 | 252.3599299 | 2021-02-10 11:44   | 391.808903 | 2021-02-10 13:52 | 254.838297 |
| 6       | 2021-02-10 11:03 | 311.4179356 | 2021-02-10 11:45   | 416.393678 | 2021-02-10 13:53 | 257.249461 |
| 7       | 2021-02-10 11:04 | 375.1923227 | 2021-02-10 11:46   | 456.516459 | 2021-02-10 13:54 | 265.203334 |
| 8       | 2021-02-10 11:05 | 436.6045185 | 2021-02-10 11:47   | 489.027373 | 2021-02-10 13:55 | 266.689215 |
| 9       | 2021-02-10 11:06 | 465.8752802 | 2021-02-10 11:48   | 512.628816 | 2021-02-10 13:56 | 267.39876  |
| 10      | 2021-02-10 11:07 | 483.9520433 | 2021-02-10 11:49   | 538.105057 | 2021-02-10 13:57 | 268.08989  |
| 11      | 2021-02-10 11:08 | 492.4099699 | 2021-02-10 11:50   | 552.212481 | 2021-02-10 13:58 | 270.037167 |
| 12      | 2021-02-10 11:09 | 498.987675  | 2021-02-10 11:51   | 562.292816 | 2021-02-10 13:59 | 282.503066 |
| 13      | 2021-02-10 11:10 | 500.006422  | 2021-02-10 11:52   | 574.520504 | 2021-02-10 14:00 | 299.581322 |
| 14      | 2021-02-10 11:11 | 501.252963  | 2021-02-10 11:53   | 585.293875 | 2021-02-10 14:01 | 314.604415 |
| 15      | 2021-02-10 11:12 | 512.0841553 | 2021-02-10 11:54   | 593.990264 | 2021-02-10 14:02 | 332.181603 |
| 16      | 2021-02-10 11:13 | 513.7117376 | 2021-02-10 11:55   | 600.052794 | 2021-02-10 14:03 | 353.211359 |
| 17      | 2021-02-10 11:14 | 516.3345307 | 2021-02-10 11:56   | 608.322787 | 2021-02-10 14:04 | 357.09449  |
| 18      | 2021-02-10 11:15 | 519.9224705 | 2021-02-10 11:57   | 612.314582 | 2021-02-10 14:05 | 367.803549 |
| 19      | 2021-02-10 11:16 | 523.4779913 | 2021-02-10 11:58   | 613.750169 | 2021-02-10 14:06 | 387.28179  |
| 20      | 2021-02-10 11:17 | 522.1169774 | 2021-02-10 11:59   | 611.538291 | 2021-02-10 14:07 | 407.116386 |
| 21      | 2021-02-10 11:18 | 520.4293681 | 2021-02-10 12:00   | 608.592248 | 2021-02-10 14:08 | 432.481106 |
| 22      | 2021-02-10 11:19 | 516.956675  | 2021-02-10 12:01   | 606.081461 | 2021-02-10 14:09 | 453.966983 |
| 23      | 2021-02-10 11:20 | 511.8663097 | 2021-02-10 12:02   | 604.405601 | 2021-02-10 14:10 | 467.942583 |
| 24      | 2021-02-10 11:21 | 505.3652028 | 2021-02-10 12:03   | 604.257433 | 2021-02-10 14:11 | 481.406033 |
| 25      | 2021-02-10 11:22 | 501.1261265 | 2021-02-10 12:04   | 604.851304 | 2021-02-10 14:12 | 489.771244 |
| 26      | 2021-02-10 11:23 | 497.8936505 | 2021-02-10 12:05   | 605.036353 | 2021-02-10 14:13 | 495.494531 |
| 27      | 2021-02-10 11:24 | 495.9338268 | 2021-02-10 12:06   | 606.791136 | 2021-02-10 14:14 | 499.926608 |
| 28      | 2021-02-10 11:25 | 495.8959612 | 2021-02-10 12:07   | 609.5787   | 2021-02-10 14:15 | 501.637494 |
| 29      | 2021-02-10 11:26 | 494.2917539 | 2021-02-10 12:08   | 611.756149 | 2021-02-10 14:16 | 501.751272 |
| 30      | 2021-02-10 11:27 | 492.58453   | 2021-02-10 12:09   | 612.679963 | 2021-02-10 14:17 | 501.471604 |
| 31      | 2021-02-10 11:28 | 491.5031002 | 2021-02-10 12:10   | 613.439078 | 2021-02-10 14:18 | 501.112022 |
| 32      | 2021-02-10 11:29 | 488.7942884 | 2021-02-10 12:11   | 612.02363  | 2021-02-10 14:19 | 502.32528  |
| 33      | 2021-02-10 11:30 | 479.4942317 | 2021-02-10 12:12   | 608.774734 | 2021-02-10 14:20 | 505.002989 |
| 34      | 2021-02-10 11:31 | 467.1638834 | 2021-02-10 12:13   | 605.276862 | 2021-02-10 14:21 | 507.404332 |
| 35      | 2021-02-10 11:32 | 456.1880898 | 2021-02-10 12:14   | 601.569029 | 2021-02-10 14:22 | 508.722457 |
| 36      | 2021-02-10 11:33 | 446.2674274 | 2021-02-10 12:15   | 597.488728 | 2021-02-10 14:23 | 509.010288 |
| 37      | 2021-02-10 11:34 | 439.2996351 | 2021-02-10 12:16   | 593.416143 | 2021-02-10 14:24 | 509.417514 |
| 38      | 2021-02-10 11:35 | 432.5746465 | 2021-02-10 12:17   | 588.611755 | 2021-02-10 14:25 | 508.868824 |
| 39      | 2021-02-10 11:36 | 424.4342685 | 2021-02-10 12:18   | 584.43221  | 2021-02-10 14:26 | 508.835549 |
| 40      | 2021-02-10 11:37 | 417.2890041 | 2021-02-10 12:19   | 580.465717 | 2021-02-10 14:27 | 508.130471 |
| 41      | 2021-02-10 11:38 | 411.4777466 | 2021-02-10 12:20   | 576.076374 | 2021-02-10 14:28 | 507.934493 |
| 42      | 2021-02-10 11:39 | 400.3724683 | 2021-02-10 12:21   | 572.572769 | 2021-02-10 14:29 | 508.940408 |
| 43      |                  |             | 2021-02-10 12:22   | 569.243802 | 2021-02-10 14:30 | 509.501418 |
| 44      |                  |             | 2021-02-10 12:23   | 569.68431  | 2021-02-10 14:31 | 509.851706 |
| 45      |                  |             | 2021-02-10 12:24   | 570.018    | 2021-02-10 14:32 | 509.930476 |
| 46      |                  |             | 2021-02-10 12:25   | 569.660948 | 2021-02-10 14:33 | 511.666734 |
| 47      |                  |             | 2021-02-10 12:26   | 565.966342 | 2021-02-10 14:34 | 513.778446 |

|     | 1 | Ī                |            | 1                |            |
|-----|---|------------------|------------|------------------|------------|
| 48  |   | 2021-02-10 12:27 | 562.546625 | 2021-02-10 14:35 | 514.500859 |
| 49  |   | 2021-02-10 12:28 | 559.197245 | 2021-02-10 14:36 | 514.830075 |
| 50  |   | 2021-02-10 12:29 | 556.316981 | 2021-02-10 14:37 | 514.224929 |
| 51  |   | 2021-02-10 12:30 | 552.565511 | 2021-02-10 14:38 | 513.058916 |
| 52  |   | 2021-02-10 12:31 | 546.530811 | 2021-02-10 14:39 | 511.645582 |
| 53  |   | 2021-02-10 12:32 | 541.495786 | 2021-02-10 14:40 | 509.776509 |
| 54  |   | 2021-02-10 12:33 | 537.923717 | 2021-02-10 14:41 | 507.243289 |
| 55  |   | 2021-02-10 12:34 | 533.050281 | 2021-02-10 14:42 | 504.526961 |
| 56  |   | 2021-02-10 12:35 | 524.256425 | 2021-02-10 14:43 | 501.373217 |
| 57  |   | 2021-02-10 12:36 | 514.350599 | 2021-02-10 14:44 | 497.628961 |
| 58  |   | 2021-02-10 12:37 | 505.521783 | 2021-02-10 14:45 | 494.354461 |
| 59  |   | 2021-02-10 12:38 | 498.446715 | 2021-02-10 14:46 | 490.714389 |
| 60  |   | 2021-02-10 12:39 | 491.58679  | 2021-02-10 14:47 | 486.821118 |
| 61  |   | 2021-02-10 12:40 | 485.085694 | 2021-02-10 14:48 | 483.056967 |
| 62  |   | 2021-02-10 12:41 | 479.473832 | 2021-02-10 14:49 | 479.190276 |
| 63  |   | 2021-02-10 12:42 | 473.485056 | 2021-02-10 14:50 | 474.111874 |
| 64  |   | 2021-02-10 12:43 | 469.430249 | 2021-02-10 14:51 | 468.040141 |
| 65  |   | 2021-02-10 12:44 | 465.396897 | 2021-02-10 14:52 | 461.492971 |
| 66  |   | 2021-02-10 12:45 | 461.519098 | 2021-02-10 14:53 | 455.235694 |
| 67  |   | 2021-02-10 12:46 | 457.043521 | 2021-02-10 14:54 | 448.151305 |
| 68  |   | 2021-02-10 12:47 | 453.136766 | 2021-02-10 14:55 | 441.463797 |
| 69  |   | 2021-02-10 12:48 | 450.267712 | 2021-02-10 14:56 | 434.949633 |
| 70  |   | 2021-02-10 12:49 | 446.104896 | 2021-02-10 14:57 | 428.753954 |
| 71  |   | 2021-02-10 12:50 | 442.029983 | 2021-02-10 14:58 | 423.938636 |
| 72  |   | 2021-02-10 12:51 | 438.448564 | 2021-02-10 14:59 | 419.605237 |
| 73  |   | 2021-02-10 12:52 | 435.035822 | 2021-02-10 15:00 | 415.427649 |
| 74  |   | 2021-02-10 12:53 | 432.208426 | 2021-02-10 15:01 | 410.937182 |
| 75  |   | 2021-02-10 12:54 | 428.869274 | 2021-02-10 15:02 | 405.878343 |
| 76  |   | 2021-02-10 12:55 | 425.926323 | 2021-02-10 15:03 | 400.791455 |
| 77  |   | 2021-02-10 12:56 | 423.048415 | 2021-02-10 15:04 | 395.93713  |
| 78  |   | 2021-02-10 12:57 | 421.0403   | 2021-02-10 15:05 | 391.390922 |
| 79  |   | 2021-02-10 12:58 | 418.443374 | 2021-02-10 15:06 | 386.954626 |
| 80  |   | 2021-02-10 12:59 | 416.917219 | 2021-02-10 15:07 | 382.588335 |
| 81  |   | 2021-02-10 13:00 | 414.593369 | 2021-02-10 15:08 | 377.825265 |
| 82  |   | 2021-02-10 13:01 | 413.169669 | 2021-02-10 15:09 | 373.66241  |
| 83  |   | 2021-02-10 13:02 | 412.10576  | 2021-02-10 15:10 | 370.249292 |
| 84  |   | 2021-02-10 13:03 | 411.174375 | 2021-02-10 15:11 | 367.643661 |
| 85  |   | 2021-02-10 13:04 |            |                  |            |
| 86  |   | 2021-02-10 13:05 | 408.138189 | 2021-02-10 15:13 | 363.13964  |
| 87  |   | 2021-02-10 13:06 | 407.487813 | 2021-02-10 15:14 | 360.54259  |
| 88  |   | 2021-02-10 13:07 | 406.315864 | 2021-02-10 15:15 | 358.932844 |
| 89  |   | 2021-02-10 13:08 | 405.220263 | 2021-02-10 15:16 | 356.888549 |
| 90  |   | 2021-02-10 13:09 | 404.228889 | 2021-02-10 15:17 | 354.1168   |
| 91  |   | 2021-02-10 13:09 | 404.228883 | 2021-02-10 15:17 | 351.269664 |
| 92  |   | 2021-02-10 13:10 | 402.001143 | 2021-02-10 15:19 | 349.199801 |
| 93  |   | 2021-02-10 13:11 | 402.001143 | 2021-02-10 15:19 | 347.415088 |
| 93  |   |                  | 400.827736 |                  |            |
| 95  |   | 2021-02-10 13:13 |            | 2021-02-10 15:21 | 345.233296 |
|     |   | 2021-02-10 13:14 | 398.871704 | 2021-02-10 15:22 | 343.210538 |
| 96  |   | 2021-02-10 13:15 | 397.566153 | 2021-02-10 15:23 | 341.662329 |
| 97  |   | 2021-02-10 13:16 | 396.239106 | 2021-02-10 15:24 | 339.623694 |
| 98  |   | 2021-02-10 13:17 | 394.931147 | 2021-02-10 15:25 | 337.310695 |
| 99  |   | 2021-02-10 13:18 | 394.17213  | 2021-02-10 15:26 | 334.399358 |
| 100 |   | 2021-02-10 13:19 | 393.178956 | 2021-02-10 15:27 | 330.606544 |
| 101 |   | 2021-02-10 13:20 | 392.665444 | 2021-02-10 15:28 | 326.449437 |
| 102 |   | 2021-02-10 13:21 | 391.362042 | 2021-02-10 15:29 | 322.808962 |
| 103 |   | 2021-02-10 13:22 | 389.375034 | 2021-02-10 15:30 | 319.181041 |
| 104 |   | 2021-02-10 13:23 | 387.587378 | 2021-02-10 15:31 | 316.178547 |
| 105 |   | 2021-02-10 13:24 | 385.06083  | 2021-02-10 15:32 | 313.117408 |

|     | 1     |                  |            |                  |                                |
|-----|-------|------------------|------------|------------------|--------------------------------|
| 106 |       | 2021-02-10 13:25 | 382.724323 | 2021-02-10 15:33 | 310.808755                     |
| 107 |       | 2021-02-10 13:26 | 379.626932 | 2021-02-10 15:34 | 308.573374                     |
| 108 |       | 2021-02-10 13:27 | 376.919752 | 2021-02-10 15:35 | 304.886517                     |
| 109 |       | 2021-02-10 13:28 | 374.099684 | 2021-02-10 15:36 | 301.852701                     |
| 110 |       | 2021-02-10 13:29 | 371.380203 | 2021-02-10 15:37 | 300.329738                     |
| 111 |       | 2021-02-10 13:30 | 368.634155 | 2021-02-10 15:38 | 298.176625                     |
| 112 |       | 2021-02-10 13:31 | 367.05842  | 2021-02-10 15:39 | 296.070151                     |
| 113 |       | 2021-02-10 13:32 | 364.870241 | 2021-02-10 15:40 | 294.003053                     |
| 114 |       | 2021-02-10 13:33 | 360.954857 | 2021-02-10 15:41 | 292.388324                     |
| 115 |       | 2021-02-10 13:34 | 357.28918  | 2021-02-10 15:42 | 290.928339                     |
| 116 |       | 2021-02-10 13:35 | 353.780716 | 2021-02-10 15:43 | 289.807284                     |
| 117 |       | 2021-02-10 13:36 | 348.773728 | 2021-02-10 15:44 | 289.119979                     |
| 118 |       | 2021-02-10 13:37 | 344.631284 | 2021-02-10 15:45 | 288.933732                     |
| 119 |       | 2021-02-10 13:38 | 340.967996 | 2021-02-10 15:46 | 288.58285                      |
| 120 |       | 2021-02-10 13:39 | 337.896169 | 2021-02-10 15:47 | 287.985328                     |
| 121 |       | 2021-02-10 13:40 | 335.336829 | 2021-02-10 15:48 | 287.235102                     |
| 122 |       | 2021-02-10 13:41 | 332.510797 | 2021-02-10 15:49 | 285.874811                     |
| 123 |       | 2021-02-10 13:42 | 330.219093 | 2021-02-10 15:50 | 284.503893                     |
| 124 |       | 2021-02-10 13:43 | 327.66417  | 2021-02-10 15:51 | 282.432929                     |
| 125 |       | 2021-02-10 13:44 | 325.451146 | 2021-02-10 15:52 | 280.252652                     |
| 126 |       | 2021-02-10 13:45 | 323.736367 | 2021-02-10 15:53 | 277.259165                     |
| 127 |       | 2021-02-10 13:46 | 321.721466 | 2021-02-10 15:54 | 274.346695                     |
| 128 |       | 2021-02-10 13:47 | 315.181865 | 2021-02-10 15:55 | 272.193417                     |
| 129 |       | 2021 02 10 13.47 | 313.101003 | 2021-02-10 15:56 | 269.345745                     |
| 130 |       |                  |            | 2021-02-10 15:57 | 265.950561                     |
| 131 |       |                  |            | 2021-02-10 15:58 | 262.942538                     |
| 132 |       |                  |            | 2021-02-10 15:59 | 260.115195                     |
| 133 |       |                  |            | 2021-02-10 15:59 | 257.757966                     |
| 134 |       |                  |            | 2021-02-10 16:01 | 255.41408                      |
| 135 |       |                  |            | 2021-02-10 16:02 | 253.110472                     |
| 136 |       |                  |            | 2021-02-10 16:03 | 251.218316                     |
| 137 |       |                  |            | 2021-02-10 16:04 | 249.084059                     |
| 137 |       |                  |            | 2021-02-10 16:05 | 247.463838                     |
| 139 |       |                  |            | 2021-02-10 16:06 | 247.403838                     |
|     |       |                  |            |                  |                                |
| 140 |       |                  |            | 2021-02-10 16:07 | 244.479899                     |
| 141 |       |                  |            | 2021-02-10 16:08 | 242.770467                     |
| 142 |       |                  |            | 2021-02-10 16:09 | 241.167839                     |
| 143 |       |                  |            | 2021-02-10 16:10 | 239.631377                     |
| 144 |       |                  |            | 2021-02-10 16:11 | 238.179775                     |
| 145 |       |                  |            | 2021-02-10 16:12 | 237.058635                     |
| 146 |       |                  |            | 2021-02-10 16:13 | 235.990538                     |
| 147 |       |                  |            | 2021-02-10 16:14 | 234.724278                     |
| 148 |       |                  |            | 2021-02-10 16:15 | 233.580041                     |
| 149 |       |                  |            | 2021-02-10 16:16 | 232.83401                      |
| 150 |       |                  |            | 2021-02-10 16:17 | 231.598793                     |
| 151 |       |                  |            | 2021-02-10 16:18 | 230.997281                     |
| 152 | <br>  |                  |            | 2021-02-10 16:19 | 230.09843                      |
| 153 |       |                  |            | 2021-02-10 16:20 | 229.340257                     |
| 154 |       |                  |            | 2021-02-10 16:21 | 228.661381                     |
| 155 |       |                  |            | 2021-02-10 16:22 | 227.955336                     |
| 156 |       |                  |            | 2021-02-10 16:23 | 227.691922                     |
| 157 |       |                  |            | 2021-02-10 16:24 | 226.948962                     |
| 158 |       |                  |            | 2021-02-10 16:25 | 226.239038                     |
| 159 |       |                  |            | 2021-02-10 16:26 | 225.891514                     |
| 160 |       |                  |            | 2021-02-10 16:27 | 225.393136                     |
| 161 |       |                  |            | 2021-02-10 16:28 | 224.990769                     |
| 162 |       |                  |            | 2021-02-10 16:29 | 224.936944                     |
| 163 |       |                  |            | 2021-02-10 16:30 | 224.445849                     |
| 103 | <br>1 | <u> </u>         |            | 2021 02 10 10:50 | <del>.</del> JU <del>-</del> J |

|     |     | T | I | T                | 1          |
|-----|-----|---|---|------------------|------------|
| 164 |     |   |   | 2021-02-10 16:31 |            |
| 165 |     |   |   | 2021-02-10 16:32 | 223.816101 |
| 166 |     |   |   | 2021-02-10 16:33 | 223.635161 |
| 167 |     |   |   | 2021-02-10 16:34 | 223.671717 |
| 168 |     |   |   | 2021-02-10 16:35 | 223.58804  |
| 169 |     |   |   | 2021-02-10 16:36 | 223.8742   |
| 170 |     |   |   | 2021-02-10 16:37 | 223.891944 |
| 171 |     |   |   | 2021-02-10 16:38 | 224.012853 |
| 172 |     |   |   | 2021-02-10 16:39 | 224.063272 |
| 173 |     |   |   | 2021-02-10 16:40 | 224.227078 |
| 174 |     |   |   | 2021-02-10 16:41 | 229.961622 |
| 175 |     |   |   | 2021-02-10 16:42 | 235.55031  |
| 176 |     |   |   | 2021-02-10 16:43 | 240.472496 |
| 177 |     |   |   | 2021-02-10 16:44 | 244.78502  |
| 178 |     |   |   | 2021-02-10 16:45 | 248.026143 |
| 179 |     |   |   | 2021-02-10 16:46 | 251.267012 |
| 180 |     |   |   | 2021-02-10 16:47 | 254.163254 |
| 181 |     |   |   | 2021-02-10 16:48 | 255.196464 |
| 182 |     |   |   | 2021-02-10 16:49 | 254.678162 |
| 183 |     |   |   | 2021-02-10 16:49 | 251.090812 |
| 184 |     |   |   | 2021-02-10 16:51 | 247.486543 |
| 185 |     |   |   | 2021-02-10 16:51 |            |
|     |     |   |   | 2021-02-10 16:52 | 244.705317 |
| 186 |     |   |   |                  | 242.21451  |
| 187 |     |   |   | 2021-02-10 16:54 | 239.900096 |
| 188 |     |   |   | 2021-02-10 16:55 | 238.064836 |
| 189 |     |   |   | 2021-02-10 16:56 | 236.241986 |
| 190 |     |   |   | 2021-02-10 16:57 | 234.869886 |
| 191 |     |   |   | 2021-02-10 16:58 |            |
| 192 |     |   |   | 2021-02-10 16:59 |            |
| 193 |     |   |   | 2021-02-10 17:00 | 230.821641 |
| 194 |     |   |   | 2021-02-10 17:01 | 229.698961 |
| 195 |     |   |   | 2021-02-10 17:02 | 228.863415 |
| 196 |     |   |   | 2021-02-10 17:03 | 227.927091 |
| 197 |     |   |   | 2021-02-10 17:04 | 227.202464 |
| 198 |     |   |   | 2021-02-10 17:05 | 226.369033 |
| 199 |     |   |   | 2021-02-10 17:06 | 225.515738 |
| 200 |     |   |   | 2021-02-10 17:07 | 224.596799 |
| 201 |     |   |   | 2021-02-10 17:08 | 224.112415 |
| 202 |     |   |   | 2021-02-10 17:09 | 223.533661 |
| 203 |     |   |   | 2021-02-10 17:10 | 222.500955 |
| 204 |     |   |   | 2021-02-10 17:11 | 221.94511  |
| 205 |     |   |   | 2021-02-10 17:12 | 221.306924 |
| 206 |     |   |   | 2021-02-10 17:13 | 220.945601 |
| 207 |     |   |   | 2021-02-10 17:14 | 220.391483 |
| 208 |     |   |   | 2021-02-10 17:15 | 219.809575 |
| 209 |     |   |   | 2021-02-10 17:16 | 219.457704 |
| 210 |     |   |   | 2021-02-10 17:17 | 218.793428 |
| 211 |     |   |   | 2021-02-10 17:18 | 218.470819 |
| 212 |     |   |   | 2021-02-10 17:19 | 218.382875 |
| 213 |     |   |   | 2021-02-10 17:20 | 217.808858 |
| 214 |     |   |   | 2021-02-10 17:21 | 217.255009 |
| 215 |     |   |   | 2021-02-10 17:22 | 217.026235 |
| 216 |     |   |   | 2021-02-10 17:23 | 216.874323 |
| 217 |     |   |   | 2021-02-10 17:24 |            |
| 218 |     |   |   | 2021-02-10 17:25 | 215.916979 |
| 219 |     |   |   | 2021-02-10 17:26 | 215.397584 |
| 220 |     |   |   | 2021-02-10 17:27 | 215.044078 |
| 221 |     |   |   | 2021-02-10 17:28 | 214.60412  |
|     | l . | 1 | 1 |                  |            |

|                                       |  | 1            |                  |            |
|---------------------------------------|--|--------------|------------------|------------|
| 222                                   |  |              | 2021-02-10 17:29 | 214.428764 |
| 223                                   |  |              | 2021-02-10 17:30 | 213.963883 |
| 224                                   |  |              | 2021-02-10 17:31 | 213.706251 |
| 225                                   |  |              | 2021-02-10 17:32 | 213.207374 |
| 226                                   |  |              | 2021-02-10 17:33 | 212.554007 |
| 227                                   |  |              | 2021-02-10 17:34 | 212.021937 |
| 228                                   |  |              | 2021-02-10 17:35 | 211.496425 |
| 229                                   |  |              | 2021-02-10 17:36 | 211.24732  |
| 230                                   |  |              | 2021-02-10 17:37 | 210.740429 |
| 231                                   |  |              | 2021-02-10 17:38 | 210.186372 |
| 232                                   |  |              | 2021-02-10 17:39 | 209.917443 |
| 233                                   |  |              | 2021-02-10 17:40 | 209.621212 |
| 234                                   |  |              | 2021-02-10 17:41 | 209.413139 |
| 235                                   |  |              | 2021-02-10 17:42 | 209.023903 |
| 236                                   |  |              | 2021-02-10 17:42 | 208.851963 |
| 237                                   |  |              | 2021-02-10 17:44 | 208.338289 |
| 237                                   |  |              | 2021-02-10 17:44 | 208.336269 |
| 238                                   |  |              | 2021-02-10 17:45 |            |
|                                       |  |              |                  | 207.533666 |
| 240                                   |  |              | 2021-02-10 17:47 | 207.213772 |
| 241                                   |  |              | 2021-02-10 17:48 | 206.982067 |
| 242                                   |  |              | 2021-02-10 17:49 | 206.681197 |
| 243                                   |  |              | 2021-02-10 17:50 | 206.218629 |
| 244                                   |  |              | 2021-02-10 17:51 | 205.874935 |
| 245                                   |  |              | 2021-02-10 17:52 | 205.506227 |
| 246                                   |  |              | 2021-02-10 17:53 | 204.915151 |
| 247                                   |  |              | 2021-02-10 17:54 | 204.656491 |
| 248                                   |  |              | 2021-02-10 17:55 | 204.107967 |
| 249                                   |  |              | 2021-02-10 17:56 | 203.940944 |
| 250                                   |  |              | 2021-02-10 17:57 | 203.419843 |
| 251                                   |  |              | 2021-02-10 17:58 | 202.900168 |
| 252                                   |  |              | 2021-02-10 17:59 | 202.521783 |
| 253                                   |  |              | 2021-02-10 18:00 | 202.119265 |
| 254                                   |  |              | 2021-02-10 18:01 | 201.76761  |
| 255                                   |  |              | 2021-02-10 18:02 | 201.27259  |
| 256                                   |  |              | 2021-02-10 18:03 | 200.924538 |
| 257                                   |  |              | 2021-02-10 18:04 | 200.701083 |
| 258                                   |  |              | 2021-02-10 18:05 | 200.367957 |
| 259                                   |  |              | 2021-02-10 18:06 |            |
| 260                                   |  |              | 2021-02-10 18:07 | 199.33502  |
| 261                                   |  |              | 2021-02-10 18:08 | 198.932122 |
| 262                                   |  | 1            | 2021-02-10 18:09 | 198.605383 |
| 263                                   |  | 1            | 2021-02-10 18:09 | 198.016822 |
| 263                                   |  | <del> </del> | 2021-02-10 18:10 | 198.016822 |
|                                       |  |              |                  |            |
| 265                                   |  |              | 2021-02-10 18:12 | 197.545222 |
| 266                                   |  | 1            | 2021-02-10 18:13 | 197.180018 |
| 267                                   |  |              | 2021-02-10 18:14 | 196.513157 |
| 268                                   |  |              | 2021-02-10 18:15 | 196.145856 |
| 269                                   |  |              | 2021-02-10 18:16 | 195.879353 |
| 270                                   |  | ļ            | 2021-02-10 18:17 | 195.303603 |
| 271                                   |  |              | 2021-02-10 18:18 | 195.185681 |
| 272                                   |  |              | 2021-02-10 18:19 | 194.341128 |
| 273                                   |  |              | 2021-02-10 18:20 | 194.037595 |
| 274                                   |  |              | 2021-02-10 18:21 | 193.693831 |
| 275                                   |  |              | 2021-02-10 18:22 | 193.390813 |
| 276                                   |  |              | 2021-02-10 18:23 | 193.067679 |
| 277                                   |  |              | 2021-02-10 18:24 | 192.691026 |
| 278                                   |  |              | 2021-02-10 18:25 | 191.981326 |
| 279                                   |  |              | 2021-02-10 18:26 | 191.338451 |
| · · · · · · · · · · · · · · · · · · · |  |              |                  |            |

|            | I | 1 |   | 1 |                                      |                          |
|------------|---|---|---|---|--------------------------------------|--------------------------|
| 280        |   |   |   |   | 2021-02-10 18:27                     | 190.979108               |
| 281        |   |   |   |   | 2021-02-10 18:28                     | 190.513102               |
| 282        |   |   |   |   | 2021-02-10 18:29                     | 189.932642               |
| 283        |   |   |   |   | 2021-02-10 18:30                     | 189.643028               |
| 284        |   |   |   |   | 2021-02-10 18:31                     | 189.215624               |
| 285        |   |   |   |   | 2021-02-10 18:32                     | 188.675169               |
| 286        |   |   |   |   | 2021-02-10 18:33                     | 188.175044               |
| 287        |   |   |   |   | 2021-02-10 18:34                     | 187.84164                |
| 288        |   |   |   |   | 2021-02-10 18:35                     | 187.173338               |
| 289        |   |   |   |   | 2021-02-10 18:36                     | 186.835825               |
| 290        |   |   |   |   | 2021-02-10 18:37                     | 186.363582               |
| 291        |   |   |   |   | 2021-02-10 18:38                     | 185.842576               |
| 292        |   |   |   |   | 2021-02-10 18:39                     | 185.385567               |
| 293        |   |   |   |   | 2021-02-10 18:40                     | 185.230712               |
| 294        |   |   |   |   | 2021-02-10 18:41                     | 184.690605               |
| 295        |   |   |   |   | 2021-02-10 18:42                     | 184.270774               |
| 296        |   |   |   |   | 2021-02-10 18:43                     | 183.719492               |
| 297        |   |   |   |   | 2021-02-10 18:44                     | 183.172452               |
| 298        |   |   |   | + | 2021-02-10 18:45                     | 182.576348               |
| 299        |   |   |   |   | 2021-02-10 18:45                     | 182.118437               |
| 300        |   |   |   |   | 2021-02-10 18:47                     | 181.812069               |
| 300        |   |   |   |   | 2021-02-10 18:47                     | 181.417066               |
| 301        |   |   | 1 |   | 2021-02-10 18:48                     | 181.087243               |
|            |   |   |   |   |                                      |                          |
| 303<br>304 |   |   |   |   | 2021-02-10 18:50<br>2021-02-10 18:51 | 180.553105<br>180.117776 |
|            |   |   |   |   |                                      |                          |
| 305        |   |   |   |   | 2021-02-10 18:52                     | 179.62764                |
| 306        |   |   |   |   | 2021-02-10 18:53                     | 179.372902               |
| 307        |   |   |   |   | 2021-02-10 18:54                     | 178.925686               |
| 308        |   |   |   |   | 2021-02-10 18:55                     | 178.54505                |
| 309        |   |   |   |   | 2021-02-10 18:56                     | 178.311591               |
| 310        |   |   |   |   | 2021-02-10 18:57                     | 177.877386               |
| 311        |   |   |   |   | 2021-02-10 18:58                     | 177.553535               |
| 312        |   |   |   |   | 2021-02-10 18:59                     | 177.152913               |
| 313        |   |   |   |   | 2021-02-10 19:00                     | 176.712691               |
| 314        |   |   |   |   | 2021-02-10 19:01                     | 176.220692               |
| 315        |   |   |   |   | 2021-02-10 19:02                     | 175.825671               |
| 316        |   |   |   |   | 2021-02-10 19:03                     | 175.508993               |
| 317        |   |   |   |   | 2021-02-10 19:04                     | 174.980783               |
| 318        |   |   |   |   | 2021-02-10 19:05                     | 174.623058               |
| 319        |   |   |   |   | 2021-02-10 19:06                     | 174.256759               |
| 320        |   |   |   |   | 2021-02-10 19:07                     | 173.725816               |
| 321        |   |   |   |   | 2021-02-10 19:08                     | 173.107425               |
| 322        |   |   |   |   | 2021-02-10 19:09                     | 172.625293               |
| 323        |   |   |   |   | 2021-02-10 19:10                     | 172.101736               |
| 324        |   |   |   |   | 2021-02-10 19:11                     | 171.625587               |
| 325        |   |   |   |   | 2021-02-10 19:12                     | 171.109778               |
| 326        |   |   |   |   | 2021-02-10 19:13                     | 170.451903               |
| 327        |   |   |   |   | 2021-02-10 19:14                     | 169.944269               |
| 328        |   |   |   |   | 2021-02-10 19:15                     | 169.339979               |
| 329        |   |   |   |   | 2021-02-10 19:16                     | 168.878568               |
| 330        |   |   |   |   | 2021-02-10 19:17                     | 168.569273               |
| 331        |   |   |   |   | 2021-02-10 19:18                     | 167.90712                |
| 332        |   |   |   |   | 2021-02-10 19:19                     | 167.53525                |
| 333        |   |   |   |   | 2021-02-10 19:20                     | 167.117691               |
| 334        |   |   |   |   | 2021-02-10 19:21                     | 166.612981               |
| 335        |   |   |   |   | 2021-02-10 19:22                     | 166.062263               |
| 336        |   |   |   |   | 2021-02-10 19:23                     | 165.510509               |
| 337        |   |   |   |   | 2021-02-10 19:24                     | 165.171689               |
| 557        | l |   |   |   | 2021-02-10 13.24                     | 103.111003               |

| 339     2021-02-10 19:26     164.26       340     2021-02-10 19:27     163.6       341     2021-02-10 19:28     163.11       342     2021-02-10 19:29     162.74       343     2021-02-10 19:30     162.3       344     2021-02-10 19:31     161.48       345     2021-02-10 19:32     160.90 |     |                  |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------|------------|
| 340     2021-02-10 19:27     163.6       341     2021-02-10 19:28     163.11       342     2021-02-10 19:29     162.74       343     2021-02-10 19:30     162.3       344     2021-02-10 19:31     161.48       345     2021-02-10 19:32     160.90                                           | 338 | 2021-02-10 19:25 | 164.693489 |
| 341     2021-02-10 19:28 163.11       342     2021-02-10 19:29 162.74       343     2021-02-10 19:30 162.3       344     2021-02-10 19:31 161.48       345     2021-02-10 19:32 160.90                                                                                                        | 339 | 2021-02-10 19:26 | 164.269729 |
| 342     2021-02-10 19:29     162.74       343     2021-02-10 19:30     162.3       344     2021-02-10 19:31     161.48       345     2021-02-10 19:32     160.90                                                                                                                              | 340 | 2021-02-10 19:27 | 163.66555  |
| 343     2021-02-10 19:30     162.3       344     2021-02-10 19:31     161.48       345     2021-02-10 19:32     160.90                                                                                                                                                                        | 341 | 2021-02-10 19:28 | 163.118827 |
| 344     2021-02-10 19:31 161.48       345     2021-02-10 19:32 160.90                                                                                                                                                                                                                         | 342 | 2021-02-10 19:29 | 162.747575 |
| 345 2021-02-10 19:32 160.90                                                                                                                                                                                                                                                                   | 343 | 2021-02-10 19:30 | 162.30014  |
|                                                                                                                                                                                                                                                                                               | 344 | 2021-02-10 19:31 | 161.484136 |
|                                                                                                                                                                                                                                                                                               | 345 | 2021-02-10 19:32 | 160.903149 |
| 346 2021-02-10 19:33   160.46                                                                                                                                                                                                                                                                 | 346 | 2021-02-10 19:33 | 160.462278 |
| 347 2021-02-10 19:34 159.97                                                                                                                                                                                                                                                                   | 347 | 2021-02-10 19:34 | 159.976636 |
| 348 2021-02-10 19:35 159.44                                                                                                                                                                                                                                                                   | 348 | 2021-02-10 19:35 | 159.449364 |
| 349 2021-02-10 19:36 158.93                                                                                                                                                                                                                                                                   | 349 | 2021-02-10 19:36 | 158.936626 |
| 350 2021-02-10 19:37 158.40                                                                                                                                                                                                                                                                   | 350 | 2021-02-10 19:37 | 158.400075 |
| 351 2021-02-10 19:38 158.04                                                                                                                                                                                                                                                                   | 351 | 2021-02-10 19:38 | 158.040411 |
| 352 2021-02-10 19:39 157.45                                                                                                                                                                                                                                                                   | 352 | 2021-02-10 19:39 | 157.459242 |
| 353 2021-02-10 19:40 156.82                                                                                                                                                                                                                                                                   | 353 | 2021-02-10 19:40 | 156.825967 |
| 354 2021-02-10 19:41 156.29                                                                                                                                                                                                                                                                   | 354 | 2021-02-10 19:41 | 156.294501 |
| 355 2021-02-10 19:42 155.81                                                                                                                                                                                                                                                                   | 355 | 2021-02-10 19:42 | 155.811397 |

#### 2.1 Series Pre-burn Data

2021-02-17

Total time (h)

7.22

| Load time        | Load type      | Fuel added | Moisture | ]                  | Time  |
|------------------|----------------|------------|----------|--------------------|-------|
| (-)              | (-)            | (lbs)      | (%)      |                    | (min) |
| 2021-02-17 11:17 | Kindling & SUF | 5.34       | 14.9     | Pre-Charge (min)   | 148   |
| 2021-02-17 11:46 | High fire      | 10.79      | 22.4     | Conditioning (min) | 7     |
| 2021-02-17 13:51 | Medium fire    | 12.96      | 19.3     | Load (min)         | 278   |

|         | Pre-Charge (min) | 148         | Conditioning (min) | 7          | Load (min)       | 278        |
|---------|------------------|-------------|--------------------|------------|------------------|------------|
| Minutes | Date & Time      | Flue (F)    | Date & Time        | Flue (F)   | Date & Time      | Flue (F)   |
| 1       | 2021-02-17 11:17 | 132.8969234 | 2021-02-17 13:45   | 306.85765  | 2021-02-17 13:51 | 294.53264  |
| 2       | 2021-02-17 11:18 | 252.1743976 | 2021-02-17 13:46   | 305.483143 | 2021-02-17 13:52 | 264.599132 |
| 3       | 2021-02-17 11:19 | 301.7701936 | 2021-02-17 13:47   | 302.157154 | 2021-02-17 13:53 | 263.385178 |
| 4       | 2021-02-17 11:20 | 342.1329512 | 2021-02-17 13:48   | 298.657401 | 2021-02-17 13:54 | 257.897284 |
| 5       | 2021-02-17 11:21 | 396.5555505 | 2021-02-17 13:49   | 295.347554 | 2021-02-17 13:55 | 273.545515 |
| 6       | 2021-02-17 11:22 | 435.9250978 | 2021-02-17 13:50   | 305.156552 | 2021-02-17 13:56 | 298.107982 |
| 7       | 2021-02-17 11:23 | 455.1351091 | 2021-02-17 13:51   | 297.703531 | 2021-02-17 13:57 | 314.674087 |
| 8       | 2021-02-17 11:24 | 462.456557  |                    |            | 2021-02-17 13:58 | 342.832124 |
| 9       | 2021-02-17 11:25 | 482.7707622 |                    |            | 2021-02-17 13:59 | 381.07559  |
| 10      | 2021-02-17 11:26 | 488.9018896 |                    |            | 2021-02-17 14:00 | 416.071376 |
| 11      | 2021-02-17 11:27 | 496.4341745 |                    |            | 2021-02-17 14:01 | 447.115839 |
| 12      | 2021-02-17 11:28 | 499.3144951 |                    |            | 2021-02-17 14:02 | 468.864632 |
| 13      | 2021-02-17 11:29 | 502.5145455 |                    |            | 2021-02-17 14:03 | 477.601938 |
| 14      | 2021-02-17 11:30 | 505.7940838 |                    |            | 2021-02-17 14:04 | 463.929931 |
| 15      | 2021-02-17 11:31 | 506.2668453 |                    |            | 2021-02-17 14:05 | 458.725821 |
| 16      | 2021-02-17 11:32 | 491.4083559 |                    |            | 2021-02-17 14:06 | 458.266841 |
| 17      | 2021-02-17 11:33 | 479.3386117 |                    |            | 2021-02-17 14:07 | 459.640113 |
| 18      | 2021-02-17 11:34 | 476.9423166 |                    |            | 2021-02-17 14:08 | 458.233589 |
| 19      | 2021-02-17 11:35 | 475.6717057 |                    |            | 2021-02-17 14:09 | 416.395488 |
| 20      | 2021-02-17 11:36 | 472.8391784 |                    |            | 2021-02-17 14:10 | 395.565804 |
| 21      | 2021-02-17 11:37 | 468.5549931 |                    |            | 2021-02-17 14:11 | 381.495722 |
| 22      | 2021-02-17 11:38 | 462.8029931 |                    |            | 2021-02-17 14:12 | 368.674341 |
| 23      | 2021-02-17 11:39 | 457.209912  |                    |            | 2021-02-17 14:13 | 359.549001 |
| 24      | 2021-02-17 11:40 | 454.4029205 |                    |            | 2021-02-17 14:14 | 351.170455 |
| 25      | 2021-02-17 11:41 | 451.8631101 |                    |            | 2021-02-17 14:15 | 344.729493 |
| 26      | 2021-02-17 11:42 | 451.9727651 |                    |            | 2021-02-17 14:16 | 339.482146 |
| 27      | 2021-02-17 11:43 | 449.5115099 |                    |            | 2021-02-17 14:17 | 334.722609 |
| 28      | 2021-02-17 11:44 | 443.0439488 |                    |            | 2021-02-17 14:18 | 331.099248 |
| 29      | 2021-02-17 11:45 | 438.4984913 |                    |            | 2021-02-17 14:19 | 328.646305 |
| 30      | 2021-02-17 11:46 | 463.7612602 |                    |            | 2021-02-17 14:20 | 327.208786 |
| 31      | 2021-02-17 11:47 | 405.6112951 |                    |            | 2021-02-17 14:21 | 327.21374  |
| 32      | 2021-02-17 11:48 | 395.1641154 |                    |            | 2021-02-17 14:22 | 330.908434 |
| 33      |                  | 399.4148995 |                    |            | 2021-02-17 14:23 | 332.845371 |
| 34      |                  | 407.248805  |                    |            | 2021-02-17 14:24 | 335.835788 |
| 35      | 2021-02-17 11:51 | 428.4921244 |                    |            | 2021-02-17 14:25 | 339.122891 |
| 36      | 2021-02-17 11:52 | 467.1198435 |                    |            | 2021-02-17 14:26 | 340.746138 |
| 37      | 2021-02-17 11:53 | 493.8376624 |                    |            | 2021-02-17 14:27 | 341.82102  |
| 38      | 2021-02-17 11:54 | 508.6974447 |                    |            | 2021-02-17 14:28 | 343.37022  |
| 39      | 2021-02-17 11:55 | 519.2297206 |                    |            | 2021-02-17 14:29 | 344.291917 |
| 40      | 2021-02-17 11:56 | 527.9083602 |                    |            | 2021-02-17 14:30 | 345.753346 |
| 41      | 2021-02-17 11:57 | 535.1538036 |                    |            | 2021-02-17 14:31 | 346.703049 |
| 42      | 2021-02-17 11:58 | 540.1640883 |                    |            | 2021-02-17 14:32 | 348.493481 |
| 43      | 2021-02-17 11:59 | 540.5075343 |                    |            | 2021-02-17 14:33 | 348.877557 |
| 44      | 2021-02-17 12:00 | 540.518906  |                    |            | 2021-02-17 14:34 | 351.361296 |
| 45      | 2021-02-17 12:01 | 540.0154704 |                    |            | 2021-02-17 14:35 | 351.818287 |
| 46      | 2021-02-17 12:02 | 539.3012669 |                    |            | 2021-02-17 14:36 | 353.372571 |
| 47      | 2021-02-17 12:03 | 539.7806344 |                    |            | 2021-02-17 14:37 | 354.00123  |

| 48       | 2021-02-17 12:04           | 541.6254107 | 2021-02-17 14:38 | 353.314405 |
|----------|----------------------------|-------------|------------------|------------|
| 49       | 2021-02-17 12:05           | 540.4333435 | 2021-02-17 14:39 | 352.033564 |
| 50       | 2021-02-17 12:06           | 538.4309258 | 2021-02-17 14:40 | 351.303785 |
| 51       | 44244.50538                | 536.8552294 | 2021-02-17 14:41 | 350.420974 |
| 52       | 44244.50608                | 535.5203024 | 2021-02-17 14:42 | 349.741796 |
| 53       | 44244.50677                | 535.1391836 | 2021-02-17 14:43 | 348.980635 |
| 54       | 44244.50747                | 532.3125365 | 2021-02-17 14:44 | 348.99658  |
| 55       | 44244.50816                | 529.7674812 | 2021-02-17 14:45 | 348.965758 |
| 56       | 44244.50885                | 527.6684521 | 2021-02-17 14:46 | 350.564221 |
| 57       | 44244.50955                | 525.6424864 | 2021-02-17 14:47 | 351.345694 |
| 58       | 44244.51024                | 524.3684599 | 2021-02-17 14:48 | 351.785554 |
| 59       | 44244.51094                | 523.1855445 | 2021-02-17 14:49 | 350.906063 |
| 60       | 44244.51163                | 522.8768743 | 2021-02-17 14:50 | 349.476133 |
| 61       | 44244.51233                | 521.6852886 | 2021-02-17 14:51 | 349.722319 |
| 62       | 44244.51302                | 520.7856497 | 2021-02-17 14:52 | 350.047618 |
| 63       | 44244.51372                | 520.8213606 | 2021-02-17 14:53 | 350.603585 |
| 64       | 44244.51441                | 522.0662893 | 2021-02-17 14:54 | 350.321433 |
| 65       | 44244.5151                 | 520.1230342 | 2021-02-17 14:55 | 349.574648 |
| 66       | 44244.5158                 | 519.8394909 | 2021-02-17 14:56 | 347.953974 |
| 67       | 44244.51649                | 517.2322408 | 2021-02-17 14:57 | 346.761238 |
| 68       | 44244.51719                | 517.5100002 | 2021-02-17 14:58 | 344.959956 |
| 69       | 44244.51788                | 515.7767191 | 2021-02-17 14:59 | 343.699046 |
| 70       | 44244.51858                | 515.0299724 | 2021-02-17 15:00 | 342.371312 |
| 71       | 44244.51927                | 512.7789033 | 2021-02-17 15:01 | 340.605933 |
| 72       | 44244.51997                | 513.3828469 | 2021-02-17 15:02 | 337.996084 |
| 73       | 44244.52066                | 516.4870179 | 2021-02-17 15:03 | 336.077721 |
| 74       | 44244.52135                | 513.1563207 | 2021-02-17 15:04 | 334.229057 |
| 75       | 44244.52205                | 507.9484538 | 2021-02-17 15:05 | 332.202196 |
| 76       | 44244.52274                | 501.5611374 | 2021-02-17 15:06 | 331.08932  |
| 77       | 44244.52344                | 497.2908558 | 2021-02-17 15:07 | 330.204202 |
| 78       | 44244.52413                | 491.3813584 | 2021-02-17 15:08 | 329.753534 |
| 79       | 44244.52483                | 483.6139451 | 2021-02-17 15:09 | 328.405157 |
| 80       | 44244.52552                | 478.6407087 | 2021-02-17 15:10 | 326.000238 |
| 81       | 44244.52622                | 475.063307  | 2021-02-17 15:11 | 325.017596 |
| 82       | 44244.52691                | 469.3966306 | 2021-02-17 15:12 | 323.381086 |
| 83       | 44244.5276                 | 464.1447651 | 2021-02-17 15:13 | 320.781891 |
| 84       | 44244.5283                 | 460.1733775 | 2021-02-17 15:14 | 317.707286 |
| 85       | 44244.52899                | 455.2368337 | 2021-02-17 15:15 | 314.44686  |
| 86       | 44244.52969                | 451.3581524 | 2021-02-17 15:16 | 309.377744 |
| 87       | 44244.53038                | 446.9194128 | 2021-02-17 15:17 | 304.10867  |
| 88       | 44244.53108                | 442.7543457 | 2021-02-17 15:17 | 300.053729 |
| 89       | 44244.53108                | 436.7562716 | 2021-02-17 15:18 | 296.495064 |
| 90       | 44244.53247                | 430.7302710 | 2021-02-17 15:19 | 292.91832  |
| 90       | 44244.53316                | 432.1447343 | 2021-02-17 15:20 | 292.91832  |
| 91       | 44244.53316                | 423.9295278 | 2021-02-17 15:21 | 286.358848 |
| 93       | 44244.53385                | 423.9295278 | 2021-02-17 15:22 | 283.745185 |
| 93       | 44244.53524                | 416.6144213 | 2021-02-17 15:23 | 280.153721 |
| 94       | 44244.53524<br>44244.53594 |             | 2021-02-17 15:24 |            |
|          |                            | 412.5415926 |                  | 277.923656 |
| 96<br>97 | 44244.53663                | 409.5494015 | 2021-02-17 15:26 | 275.185528 |
| 98       | 44244.53733                | 406.6603322 | 2021-02-17 15:27 | 273.001152 |
|          | 44244.53802                | 404.2935649 | 2021-02-17 15:28 | 271.968922 |
| 99       | 44244.53872                | 401.6722125 | 2021-02-17 15:29 | 269.900552 |
| 100      | 44244.53941                | 399.4657965 | 2021-02-17 15:30 | 268.55907  |
| 101      | 44244.5401                 | 396.9144848 | 2021-02-17 15:31 | 266.466982 |
| 102      | 44244.5408                 | 395.6061659 | 2021-02-17 15:32 | 264.716863 |
| 103      | 44244.54149                | 393.0523997 | 2021-02-17 15:33 | 262.655042 |
| 104      | 44244.54219                | 390.9730085 | 2021-02-17 15:34 | 261.148769 |
| 105      | 44244.54288                | 388.2224727 | 2021-02-17 15:35 | 259.996669 |

| 106 | 44244.54358 | 386.351385  | 2021-02-17 15:36 | 258.87347  |
|-----|-------------|-------------|------------------|------------|
| 107 | 44244.54427 | 384.1202324 | 2021-02-17 15:37 | 257.113152 |
| 108 | 44244.54497 | 382.996793  | 2021-02-17 15:38 | 255.945385 |
| 109 | 44244.54566 | 381.5520358 | 2021-02-17 15:39 | 254.932366 |
| 110 | 44244.54635 | 379.2487738 | 2021-02-17 15:40 | 253.344247 |
| 111 | 44244.54705 | 376.7988517 | 2021-02-17 15:41 | 251.65131  |
| 112 | 44244.54774 | 375.9556415 | 2021-02-17 15:42 | 249.955895 |
| 113 | 44244.54844 | 375.4949439 | 2021-02-17 15:43 | 248.774125 |
| 114 | 44244.54913 | 372.4019808 | 2021-02-17 15:44 | 246.800986 |
| 115 | 44244.54983 | 370.0489855 | 2021-02-17 15:45 | 245.268623 |
| 116 | 44244.55052 | 366.2925431 | 2021-02-17 15:46 | 243.556339 |
| 117 | 44244.55122 | 362.2973737 | 2021-02-17 15:47 | 241.665299 |
| 118 | 44244.55191 | 359.7296709 | 2021-02-17 15:48 | 240.692788 |
| 119 | 44244.5526  | 356.5236571 | 2021-02-17 15:49 | 238.521319 |
| 120 | 44244.5533  | 354.7677956 | 2021-02-17 15:50 | 237.285246 |
| 121 | 44244.55399 | 352.5950024 | 2021-02-17 15:51 | 236.377922 |
| 122 | 44244.55469 | 351.2792898 | 2021-02-17 15:52 | 234.955397 |
| 123 | 44244.55538 | 350.0822169 | 2021-02-17 15:53 | 233.892987 |
| 124 | 44244.55608 | 349.4350875 | 2021-02-17 15:54 | 232.864738 |
| 125 | 44244.55677 | 347.439765  | 2021-02-17 15:55 | 232.049503 |
| 126 | 44244.55747 | 346.851782  | 2021-02-17 15:56 | 231.241741 |
| 127 | 44244.55816 | 344.9816625 | 2021-02-17 15:57 | 230.695664 |
| 128 | 44244.55885 | 343.3845638 | 2021-02-17 15:58 | 230.304389 |
| 129 | 44244.55955 | 341.8514022 | 2021-02-17 15:59 | 230.673797 |
| 130 | 44244.56024 | 339.0569339 | 2021-02-17 16:00 | 231.299744 |
| 131 | 44244.56094 | 337.8944771 | 2021-02-17 16:01 | 231.352216 |
| 132 | 44244.56163 | 336.0783041 | 2021-02-17 16:02 | 231.413434 |
| 133 | 44244.56233 | 334.3686407 | 2021-02-17 16:03 | 229.669543 |
| 134 | 44244.56302 | 333.5970397 | 2021-02-17 16:04 | 227.532418 |
| 135 | 44244.56372 | 332.789554  | 2021-02-17 16:05 | 225.115865 |
| 136 | 44244.56441 | 331.5139229 | 2021-02-17 16:06 | 221.288451 |
| 137 | 44244.5651  | 331.574663  | 2021-02-17 16:07 | 217.132578 |
| 138 | 44244.5658  | 330.8737837 | 2021-02-17 16:08 | 213.897804 |
| 139 | 44244.56649 | 330.9961595 | 2021-02-17 16:09 | 211.139281 |
| 140 | 44244.56719 | 329.9103846 | 2021-02-17 16:10 | 208.370769 |
| 141 | 44244.56788 | 328.8906894 | 2021-02-17 16:11 | 206.191952 |
| 142 | 44244.56858 | 327.4802133 | 2021-02-17 16:12 | 204.060118 |
| 143 | 44244.56927 | 324.8006854 | 2021-02-17 16:13 | 202.158938 |
| 144 | 44244.56997 | 321.5332998 | 2021-02-17 16:14 | 200.767845 |
| 145 | 44244.57066 | 317.052474  | 2021-02-17 16:15 | 199.542078 |
| 146 | 44244.57135 | 313.5009139 | 2021-02-17 16:16 | 197.975004 |
| 147 | 44244.57205 | 310.1405152 | 2021-02-17 16:17 | 196.760073 |
| 148 | 44244.57274 | 307.7612797 | 2021-02-17 16:18 | 195.736766 |
| 149 |             |             | 2021-02-17 16:19 | 194.383572 |
| 150 |             |             | 2021-02-17 16:20 | 193.33549  |
| 151 |             |             | 2021-02-17 16:21 | 192.809014 |
| 152 |             |             | 2021-02-17 16:22 | 191.771295 |
| 153 |             |             | 2021-02-17 16:23 | 190.832231 |
| 154 |             |             | 2021-02-17 16:24 | 190.100894 |
| 155 |             |             | 2021-02-17 16:25 | 189.342636 |
| 156 |             |             | 2021-02-17 16:26 | 188.790332 |
| 157 |             |             | 2021-02-17 16:27 | 187.864873 |
| 158 |             |             | 2021-02-17 16:28 | 187.448794 |
| 159 |             |             | 2021-02-17 16:29 | 186.615632 |
| 160 |             |             | 2021-02-17 16:30 | 185.949477 |
| 161 |             |             | 2021-02-17 16:31 | 185.465147 |
| 162 |             |             | 2021-02-17 16:32 | 185.020798 |
| 163 |             |             | 2021-02-17 16:33 | 184.504196 |
|     |             |             |                  |            |

| _   |  |  |                  |            |
|-----|--|--|------------------|------------|
| 164 |  |  | 2021-02-17 16:34 | 184.159782 |
| 165 |  |  | 2021-02-17 16:35 | 183.435366 |
| 166 |  |  | 2021-02-17 16:36 | 182.96773  |
| 167 |  |  | 2021-02-17 16:37 | 182.438346 |
| 168 |  |  | 2021-02-17 16:38 | 182.253173 |
| 169 |  |  | 2021-02-17 16:39 | 181.828873 |
| 170 |  |  | 2021-02-17 16:40 | 181.402987 |
| 171 |  |  | 2021-02-17 16:41 | 181.119869 |
| 172 |  |  | 2021-02-17 16:42 | 180.654477 |
| 173 |  |  | 2021-02-17 16:43 | 180.231473 |
| 174 |  |  | 2021-02-17 16:44 | 180.074142 |
| 175 |  |  | 2021-02-17 16:45 | 179.739083 |
| 176 |  |  | 2021-02-17 16:46 | 179.594025 |
| 177 |  |  |                  |            |
|     |  |  | 2021-02-17 16:47 | 179.264588 |
| 178 |  |  | 2021-02-17 16:48 | 179.033292 |
| 179 |  |  | 2021-02-17 16:49 | 178.549347 |
| 180 |  |  | 2021-02-17 16:50 | 178.16124  |
| 181 |  |  | 2021-02-17 16:51 | 178.06321  |
| 182 |  |  | 2021-02-17 16:52 | 177.82951  |
| 183 |  |  | 2021-02-17 16:53 | 177.237154 |
| 184 |  |  | 2021-02-17 16:54 | 176.999824 |
| 185 |  |  | 2021-02-17 16:55 | 176.790631 |
| 186 |  |  | 2021-02-17 16:56 | 176.680981 |
| 187 |  |  | 2021-02-17 16:57 | 176.49828  |
| 188 |  |  | 2021-02-17 16:58 | 176.223475 |
| 189 |  |  | 2021-02-17 16:59 | 176.243618 |
| 190 |  |  | 2021-02-17 17:00 | 176.027312 |
| 191 |  |  | 2021-02-17 17:01 | 175.748269 |
| 192 |  |  | 2021-02-17 17:02 | 175.631629 |
| 193 |  |  | 2021-02-17 17:03 | 175.553211 |
| 194 |  |  | 2021-02-17 17:04 | 175.599585 |
| 195 |  |  | 2021-02-17 17:05 | 175.352031 |
| 196 |  |  | 2021-02-17 17:06 | 174.967222 |
| 190 |  |  | 2021-02-17 17:07 | 175.099427 |
| 198 |  |  |                  |            |
|     |  |  | 2021-02-17 17:08 | 175.139038 |
| 199 |  |  | 2021-02-17 17:09 | 174.909705 |
| 200 |  |  | 2021-02-17 17:10 | 175.299431 |
| 201 |  |  | 2021-02-17 17:11 | 175.018895 |
| 202 |  |  | 2021-02-17 17:12 | 175.270933 |
| 203 |  |  | 2021-02-17 17:13 | 174.977363 |
| 204 |  |  | 2021-02-17 17:14 | 174.928233 |
| 205 |  |  | 2021-02-17 17:15 | 175.016569 |
| 206 |  |  | 2021-02-17 17:16 | 174.837265 |
| 207 |  |  | 2021-02-17 17:17 | 174.746262 |
| 208 |  |  | 2021-02-17 17:18 | 174.788529 |
| 209 |  |  | 2021-02-17 17:19 | 175.120166 |
| 210 |  |  | 2021-02-17 17:20 | 175.000008 |
| 211 |  |  | 2021-02-17 17:21 | 175.329824 |
| 212 |  |  | 2021-02-17 17:22 | 174.924646 |
| 213 |  |  | 2021-02-17 17:23 | 174.933105 |
| 214 |  |  | 2021-02-17 17:24 | 174.990595 |
| 215 |  |  | 2021-02-17 17:25 | 174.97725  |
| 216 |  |  | 2021-02-17 17:26 | 174.812404 |
| 217 |  |  | 2021-02-17 17:27 | 174.925424 |
| 218 |  |  | 2021-02-17 17:28 | 174.741298 |
| 219 |  |  | 2021-02-17 17:29 | 175.183641 |
| 220 |  |  | 2021-02-17 17:30 | 173.183041 |
|     |  |  |                  |            |
| 221 |  |  | 2021-02-17 17:31 | 174.675159 |

|     | 1 | T |          |                              |            |
|-----|---|---|----------|------------------------------|------------|
| 222 |   |   |          | -02-17 17:32                 | 174.644302 |
| 223 |   |   | 2021     | -02-17 17:33                 | 174.770303 |
| 224 |   |   | 2021     | -02-17 17:34                 | 174.440584 |
| 225 |   |   | 2021     | -02-17 17:35                 | 174.323638 |
| 226 |   |   | 2021     | -02-17 17:36                 | 174.175785 |
| 227 |   |   | 2021     | -02-17 17:37                 | 174.089441 |
| 228 |   |   | 2021     | -02-17 17:38                 | 174.236175 |
| 229 |   |   | 2021     | -02-17 17:39                 | 173.798575 |
| 230 |   |   | 2021     | -02-17 17:40                 | 173.948997 |
| 231 |   |   | 2021     | -02-17 17:41                 | 173.795878 |
| 232 |   |   | 2021     | -02-17 17:42                 | 174.037262 |
| 233 |   |   | 2021     | -02-17 17:43                 | 173.624703 |
| 234 |   |   | 2021     | -02-17 17:44                 | 173.135036 |
| 235 |   |   | 2021     | -02-17 17:45                 | 172.989069 |
| 236 |   |   |          | -02-17 17:46                 | 173.032872 |
| 237 |   |   |          | -02-17 17:47                 | 172.915986 |
| 238 |   |   |          | -02-17 17:48                 | 172.951965 |
| 239 |   |   |          | -02-17 17:49                 | 172.749371 |
| 240 |   |   | <u> </u> | -02-17 17:50                 | 172.43546  |
| 241 |   |   |          | -02-17 17:51                 | 172.430564 |
| 241 |   |   |          | -02-17 17:51                 | 172.430304 |
| 242 |   |   |          | -02-17 17:53                 |            |
| 243 |   |   |          | -02-17 17:54                 | 172.224745 |
|     |   |   |          |                              | 172.227606 |
| 245 |   |   |          | -02-17 17:55                 | 172.105811 |
| 246 |   |   |          | -02-17 17:56                 | 172.053939 |
| 247 |   |   |          | -02-17 17:57                 | 171.766896 |
| 248 |   |   |          | -02-17 17:58                 | 171.838898 |
| 249 |   |   |          | -02-17 17:59                 | 171.79258  |
| 250 |   |   |          | -02-17 18:00                 | 171.389733 |
| 251 |   |   |          | -02-17 18:01                 | 171.325088 |
| 252 |   |   |          | -02-17 18:02                 | 171.119196 |
| 253 |   |   | 2021     | -02-17 18:03                 | 170.865686 |
| 254 |   |   | 2021     | -02-17 18:04                 | 170.76382  |
| 255 |   |   | 2021     | -02-17 18:05                 | 170.643605 |
| 256 |   |   | 2021     | -02-17 18:06                 | 170.427336 |
| 257 |   |   | 2021     | -02-17 18:07                 | 170.34793  |
| 258 |   |   | 2021     | -02-17 18:08                 | 170.516875 |
| 259 |   |   | 2021     | -02-17 18:09                 | 170.593033 |
| 260 |   |   | 2021     | -02-17 18:10                 | 170.771649 |
| 261 |   |   | 2021     | -02-17 18:11                 | 170.534354 |
| 262 |   |   | 2021     | -02-17 18:12                 | 170.136002 |
| 263 |   |   |          | -02-17 18:13                 | 170.387375 |
| 264 |   |   |          | -02-17 18:14                 | 170.03571  |
| 265 |   |   | <u> </u> | -02-17 18:15                 | 169.823219 |
| 266 |   |   |          | -02-17 18:16                 | 169.661995 |
| 267 |   |   |          | -02-17 18:17                 | 169.592592 |
| 268 |   |   |          | -02-17 18:18                 | 169.451906 |
| 269 |   |   |          | -02-17 18:19                 | 169.377865 |
| 270 |   |   | <u> </u> | -02-17 18:20                 | 169.085814 |
| 270 |   |   |          | -02-17 18:20                 | 169.050749 |
| 272 |   |   |          | -02-17 18:21                 | 168.78728  |
| 272 |   |   |          | -02-17 18:22                 | 168.445379 |
| 273 |   |   |          | -02-17 18:23                 | 168.390714 |
| 274 |   |   |          | -02-17 18:24<br>-02-17 18:25 |            |
|     |   |   |          |                              | 167.940452 |
| 276 |   |   | <u> </u> | -02-17 18:26                 | 167.589862 |
| 277 |   |   |          | -02-17 18:27                 | 167.438253 |
| 278 |   |   | 2021     | -02-17 18:28                 | 167.430752 |



OMB Control No. 2060-0693 Approval expires 03/31/2019

EPA Form 6400-05

### Office of Enforcement and Compliance Assurance

#### **30-DAY NOTIFICATION**

# 2015 CLEAN AIR ACT (CAA) STANDARDS OF PERFORMANCE FOR NEW RESIDENTIAL WOOD HEATERS, NEW RESIDENTIAL HYDRONIC HEATERS AND FORCED-AIR FURNACES 40 CFR PART 60 SUBPARTS AAA AND QQQQ

The public reporting and recordkeeping burden for this collection of information is estimated to average 2 hours per response. Send comments on the Agency's need for this information, the accuracy of the provided burden estimates, and any suggested methods for minimizing respondent burden, including through the use of automated collection techniques to the Director, Regulatory Support Division, U.S. Environmental Protection Agency (2822T), 1200 Pennsylvania Ave., NW, Washington, D.C. 20460. Include the OMB control number in any correspondence. Do not send the completed form to this address.

Disclaimer: The statutory provisions and the EPA regulations described in this document contain legally binding requirements. This document is not a substitute for those provisions or regulations, nor is it a regulation itself. In the event of a discrepancy, please refer to 40 CFR PART 60 Subparts AAA AND QQQQ, sections 60.537 and 60.5479. If you have additional questions, please contact Rafael Sanchez at 202-564-7028 or via email at <a href="mailto:sanchez.rafael@epa.gov">sanchez.rafael@epa.gov</a>.

| GENERAL INFORMATION                                                                                                                                                                                                        |                                     |             |  |  |     |         |   |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------|--|--|-----|---------|---|--|
| Manufacturer's Na                                                                                                                                                                                                          | ame: Stove Builder Inte             | ernational  |  |  |     |         |   |  |
|                                                                                                                                                                                                                            |                                     |             |  |  |     |         |   |  |
| Heater Type<br>Check one):                                                                                                                                                                                                 |                                     |             |  |  |     | Other:  |   |  |
| Hydronic Heater<br>Type (Check<br>one):                                                                                                                                                                                    | Partial       Partial               |             |  |  | □Ot | □Other: |   |  |
| Forced-Air<br>Furnace Type<br>(Check one):                                                                                                                                                                                 | □Small (less than 65,0<br>output)   | ' ' Output) |  |  |     |         |   |  |
| Fuel Tested (Check one):                                                                                                                                                                                                   | □Crib □Pellet ⊠Cordwood □Wood Chips |             |  |  |     | □Other: | 1 |  |
| Model Name(s) (as will appear on test report): 2.1 Series                                                                                                                                                                  |                                     |             |  |  |     |         |   |  |
| Model Number(s) (as will appear on test report): These are preliminary names subject to change. Official names will be on Test Report: Destination 1.9, Matrix 1900, CW2100, Green Mountain Insert 50, HEI50, Archway 1500 |                                     |             |  |  |     |         |   |  |
| Equipped with a catalytic combustor? □Yes ☒No                                                                                                                                                                              |                                     |             |  |  |     |         |   |  |



OMB Control No. 2060-0693 Approval expires 03/31/2019

EPA Form 6400-05

### **Office of Enforcement and Compliance Assurance**

#### **30-DAY NOTIFICATION**

# 2015 CLEAN AIR ACT (CAA) STANDARDS OF PERFORMANCE FOR NEW RESIDENTIAL WOOD HEATERS, NEW RESIDENTIAL HYDRONIC HEATERS AND FORCED-AIR FURNACES 40 CFR PART 60 SUBPARTS AAA AND QQQQ

The public reporting and recordkeeping burden for this collection of information is estimated to average 2 hours per response. Send comments on the Agency's need for this information, the accuracy of the provided burden estimates, and any suggested methods for minimizing respondent burden, including through the use of automated collection techniques to the Director, Regulatory Support Division, U.S. Environmental Protection Agency (2822T), 1200 Pennsylvania Ave., NW, Washington, D.C. 20460. Include the OMB control number in any correspondence. Do not send the completed form to this address.

Disclaimer: The statutory provisions and the EPA regulations described in this document contain legally binding requirements. This document is not a substitute for those provisions or regulations, nor is it a regulation itself. In the event of a discrepancy, please refer to 40 CFR PART 60 Subparts AAA AND QQQQ, sections 60.537 and 60.5479. If you have additional questions, please contact Rafael Sanchez at 202-564-7028 or via email at <a href="mailto:sanchez.rafael@epa.gov">sanchez.rafael@epa.gov</a>.

| Mailing Address: Same as street address |                                        |                                     |
|-----------------------------------------|----------------------------------------|-------------------------------------|
| Street Address: 250 rue de Copenhague   |                                        |                                     |
| City: Saint-Augustin-de-Desmaures       | State: Québec                          | ZIP Code: G3A 2H3                   |
| Phone:1-418-878-3040 x5224              | Fax: 1-418-878-3001                    | Web Site: www.sbi-international.com |
| Address of Manufacturer: Same as above. |                                        |                                     |
| City:                                   | State                                  | ZIP Code:                           |
|                                         | EPA APPROVED TEST LABORATORY           |                                     |
| Name and Title of Authorized Representa | ative: Claude Pelland, Project Engin   | eer                                 |
| Company: Intertek                       |                                        |                                     |
| Phone: 1-514-631-3100 x277              | E-mail:<br>claude.pelland@intertek.com | Fax: 1-514-631-1133                 |



OMB Control No. 2060-0693 Approval expires 03/31/2019

EPA Form 6400-05

### **Office of Enforcement and Compliance Assurance**

#### **30-DAY NOTIFICATION**

# 2015 CLEAN AIR ACT (CAA) STANDARDS OF PERFORMANCE FOR NEW RESIDENTIAL WOOD HEATERS, NEW RESIDENTIAL HYDRONIC HEATERS AND FORCED-AIR FURNACES 40 CFR PART 60 SUBPARTS AAA AND QQQQ

The public reporting and recordkeeping burden for this collection of information is estimated to average 2 hours per response. Send comments on the Agency's need for this information, the accuracy of the provided burden estimates, and any suggested methods for minimizing respondent burden, including through the use of automated collection techniques to the Director, Regulatory Support Division, U.S. Environmental Protection Agency (2822T), 1200 Pennsylvania Ave., NW, Washington, D.C. 20460. Include the OMB control number in any correspondence. Do not send the completed form to this address.

Disclaimer: The statutory provisions and the EPA regulations described in this document contain legally binding requirements. This document is not a substitute for those provisions or regulations, nor is it a regulation itself. In the event of a discrepancy, please refer to 40 CFR PART 60 Subparts AAA AND QQQQ, sections 60.537 and 60.5479. If you have additional questions, please contact Rafael Sanchez at 202-564-7028 or via email at <a href="mailto:sanchez.rafael@epa.gov">sanchez.rafael@epa.gov</a>.

| City: Lachine                                                                                                              | State: Québec                                          | ZIP Code: H8T 3J1 |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------|--|--|--|--|--|
| EPA APPROVED THIRD-PARTY CERTIFIER                                                                                         |                                                        |                   |  |  |  |  |  |
| Name and Title of Authorized Representative: Charles Meyers, Director, Product Certification                               |                                                        |                   |  |  |  |  |  |
| Company: Intertek Testing Services NA, Inc.                                                                                |                                                        |                   |  |  |  |  |  |
| Phone: 312-906-7783                                                                                                        | ione: 312-906-7783 E-mail: charles.meyers@intertek.com |                   |  |  |  |  |  |
| City: Arlington Heights State: IL                                                                                          |                                                        | ZIP Code: 60005   |  |  |  |  |  |
| COMPLIANCE TEST INFORMATION                                                                                                |                                                        |                   |  |  |  |  |  |
| Test Method(s): ASTM E3053-17 as per letter the Broadly Applicable Alternative Test Method from EPA of 2/28/2018 (Alt-125) |                                                        |                   |  |  |  |  |  |
| Date(s) of Proposed Test: February 22 <sup>nd</sup> , 2021                                                                 |                                                        |                   |  |  |  |  |  |



OMB Control No. 2060-0693 Approval expires 03/31/2019

EPA Form 6400-05

### **Office of Enforcement and Compliance Assurance**

#### **30-DAY NOTIFICATION**

# 2015 CLEAN AIR ACT (CAA) STANDARDS OF PERFORMANCE FOR NEW RESIDENTIAL WOOD HEATERS, NEW RESIDENTIAL HYDRONIC HEATERS AND FORCED-AIR FURNACES 40 CFR PART 60 SUBPARTS AAA AND QQQQ

The public reporting and recordkeeping burden for this collection of information is estimated to average 2 hours per response. Send comments on the Agency's need for this information, the accuracy of the provided burden estimates, and any suggested methods for minimizing respondent burden, including through the use of automated collection techniques to the Director, Regulatory Support Division, U.S. Environmental Protection Agency (2822T), 1200 Pennsylvania Ave., NW, Washington, D.C. 20460. Include the OMB control number in any correspondence. Do not send the completed form to this address.

Disclaimer: The statutory provisions and the EPA regulations described in this document contain legally binding requirements. This document is not a substitute for those provisions or regulations, nor is it a regulation itself. In the event of a discrepancy, please refer to 40 CFR PART 60 Subparts AAA AND QQQQ, sections 60.537 and 60.5479. If you have additional questions, please contact Rafael Sanchez at 202-564-7028 or via email at <a href="mailto:sanchez.rafael@epa.gov">sanchez.rafael@epa.gov</a>.

| Testing Location (Name and Address): Stove Builder International Laboratory<br>250 rue de Copenhague, Saint-Augustin-de-Desmaures,<br>Québec, Canada, G3A 2H3 |                                                       |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--|--|--|--|--|
| Contact Name: Guillaume Thibodeau-Fortin                                                                                                                      | Title: Engineer                                       |  |  |  |  |  |
| Phone Number: 1-418-878-3040 x5224                                                                                                                            | Email Address: gthibodeaufortin@sbi-international.com |  |  |  |  |  |



OMB Control No. 2060-0693 Approval expires 03/31/2019

EPA Form 6400-05

### Office of Enforcement and Compliance Assurance

#### **30-DAY NOTIFICATION**

# 2015 CLEAN AIR ACT (CAA) STANDARDS OF PERFORMANCE FOR NEW RESIDENTIAL WOOD HEATERS, NEW RESIDENTIAL HYDRONIC HEATERS AND FORCED-AIR FURNACES 40 CFR PART 60 SUBPARTS AAA AND OOOO

The public reporting and recordkeeping burden for this collection of information is estimated to average 2 hours per response. Send comments on the Agency's need for this information, the accuracy of the provided burden estimates, and any suggested methods for minimizing respondent burden, including through the use of automated collection techniques to the Director, Regulatory Support Division, U.S. Environmental Protection Agency (2822T), 1200 Pennsylvania Ave., NW, Washington, D.C. 20460. Include the OMB control number in any correspondence. Do not send the completed form to this address.

Disclaimer: The statutory provisions and the EPA regulations described in this document contain legally binding requirements. This document is not a substitute for those provisions or regulations, nor is it a regulation itself. In the event of a discrepancy, please refer to 40 CFR PART 60 Subparts AAA AND QQQQ, sections 60.537 and 60.5479. If you have additional questions, please contact Rafael Sanchez at 202-564-7028 or via email at <a href="mailto:sanchez.rafael@epa.gov">sanchez.rafael@epa.gov</a>.

| Guillaume Thibodeau-Fo  | ortin                          |
|-------------------------|--------------------------------|
| Print Name and Title of | Authorized Official            |
| di:                     | Ins.                           |
| Signature               |                                |
| 01-21-2021              |                                |
| Date 1-                 | 418-878-3040 x 5224            |
|                         |                                |
| gthibod                 | eaufortin@sbi-international.co |
| Liliali Address.        |                                |
| Remarks:                |                                |
|                         |                                |
| v1                      |                                |
|                         |                                |

## **Guillaume Thibodeau-Fortin**

De:Guillaume Thibodeau-FortinEnvoyé:21 janvier 2021 10:10À:WoodHeaterReports

Cc: Sanchez, Rafael; 'Claude Pelland Intertek'

**Objet:** 30-days notification

Hello,

This is to notify that SBI will start a test program on 2.1 series wood heater on February 22<sup>nd</sup>, 2021.

Thank you,





Ingénieur mécanique Mechanical Engineer

T: 418-878-3040 ext.5224











# UNITED STATES ENVIRONMENTAL PROTECTION AGENCY RESEARCH TRIANGLE PARK, NC 27711

FEB 2 8 2018

Mr. Justin White Hearthstone QHPP, Inc. #17 Stafford Ave. Morrisville, VT 05661 OFFICE OF AIR QUALITY PLANNING AND STANDARDS

Dear Mr. White,

I am writing in response to your letter dated January 12, 2018, regarding wood heaters manufactured by Hearthstone QHPP, Inc. (Hearthstone). This response, dated February 28, 2018, supercedes our previous response (dated February 26, 2018) to correct an inaccuracy regarding required changes to ASTM E3053-17.

You are requesting to use an alternative test method, using cord wood, as referenced in section 60.532(c) of 40 CFR part 60, Subpart AAA, Standards of Performance for New Residential Wood Heaters (Subpart AAA) to meet the 2020 cord wood alternative compliance option. The 2020 cord wood alternative compliance option states that each affected wood heater manufactured or sold at retail for use in the United States on or after May 15, 2020, must not discharge into the atmosphere any gases that contain particulate matter in excess of 2.5 g/hr. Compliance must be determined by a cord wood test method approved by the Administrator along with the procedures in 40 CFR 60.534. You have requested approval to use the procedures and specifications found in ASTM Method E3053-17, a cord wood test method titled, "Standard Test Method for Determining Particulate Matter Emissions from Wood Heaters using Cordwood Test Fuel," in conjunction with ASTM E2515-11 and Canadian Standards Administration (CSA) Method CSA-B415.1-10, which are specified in 40 CFR 60.534.

We understand that Hearthstone is also requesting that the alternative method proposed above be approved to apply broadly to all wood heaters manufactured by Hearthstone meeting the requirements of Subpart AAA, from the approval date of this request until such time that Subpart AAA is revised or replaced to require a different cord wood certification method, providing all requirements of section 60.533 of Subpart AAA are met.

With the caveats set forth below, we approve your alternative test method request for certifying wood heaters using ASTM E3053-17 in conjunction with section 60.534 of Subpart AAA to meet the 2020 cord wood compliance option until such time that Subpart AAA is revised or replaced to require a different cord wood certification method. We also approve application of this alternative method to all wood heaters manufactured by Hearthstone meeting the requirements of Subpart AAA.

As required in Subpart AAA, section 60.354(d), you or your approved test laboratory must also measure the first hour of particulate matter emissions for each test run using a separate filter in one of the two parallel sampling trains. These results must be reported separately and also included in the total particulate matter emissions per run. Also, as required by Subpart AAA, section 60.534(e), you must have your approved laboratory measure the efficiency, heat output, and carbon monoxide emissions of the tested wood heater using CSA-B415.1-10. For measurement of particulate matter emission concentrations, ASTM 2515-11 must be used.

The following change to ASTM E3053-17 must be followed:

1. Coal bed conditions prior to loading test fuel. The coal bed shall be a level plane without valleys or ridges for all test runs in the high, low, and medium burn rate categories.

The following changes to ASTM E2515-11 must be followed:

- 1. The filter temperature must be maintained between 80 and 90 degrees F during testing.
- 2. Filters must be weighed in pairs to reduce weighing error propagation; see ASTM 2515-11, Section 10.2.1 Analytical Procedure.
- 3. Sample filters must be Pall TX-40 or equivalent Teflon-coated glass fiber, and of 47 mm, 90 mm, 100 mm, or 110 mm in diameter.
- 4. Only one point is allowed outside the +/- 10 percent proportionality range per test run.

A copy of this letter must be included in each certification test report where this alternative test method is utilized.

It is reasonable that this alternative test method approval be broadly applicable to all wood heaters subject to the requirements of 40 CFR part 60, Subpart AAA. For this reason, we will post this letter as ALT-125 on our website at <a href="http://www3.epa.gov/ttn/emc/approalt.html">http://www3.epa.gov/ttn/emc/approalt.html</a> for use by other interested parties. As noted earlier in this letter, this alternative method approval is valid until such time that Subpart AAA is revised or replaced to require a different cord wood certification method, and at such time, this alternative will be reconsidered and possibly withdrawn.

If you have additional questions regarding this approval, please contact Michael Toney of my staff at 919-541-5247 or toney.mike@epa.gov.

Sincerely,

Steffan M. Johnson, Group Leader Measurement Technology Group

cc: Amanda Aldridge, EPA/OAQPS/OID

Adam Baumgart-Getz, EPA/OAQPS/OID

Rafael Sanchez, EPA/OECA

Michael Toney, EPA/OAQPS/AQAD





March 22<sup>nd</sup>, 2021

Air Branch/Wood Heater Program Lead Monitoring, Assistance, and Media Programs Division Office of Compliance U.S. EPA 1200 Pennsylvania Ave., NW MS:2227A Washington, DC 20004

Attn: EPA Administrator

Subject: Compliance Statements and Acknowledgements for 2.1 Series

#### Dear Administrator,

As stated in the application for certificate of compliance, Stove Builder International Inc (SBI) states and acknowledges the 13 items below.

- 1. SBI provided all engineering drawing (including specifications for each component listed in paragraphs (k)(2), (3) and (4) of 60.533(b) and 60.5475(b) available in Intertek Test Report 104576994MTL-001 at Appendix D. Tolerances are identified on all part draft and cannot reasonably be anticipated to cause wood heater in the model line to exceed the applicable emission limits. The user's manual shows how to replace and inspect emission-critical part such as the secondary tubes.
- 2. SBI confirm that the firebox or any firebox component (including the materials listed in paragraph (k)(3) of 60.533(b) and 60.5475(b) will be composed of material similar from the material used for the firebox or firebox component in the wood heater on which certification testing was performed. Individual brick size and color may vary but the specification of the material remains the same. The inner firebox brick coverage remains also always the same. If other differences occur over time, a description of any such differences and demonstration that any such differences may not reasonably be anticipated to adversely affect emissions or efficiency will be communicate with Residential Wood Heater Compliance Program Lead.
- 3. SBI will provide to Residential Wood Heater Compliance Program Lead the Confidential Business Information (CBI) report including all test data and drawings by e-mail to <a href="mailto-sanchez.Rafael@epa.gov">Sanchez.Rafael@epa.gov</a>.
- 4. SBI provided all documentation that proves that the certification tests were valid. Raw data sheets, laboratory technician notes, calculations and test results were provided to Residential Wood Heater Compliance Program Lead in the appendix of Intertek Test Report 104576994MTL-001. SBI confirms that the burn rate for the low burn rate category is no greater than the rate that an operator can achieve in home use and no greater than is advertised by the manufacturer or retailer.
- 5. SBI provided in Appendix D of Intertek Test Report 104576994MTL-001 a copy of the warranty that stated: "This warranty is void if the unit is used to burn materials other than cordwood (for which the unit is not certified by the EPA) and void if not operated according to the owner's manual. This warranty applies to normal residential use only. Damages caused by misuse, abuse, improper installation, lack of maintenance, over firing, negligence or accident during transportation, power failures, downdrafts, venting problems or under-estimated heating area are not covered by this warranty. The recommended heated area for a given appliance is defined by the manufacturer as its capacity to maintain a minimum





acceptable temperature in the designated area in case of a power failure."

- 6. SBI, with the help of the certification laboratory, Intertek, built a Quality Assurance Program. A quality control is performed for each unit produced and 4 times a year, Intertek audits our production line to make sure that the models in production comply with the certification unit.
- 7. SBI confirms that the certification model was sealed by Intertek as per picture of Appendix H. Permanent straps holds the unit on a wooden palette and prevent the door from opening. Intertek logo is painted over the unit and the strap as a protection. The sealed unit will be store at SBI laboratory as long as the unit is in production, but a least for 5 years after certification test.
- 8. SBI states that the units produce under this certificate will be:
  - a. Similar in all material respects that would affect emissions as defined in § 60.531 to the wood heater submitted for certification testing, and labeled as prescribed in § 60.536 and 60.5478.
  - b. Accompanied by an owner's manual that meets the requirements in § 60.536 and 60.5478. A copy of the owner's manual was submitted to the Administrator and will be available to the public on the manufacturer's web site at production launch.
- 9. SBI has entered into contracts with an approved laboratory and third-party certifier which is Intertek. Intertek Montreal is the approved laboratory and the third-party certifier is the Arlington Heights chapter of Intertek.
- 10. SBI allows the approved laboratory and approved third-party certifier to submit information to Residential Wood Heater Compliance Program Lead on behalf of SBI, including any claimed to be CBI.
- 11. SBI will place a copy of the certification test report, summary and all non-CBI on the manufacturer's web site available to the public within 30 days after the Administrator issues a certificate of compliance.
- 12. SBI acknowledges that the certificate of compliance cannot be transferred to another manufacturer or model line without written approval by the Administrator.
- 13. SBI acknowledges that it is unlawful to sell, distribute or offer to sell or distribute an affected wood heater without a valid certificate of compliance.

| Guíllaume Thíbodeau-Fortín, Eng. Laboratory  Print name and title:                 | Date : _        | 2021-03-22    |
|------------------------------------------------------------------------------------|-----------------|---------------|
|                                                                                    |                 |               |
| Signature of responsible representative of the manufacturer certifying the accura- | cy of the above | e statements: |
| (3/1/2-23 Gg.                                                                      |                 |               |

The authorized or responsible party whose signature is above is certifying that the manufacturer has complied with and will continue to comply with all requirements of the 2015 CAA Standards for compliance certification and that the manufacturer remains responsible for compliance regardless of any error by the test laboratory or third-party certifier.



OMB Control No. 2060-0693 Approval expires 3/31/2019

**EPA Form 6400-03** 

# RESIDENTIAL WOOD HEATER CERTIFICATE OF COMPLIANCE APPLICATION

#### **INSTRUCTIONS**

Pursuant to the 2015 Clean Air Act Standards of Performance for New Residential Wood Heaters, New Residential Hydronic Heaters and Forced-Air Furnaces, 40 CFR Part 60 Subparts AAA and QQQQ (2015 Wood Heater Rule), any manufacturer of an affected residential wood heater must apply to the EPA for a certificate of compliance for each model line. Without applying for and obtaining a certificate of compliance, a manufacturer may not manufacture, advertise for sale, offer for sale, or sell affected residential wood heaters in the United States.

Under Subpart AAA, affected residential wood-burning room heaters currently include, but are not limited to, adjustable burn rate stoves, catalytic adjustable burn rate stoves; hybrid adjustable burn rate stoves; and pellet stoves.

Under Subpart QQQQ, affected residential wood-burning central heaters currently include, but are not limited to, indoor hydronic heaters ("wood boilers"); outdoor hydronic heaters ("outdoor wood boilers"); and forced-air furnaces ("warm air furnaces").

By completing and submitting this application to EPA, you will satisfy the requirement to apply for a certificate of compliance. To submit a complete application, this application must include the following:

- (1) Certification test report prepared by an EPA-approved test laboratory
- (2) Certification of conformity by an EPA-approved third party certifier
- (3) Quality assurance plan
- (4) All required supporting documentation and manufacturer statements pursuant to the 2015 Wood Heater Rule (Sections 60.533 or 60.5475)

This application must be signed by a responsible representative of the manufacturer or an authorized representative. Once completed with all required information/documentation included, this application must be submitted to WoodHeaterReports@epa.gov.

The public reporting and recordkeeping burden for this collection of information is estimated to average 8 hours per response. Send comments on the Agency's need for this information, the accuracy of the provided burden estimates, and any suggested methods for minimizing respondent burden, including through the use of automated collection techniques to the Director, Regulatory Support Division, U.S. Environmental Protection Agency (EPA) (2822T), 1200 Pennsylvania Ave., NW, Washington, D.C. 20460. Include the OMB control number in any correspondence. Do not send the completed application to this address.

Disclaimer: The statutory provisions and the EPA regulations described in this document contain legally binding requirements. This document is not a substitute for those provisions or regulations, nor is it a regulation itself. In the event of a discrepancy, please refer to Part 60 Subparts AAA AND QQQQ, Sections 60.537 and 60.5479. If you have additional questions, please contact Rafael Sanchez at 202-

564-7028, Residential Wood Heater Compliance Program Lead, or via email at <a href="mailto:sanchez.rafael@epa.gov">sanchez.rafael@epa.gov</a>.

**Manufacturer's Name: Stove Builder International** 

## **MANUFACTURER INFORMATION**

| Manufacturer's Physical Address:<br>250 rue de Copenhague<br>Saint-Augustin-de-Desmaures,<br>Canada, G3A 2H3                   |                                                                                                                                                                                                                                                                                 |                           |                            | Manufacturer's Mailing Address (if different from physical address):                                                                                                                                                                        |                            |                                  |                              |  |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------|------------------------------|--|
| Name and Title of Manufacturer's Responsible/Authorized Representative Submitting this Application: Guillaume Thibodeau-Fortin |                                                                                                                                                                                                                                                                                 |                           |                            |                                                                                                                                                                                                                                             |                            |                                  |                              |  |
| Manufacturer's C international.com                                                                                             |                                                                                                                                                                                                                                                                                 | mail: gthibod             | leaufortin@sbi-            | Manufacturer's                                                                                                                                                                                                                              | Phon                       | e Number: 1-4                    | 18-878-3040 x5224            |  |
| Manufacturer's Website Address:<br>www.sbi-international.com                                                                   |                                                                                                                                                                                                                                                                                 |                           |                            | Manufacturer's Website Address where the test report and owner's manual will be posted, if known:  www.enerzone-intl.com www.osburn-mfq.com www.century-heating.com www.occanada.com www.empirestove.com https://www.hearthstonestoves.com/ |                            |                                  |                              |  |
|                                                                                                                                | AFFE                                                                                                                                                                                                                                                                            | CTED W                    | OOD HEAT                   | ER MODEL II                                                                                                                                                                                                                                 | NFO                        | RMATION                          |                              |  |
| must clearly disti                                                                                                             | Model Name(s) (as appearing on the certification test report). Please note: the model name and design number must clearly distinguish one model from another. The name and design number cannot include the EPA symbol or logo or name or derivatives such as "EPA": 2.1 Series |                           |                            |                                                                                                                                                                                                                                             |                            |                                  |                              |  |
| Model Number(s)<br>Mountain Insert !                                                                                           |                                                                                                                                                                                                                                                                                 |                           |                            | st report): Destinati                                                                                                                                                                                                                       | ion 1.9                    | 9, Matrix 1900,                  | CW2100, Green                |  |
| Heater Type<br>Check one):                                                                                                     | -                                                                                                                                                                                                                                                                               | stable Burn<br>ood Stover | □ Pellet<br>Stove          | □Single Burn<br>Rate Wood Stove                                                                                                                                                                                                             | □H                         | ydronic Heater                   | □Forced-Air Furnace<br>(FAF) |  |
| Hydronic Heater<br>Type (Check<br>one):                                                                                        | □Full                                                                                                                                                                                                                                                                           | l Storage                 | □Partial<br>Storage        | □Indoor                                                                                                                                                                                                                                     | □Ou                        | □Outdoor                         |                              |  |
| Forced-Air<br>Furnace Type<br>(Check one):                                                                                     | □Small (loutput)                                                                                                                                                                                                                                                                | less than 65,00           | 00 BTU/hr heat             | □Large (greater than 65,000 BTU/hr heat output)                                                                                                                                                                                             |                            |                                  | output)                      |  |
| Fuel Tested (Check one):                                                                                                       |                                                                                                                                                                                                                                                                                 | ]Crib                     | □Pellet                    | ⊠Cordwood                                                                                                                                                                                                                                   | □Wo                        | ood Chips                        | □Other:                      |  |
| Certification<br>Step:                                                                                                         | □2015                                                                                                                                                                                                                                                                           | $\Box$ 2016 (FAFs only)   | $\square$ 2017 (FAFs only) |                                                                                                                                                                                                                                             | ⊠202                       | 2020 (ALL HEATERS)               |                              |  |
| Was this heater tested using an EPA-approved Alternative Test Method (ATM)? ⊠Yes □No                                           |                                                                                                                                                                                                                                                                                 |                           |                            |                                                                                                                                                                                                                                             | Heater equip<br>combustor? | ped with a catalytic<br>□Yes ⊠No |                              |  |
| If yes, provide date of EPA approval and attach copy of EPA approved ATM letter): 2/28/2018                                    |                                                                                                                                                                                                                                                                                 |                           |                            |                                                                                                                                                                                                                                             |                            |                                  |                              |  |
| If not, what Test Method(s) did the test laboratory use for the certification test? (List all applicable test methods):        |                                                                                                                                                                                                                                                                                 |                           |                            |                                                                                                                                                                                                                                             |                            |                                  |                              |  |

Date of submission of 30-Day Notice to the EPA:1/21/2021

What was the proposed date(s) of testing? 02/22/2021

What was the actual date(s) of testing? 02/22/2021

Was the compliance test postponed or suspended?  $\Box Y \boxtimes N$  If yes, date of EPA notification of postponement or suspension:

Explain reason for postponing or suspending the certification test:

#### **EPA-APPROVED TEST LABORATORY**

Name of EPA-Approved Test Laboratory: Intertek

Name(s) of Person(s) Authorized and/or Responsible for Conducting Certification Test: Claude Pelland, Eng.

Position/Title: Project Engineer

Address: 1829, 32nd avenue

City: Lachine State: Québec ZIP Code: H8T 3J1

Phone: 1-514-631-3100 x277 Email: claude.pellant@intertek.com

#### **EPA-APPROVED THIRD PARTY CERTIFIER**

Name of EPA-Approved Third-Party Certifier: Intertek

Name(s) of Person(s) Authorized and/or Responsible for Reviewing Test Report and/or Issuing Certification of Conformity: Charles Meyers

**Position/Title: Director, Product Certification** 

Address: 545 E Algonquin Rd

City: Arlington Heights State: IL ZIP Code: 60005

Phone: 312-906-7783 Email: charles.meyers@intertek.com

#### REQUIRED SUPPORTING DOCUMENTATION/MANUFACTURER STATEMENTS

## NOTE: TO COMPLETE THIS APPLICATION, ALL REQUIRED DOCUMENTATION AND MANUFACTURER STATEMENTS MUST ACCOMPANY THIS APPLICATION.

#### 1. Engineering Drawings

Engineering drawings and specifications of components that may affect emissions (including specifications for each component listed in paragraphs (k)(2), (3) and (4) of (3) of (4) of (3) and (4) of (3) and (4) of (3) and (4) of (3) and (4) of (3) and (4) of (3) and (4) of (3) and (4) of (3) and (4) of (3) and (4) of (4) of this section. Manufacturers must identify tolerances of components listed in paragraph (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of (4) of

#### 2. Firebox Statement Requirement

A statement whether the firebox or any firebox component (including the materials listed in paragraph (k)(3) of 60.533(b) and 60.5475(b) will be composed of material different from the material used for the firebox or firebox component in the wood heater on which certification testing was performed, a description of any such differences and demonstration that any such differences may not reasonably be anticipated to adversely affect emissions or efficiency.

#### 3. Confidential Business Information

Clear identification of any claimed confidential business information (CBI). Submit such information under separate cover to the EPA CBI Office; Attn: Residential Wood Heater Compliance Program Lead, 1200 Pennsylvania Ave., NW, Room 7149-D, MS:2227A, Washington, DC 20460. **Note that all emissions data, including all information necessary to determine emission rates in the format of the standard, cannot be claimed as CBI.** 

#### 4. All Documentation Pertaining to a Valid Certification Test

All documentation pertaining to a valid certification test including the complete test report and, for all test runs: Raw data sheets, laboratory technician notes, calculations and test results. Documentation must include the items specified in the applicable test methods. Documentation must include discussion of each test run and its appropriateness and validity, and must include detailed discussion of all anomalies, whether all burn rate categories were achieved, any data not used in the calculations and, for any test runs not completed, the data collected during the test run and the reason(s) that the test run was not completed and why. The burn rate for the low burn rate category must be no greater than the rate that an operator can achieve in home use and no greater than is advertised by the manufacturer or retailer. The test report must include a summary table that clearly presents the individual and overall emission rates, efficiencies and heat outputs. Submit the test report and all associated required information, according to the procedures for electronic reporting specified in § 60.537(f) and 60.5475(f).

#### 5. Warranties

A copy of the warranties for the model line, which must include a statement that the warranties are void if the unit is used to burn materials for which the unit is not certified by the EPA and void if not operated according to the owner's manual.

#### 6. Quality Assurance Program Statement

A statement that the manufacturer will conduct a quality assurance program for the model line that satisfies the requirements of § 60.533(m).

#### 7. Laboratory Sealing of Unit

A statement describing how the tested unit was sealed by the laboratory after the completion of certification testing and asserting that such unit will be stored by the manufacturer in the sealed state until 5 years after the certification test.

#### 8. Statements that the Wood Heaters Manufactured under this Certificate will be:

- (i) Similar in all material respects that would affect emissions as defined in § 60.531 to the wood heater submitted for certification testing, and
- (ii) Labeled as prescribed in § 60.536 and 60.5478, and
- (iii) Accompanied by an owner's manual that meets the requirements in § 60.536 and 60.5478. In addition, a copy of the owner's manual must be submitted to the EPA and be available to the public on the manufacturer's web site.

#### 9. Third Party Certification Statement

A statement that the manufacturer has entered into contracts with an approved laboratory and an approved third-party certifier that satisfy the requirements of § 60.533(f).

#### 10. Approved Laboratory/Third Party Statement

A statement that the approved laboratory and approved third-party certifier are allowed to submit information on behalf of the manufacturer, including any claimed to be CBI.

#### 11. Manufacturer's Website Certification Test Reports Availability Statement

A statement that the manufacturer will place a copy of the certification test report and summary on the manufacturer's web site available to the public within 30 days after the EPA issues a certificate of compliance.

#### 12. Transferability Acknowledgement Statement

A statement of acknowledgment that the certificate of compliance cannot be transferred to another manufacturer or model line without written approval by the EPA.

#### 13. Statement about Selling Wood Heaters without an EPA Certificate

A statement acknowledging that it is unlawful to sell, distribute or offer to sell or distribute an affected wood heater without a valid certificate of compliance.

PLEASE ACKNOWLEDGE THAT ALL REQUIRED SUPPORTING DOCUMENTATION AND MANUFACTURER STATEMENTS ACCOMPANY THIS APPLICATION.



SIGNATURE OF RESPONSIBLE OFFICER OR AUTHORIZED REPRESENTATIVE OF THE MANUFACTURER CERTIFYING THE ACCURACY AND COMPLETENESS OF THIS APPLICATION:

Signature:

Print Name: Guillaume Thibodeau-Fortin, Eng.

3/1/2-23 Gy.

**Title: Laboratory Engineer** 

Date: 2021-03-22

The responsible officer or authorized representative of the manufacturer whose signature is above is certifying that the manufacturer has complied with all requirements of the 2015 Wood Heater Rule for compliance certification and will continue to do so. The manufacturer remains responsible for compliance regardless of any error by the EPA-approved test laboratory or third-party certifier.